首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sporogonic development of the malaria parasite takes place in the mosquito and a wide range of factors modulates it. Among those, the contents of the blood meal can influence the parasite development directly or indirectly through the mosquito response to the infection. We have studied the effect of a second blood meal in previously infected mosquitoes and the effect of anti-sporozoite immune serum on parasite development and mosquito response to the infection. The prevalence and intensity of infection and gene expression of both Plasmodium yoelii and Anopheles stephensi was analyzed. We verified that a second blood meal and its immune status interfere with parasite development and with Plasmodium and mosquito gene expression.  相似文献   

2.
This paper uses regression and simulation to develop some stochastic models of time to completion of development (TTCOD) of a parasite of sheep on pasture under the influence of temperature in the presence of adequate moisture. A statistical distribution is fitted to the development of the parasite at the prevalent average temperature for the day. Approximate solutions using Newton–Raphson method, and MLE estimates were obtained for parameters, and Monte Carlo methods were used to simulate the distributions of development of the parasite at constant and varying temperatures, tracking the stochasticity of the completion of development of the parasite on pasture where its infectivity is a menace to livestock and livestock farmers. The simulated distribution provides a tool for predicting infectivity, which can lead to strategies for containing or eliminating infection.  相似文献   

3.
The development rate of parasites and pathogens within vectors typically increases with temperature. Accordingly, transmission intensity is generally assumed to be higher under warmer conditions. However, development is only one component of parasite/pathogen life history and there has been little research exploring the temperature sensitivity of other traits that contribute to transmission intensity. Here, using a rodent malaria, we show that vector competence (the maximum proportion of infectious mosquitoes, which implicitly includes parasite survival across the incubation period) tails off at higher temperatures, even though parasite development rate increases. We also show that the standard measure of the parasite incubation period (i.e. time until the first mosquitoes within a cohort become infectious following an infected blood-meal) is incomplete because parasite development follows a cumulative distribution, which itself varies with temperature. Including these effects in a simple model dramatically alters estimates of transmission intensity and reduces the optimum temperature for transmission. These results highlight the need to understand the interactive effects of environmental temperature on multiple host-disease life-history traits and challenge the assumptions of many current disease models that ignore this complexity.  相似文献   

4.
Beaver J. P. and Dobson C. 1978. Acetylcholinesterase levels in Angiostrongylus cantonensis in relation to the immune response in rats. International Journal for Parasitology8: 9–13. Angiostrongylus cantonensis larvae and adult nematodes synthesize three acetylcholinesterase (AChE) isozymes. The Km of this isozyme complex changes with the development and migrations of the parasite in the rat host. The levels of parasite AChE changed as the development of A. cantonensis progressed; increasing quantities of AChE were found in young adult A. cantonensis from the brain of rats. After migration to the pulmonary arteries, the quantity of AChE in the parasite was reduced and continued to decline in the aging parasite. Anti-A. cantonensis antibody inhibited parasite AChE activity; this inhibition of the parasite AChE activity changed at stages during development of the parasite which suggested variation in parasite AChE isozyme levels. Haemagglutinating anti-A. cantonensis antibody appeared in the serum of infected rats when the parasites commenced to lay eggs and increased in titre thereafter until 103 days after infection.  相似文献   

5.
The human malaria parasite Plasmodium falciparum is responsible for the majority of malaria-related deaths. Tools allowing the study of the basic biology of P. falciparum throughout the life cycle are critical to the development of new strategies to target the parasite within both human and mosquito hosts. We here present 3D7HT-GFP, a strain of P. falciparum constitutively expressing the Green Fluorescent Protein (GFP) throughout the life cycle, which has retained its capacity to complete sporogonic development. The GFP expressing cassette was inserted in the Pf47 locus. Using this transgenic strain, parasite tracking and population dynamics studies in mosquito stages and exo-erythrocytic schizogony is greatly facilitated. The development of 3D7HT-GFP will permit a deeper understanding of the biology of parasite-host vector interactions, and facilitate the development of high-throughput malaria transmission assays and thus aid development of new intervention strategies against both parasite and mosquito.  相似文献   

6.
SUMMARY 1. The effect of phosphorus limitation of the diatom Asterionella formosa Hass. on growth, survival and epidemic development of its fungal parasite Rhizophydium planktonicum Canter emend. was estimated, using measurements of production and infectivity of the zoospores of the chytrid grown on host cultures with different phosphorus-limited growth rates.
2. Phosphorus-limited host cells were less susceptible to infection with zoospores of the parasite than non-limited host cells.
3. The sporangia on phosphorus-limited algae produced substantially less zoospores, but the development time of these sporangia was only slightly reduced.
4. As a result of these effects, Rhizophydium will reach lower growth rates at a given host density, and survival of the parasite will require higher host densities when Asterionella is phosphorus-limited.
5. The zoospore production remained high enough to enable the parasite to grow faster than the alga at sufficiently high host densities, both at limiting and non-limiting phosphorus levels.
6. In spite of the reduced growth rate of the parasite, phosphorus limitation of Asterionella was found to facilitate the development of a Rhizophydium epidemic. This was a consequence of the reduced algal growth rate at phosphorus limitation, which makes the host population more easily outgrown by the parasite.
7. Phosphorus limitation of the host could reduce the threshold host density required for the development of an epidemic by a factor of 2.5.  相似文献   

7.
The effects of ascorbate and copper on the development of Plasmodium falciparum were studied in two modes: pretreatment of uninfected erythrocytes followed by infection by P. falciparum and treatment of parasitized erythrocytes. Pretreatment of G6PD(+) cells with ascorbate caused a slight enhancement in parasite development, while in G6PD(-) cells a suppressive effect on the plasmodia was demonstrated. Copper alone interfered with parasite growth in both cell types. The combination of copper and ascorbate arrested parasite maturation, an effect which was more pronounced in G6PD(-) cells. Synergism between copper and ascorbate was better demonstrated following the treatment of infected erythrocytes: while ascorbate alone supported parasite development and copper alone had only a marginal suppressive effect, the combination of copper and ascorbate yielded a marked inhibition of parasite growth. Ascorbate proved destructive to the parasites in the presence of adventitious copper, or on the second day of the parasite life cycle. In these cases it acted as a pro-oxidant, while in other systems, in particular in the presence of a chelator, ascorbate acted as an antioxidant and promoted parasite growth. The understanding of the role of transition metals and free radicals in parasite development and injury could shed light on novel approaches to fight malaria.  相似文献   

8.
Nearly one million people are killed every year by the malaria parasite Plasmodium. Although the disease-causing forms of the parasite exist only in the human blood, mosquitoes of the genus Anopheles are the obligate vector for transmission. Here, we review the parasite life cycle in the vector and highlight the human and mosquito contributions that limit malaria parasite development in the mosquito host. We address parasite killing in its mosquito host and bottlenecks in parasite numbers that might guide intervention strategies to prevent transmission.  相似文献   

9.

1. 1 Regression models for predicting the minimum, the median and the maximum period of development of the parasite H. contortus from egg to the infective stage of constant temperature were described.

2. 2. Simulations were used to study the development of the parasite to the infective stage.

3. 3. Further, an analytic Stochastic Development Fraction Model was used to reproduce the development of the parasite obtained by simulations.

4. 4. The Stochastic Development Fraction Model was compared with the Deterministic Development Fraction Model to expose its potentials for predicting the development of parasites on pasture where varying temperature prevail.

Author Keywords: Stochastic; deterministic; development fraction; temperature; regression; minimun; median; maximum; development period; infective stage; haemonchosis  相似文献   


10.
The course of malaria infection in mammals begins with transmission of Plasmodium sporozoites into the skin by Anopheles mosquitoes, followed by migration of the sporozoites to the liver. As no symptoms present until hepatic merozoites are released and until they infect erythrocytes in the blood vessels, sporozoites and liver-stage (LS) parasites are promising targets for anti-malaria drugs aiming to prevent mosquito-to-mammal transmission. In vitro LS parasite development system is useful in the screening of candidate drugs on LS parasite development and the elucidation of its underlying molecular mechanisms, which remain unclear. Using rodent malaria parasites (Plasmodium berghei) as a model, this study aimed to develop an optimal in vitro LS culture system for the full maturation of the LS parasite into the hepatic merozoite, the next infective stage in parasite development. As the development of this system required measurement of maturation, a novel quantitative index of LS parasite maturation based on the expression pattern of liver-specific protein 2 (LISP2) was first developed. The use of this index for comparing the effect of incubation in different culture media on LS maturation revealed that the d-glucose concentration of the culture medium is the key factor promoting parasite development in hepatocytes and that a d-glucose concentration of 2000 mg/L/day is the threshold concentration at which the maturation of P. berghei into infective hepatic merozoites is achieved. These findings can be utilized to optimize a human malaria LS culture system for drug discovery.  相似文献   

11.
West African populations of Onchocerca volvulus endemic to the rain forest and savanna bioclimes of West Africa differ in their ability to induce ocular disease in infected individuals. In recent years, both clinical- and animal-model-based studies have implicated particular parasite antigens in the development of ocular onchocerciasis. To test the hypothesis that the difference in pathogenic potential of blinding and nonblinding parasites might be reflected in qualitative differences in antigens that have been implicated in the development of ocular onchocerciasis, we compared the sequences of two parasite antigens implicated in the development of ocular disease in blinding- and nonblinding-strain parasites. The results demonstrated a high level of homogeneity between the parasite strains in these genes. The study was extended to include additional nuclear genes encoding antigens that are commonly recognized by individuals infected with O. volvulus and to the mitochondrial genome of the parasite. The results demonstrate a high degree of homogeneity in both the nuclear and the mitochondrial genomes among O. volvulus isolates collected from several different sites in Africa and in the Americas. This high degree of genetic homogeneity may reflect the passage of the parasite through a recent genetic bottleneck.  相似文献   

12.
To fuel the tremendously fast replication of Plasmodium liver stage parasites, the endoplasmic reticulum (ER) must play a critical role as a major site of protein and lipid biosynthesis. In this study, we analysed the parasite's ER morphology and function. Previous studies exploring the parasite ER have mainly focused on the blood stage. Visualizing the Plasmodium berghei ER during liver stage development, we found that the ER forms an interconnected network throughout the parasite with perinuclear and peripheral localizations. Surprisingly, we observed that the ER additionally generates huge accumulations. Using stimulated emission depletion microscopy and serial block‐face scanning electron microscopy, we defined ER accumulations as intricate dense networks of ER tubules. We provide evidence that these accumulations are functional subdivisions of the parasite ER, presumably generated in response to elevated demands of the parasite, potentially consistent with ER stress. Compared to higher eukaryotes, Plasmodium parasites have a fundamentally reduced unfolded protein response machinery for reacting to ER stress. Accordingly, parasite development is greatly impaired when ER stress is applied. As parasites appear to be more sensitive to ER stress than are host cells, induction of ER stress could potentially be used for interference with parasite development.  相似文献   

13.
The nature of the surface deformations of erythrocytes infected with the human malaria parasite Plasmodium falciparum was analyzed using scanning electron microscopy at two stages of the 48-h parasite maturation cycle. Infected cells bearing trophozoite-stage parasites (24-36 h) had small protrusions (knobs), with diameters varying from 160 to 110 nm, and a density ranging from 10 to 35 knobs X micron-2. When parasites were fully mature (schizont stage, 40-44 h), knob size decreased (100-70 nm), whereas density increased (45-70 knobs X micron-2). Size and density of the knobs varied inversely, suggesting that knob production (a) occurred throughout intraerythrocytic parasite development from trophozoite to schizont and (b) was related to dynamic changes of the erythrocyte membrane. Variation in the distribution of the knobs over the red cell surface was observed during parasite maturation. At the early trophozoite stage of parasite development, knobs appeared to be formed in particular domains of the cell surface. As the density of knobs increased and they covered the entire cell surface, their lateral distribution was dispersive (more-than-random); this was particularly evident at the schizont stage. Regional surface patterns of knobs (rows, circles) were seen throughout parasite development. The nature of the dynamic changes that occurred at the red cell surface during knob formation, as well as the nonrandom distribution of knobs, suggested that the red cell cytoskeleton may have played a key role in knob formation and patterning.  相似文献   

14.
The parasite Exeristes roborator grew rapidly and completed larval development on fatty acid free chemically defined diets. Dietary supplements of palmitoleate, oleate, linoleate, and linolenate were detrimental to parasite development with most larvae dying in the first instar. Palmitate supplements were also toxic, but a small percentage of larvae consistently completed development and survival and development time on diets supplemented with free stearate did not differ significantly from results obtained with fatty acid free diets. Supplements of a mixture of all six free fatty acids were as toxic as the unsaturated free fatty acids. Dietary supplements of the triglycerides, tripalmitin, tripalmitoleate, tristearin, and trioleate had no positive nutritional value for larval growth and development but were not detrimental.Development time was increased when the parasite was reared on fatty acid free diets lacking carbohydrate, but survival was not affected. The parasite, therefore, appears to have the ability to utilize dietary free amino acids as the sole energy source at this stage. Under these nutritional conditions, supplements of triglycerides did not replace the nutritional value of carbohydrate and some of the supplementary triglycerides were detrimental to larval survival.  相似文献   

15.
16.
Thin-sectioning and freeze-etching electron microscopy were applied to explore the structure and the temperature- and Ca2+-response of the different host and parasite membranes during intraerythrocytic development of Plasmodium knowlesi in Macacca mulatta. The plasma membrane of uninfected erythrocytes is temperature- and Ca2+-responsive: chilling to 4°C and exposure to 5 mM Ca2+ induces a slight decrease in IMP-frequency and the emergence of small IMP-devoid patches on P-faces. On parasite infection, the erythrocyte membrane becomes modified as indicated by an enhanced temperature-response and the appearance of caveolae, ca. 70–90 nm in diameter. The frequency of these caveolae is increased in schizont-infected erythrocytes. Moreover, electron dense plaques, ca. 40 nm in width, appear just beneath the erythrocyte membrane in late trophozoites and schizonts, thus indicating a further modification of the host cell membrane during parasite development. The membrane of the parasitophorous vacuole, derived from the host plasma membrane, dramatically reduces the IMP-frequency especially on the P-face upon parasite infection. This leads to an apparent reversal of the IMP-distribution persisting throughout the whole infection cycle. The parasite plasma membrane forms local compaction domains with the nuclear envelope in ca. 30% of the ring-stages and trophozoites, which disappear in late trophozoites and schizonts. Moreover, the IMP-frequency on plasma membrane fracture faces almost doubles during parasite development. Chilling induces a decrease in the IMP-frequency on P-faces of the plasma membrane. Surprisingly, however, the parasite plasma membrane and the vacuolar membrane respond to externally applied Ca2+ with almost a doubling of the IMP-frequency. The different parasite endomembranes also undergo characteristic changes during parasite development.  相似文献   

17.
Study of the parasite mosquito stages of Plasmodium and its use in the production of sporozoite vaccines against malaria has been hampered by the technical difficulties of in vitro development. Here, we show the complete axenic development of the parasite mosquito stages of Plasmodium yoelii. While we demonstrate that matrigel is not required for parasite development, soluble factors produced and secreted by Drosophila melanogaster S2 cells appear to be crucial for the ookinete to oocyst transition. Parasites cultured axenically are both morphologically and biologically similar to mosquito-derived ookinetes, oocysts, and sporozoites. Axenically derived sporozoites were capable of producing an infection in mice as determined by RT-PCR; however, the parasitemia was significantly much less than that produced by mosquito-derived sporozoites. Our cell free system for development of the mosquito stages of P. yoelii provides a simplified approach to generate sporozoites that may be for biological assays and genetic manipulations.  相似文献   

18.
The population dynamics of farmed animals are controlled by humans, and often involve high host densities, which encourage higher parasite burdens than would be usual in wild animals. As a result, the immunity to reinfection acquired by the host is an important determinant of parasite population dynamics. For example, lambs are highly susceptible to gastrointestinal nematodes as they begin to graze, but develop an immunity that accounts for the observed within-year variation in parasite load and pasture contamination. In the longer term, control measures are compromised by the development of parasite strains resistant to chemotherapy, focusing attention on the development of 'natural' measures, including the selection for resistant hosts and the development of antiparasite vaccines. Mick Roberts here considers the immunoepidemiology of parasites of farmed animals on three levels: the interaction between the parasite and the host's immune system determining the individual's level of protection; the development of acquired immunity determining the within-year parasite population dynamics; and the long-term effects of control measures on the between-year parasite population dynamics.  相似文献   

19.
Baker DA 《IUBMB life》2004,56(9):535-540
Completion of several malaria parasite genome sequences and advances in Plasmodium gene manipulation technology, will lead to significant advances in our knowledge of the biology of these organisms. Biochemical analysis of the cyclic nucleotide signalling pathways of P. falciparum has provided important information on malaria parasite development. The Plasmodium purine nucleotide cyclase enzymes have extremely unusual structures and the regulatory mechanisms controlling parasite enzyme activity are distinct from those operating on the analogous host molecules. Study of these enzymes could therefore lead to novel strategies for anti-malarial intervention in addition to providing unique insights into the intriguing biology of the parasite.  相似文献   

20.
The malarial parasite Plasmodium falciparum transposes a Golgi-like compartment, referred to as Maurer's clefts, into the cytoplasm of its host cell, the erythrocyte, and delivering parasite molecules to the host cell surface. We report here a novel role of the Maurer's clefts implicating a parasite protein phosphatase 1 (PP1) and related to the phosphorylation status of P. falciparum skeleton-binding protein 1 (PfSBP1), a trans-membrane protein of the clefts interacting with the host cell membrane via its carboxy-terminal domain. Based on co-immunoprecipitation and inhibition studies, we show that the parasite PP1 type phosphatase modulates the phosphorylation status of the amino-terminal domain of PfSBP1 in the lumen of Maurer's clefts. Importantly, the addition of a PP1 inhibitor, calyculin A, to late schizonts results in the hyperphosphorylation of PfSBP1 and prevents parasite release from the host cell. We propose that the hyperphosphorylation of PfSBP1 interferes with the release of merozoites, the invasive blood stage of the parasite, by increasing the red cell membrane stability. Moreover, the parasite PP1 phosphatase is the first enzyme essential for the parasite development detected in the Maurer's clefts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号