首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Choi O  Kim J  Kim JG  Jeong Y  Moon JS  Park CS  Hwang I 《Plant physiology》2008,146(2):657-668
Pseudomonas fluorescens B16 is a plant growth-promoting rhizobacterium. To determine the factors involved in plant growth promotion by this organism, we mutagenized wild-type strain B16 using OmegaKm elements and isolated one mutant, K818, which is defective in plant growth promotion, in a rockwool culture system. A cosmid clone, pOK40, which complements the mutant K818, was isolated from a genomic library of the parent strain. Tn3-gusA mutagenesis of pOK40 revealed that the genes responsible for plant growth promotion reside in a 13.3-kb BamHI fragment. Analysis of the DNA sequence of the fragment identified 11 putative open reading frames, consisting of seven known and four previously unidentified pyrroloquinoline quinone (PQQ) biosynthetic genes. All of the pqq genes showed expression only in nutrient-limiting conditions in a PqqH-dependent manner. Electrospray ionization-mass spectrometry analysis of culture filtrates confirmed that wild-type B16 produces PQQ, whereas mutants defective in plant growth promotion do not. Application of wild-type B16 on tomato (Solanum lycopersicum) plants cultivated in a hydroponic culture system significantly increased the height, flower number, fruit number, and total fruit weight, whereas none of the strains that did not produce PQQ promoted tomato growth. Furthermore, 5 to 1,000 nm of synthetic PQQ conferred a significant increase in the fresh weight of cucumber (Cucumis sativus) seedlings, confirming that PQQ is a plant growth promotion factor. Treatment of cucumber leaf discs with PQQ and wild-type B16 resulted in the scavenging of reactive oxygen species and hydrogen peroxide, suggesting that PQQ acts as an antioxidant in plants.  相似文献   

3.
The performance of Pseudomonas biocontrol agents may be improved by applying mixtures of strains which are complementary in their capacity to suppress plant diseases. Here, we have chosen the combination of Pseudomonas fluorescens CHA0 with another well-characterized biocontrol agent, P. fluorescens Q2-87, as a model to study how these strains affect each other's expression of a biocontrol trait. In both strains, production of the antimicrobial compound 2,4-diacetylphloroglucinol (DAPG) is a crucial factor contributing to the suppression of root diseases. DAPG acts as a signaling compound inducing the expression of its own biosynthetic genes. Experimental setups were developed to investigate whether, when combining strains CHA0 and Q2-87, DAPG excreted by one strain may influence expression of DAPG-biosynthetic genes in the other strain in vitro and on the roots of wheat. DAPG production was monitored by observing the expression of lacZ fused to the biosynthetic gene phlA of the respective strain. Dual-culture assays in which the two strains were grown in liquid medium physically separated by a membrane revealed that Q2-87 but not its DAPG-negative mutant Q2-87::Tn5-1 strongly induced phlA expression in a DeltaphlA mutant of strain CHA0. In the same way, phlA expression in a Q2-87 background was induced by DAPG produced by CHA0. When coinoculated onto the roots of wheat seedlings grown under gnotobiotic conditions, strains Q2-87 and CHA0, but not their respective DAPG-negative mutants, were able to enhance phlA expression in each other. In summary, we have established that two nonrelated pseudomonads may stimulate each other in the expression of an antimicrobial compound important for biocontrol. This interpopulation communication occurs in the rhizosphere, i.e., at the site of pathogen inhibition, and is mediated by the antimicrobial compound itself acting as a signal exchanged between the two pseudomonads.  相似文献   

4.
Pseudomonas fluorescens CHA0 is an effective biocontrol agent of root diseases caused by fungal pathogens. The strain produces the antibiotics 2,4-diacetylphloroglucinol (DAPG) and pyoluteorin (PLT) that make essential contributions to pathogen suppression. This study focused on the role of the sigma factor RpoN (sigma54) in regulation of antibiotic production and biocontrol activity in P. fluorescens. An rpoN in-frame-deletion mutant of CHAO had a delayed growth, was impaired in the utilization of several carbon and nitrogen sources, and was more sensitive to salt stress. The rpoN mutant was defective for flagella and displayed drastically reduced swimming and swarming motilities. Interestingly, the rpoN mutant showed a severalfold enhanced production of DAPG and expression of the biosynthetic gene phlA compared with the wild type and the mutant complemented with monocopy rpoN+. By contrast, loss of RpoN function resulted in markedly lowered PLT production and plt gene expression, suggesting that RpoN controls the balance of the two antibiotics in strain CHA0. In natural soil microcosms, the rpoN mutant was less effective in protecting cucumber from a root rot caused by Pythium ultimum. Remarkably, the mutant was not significantly impaired in its root colonization capacity, even at early stages of root infection by Pythium spp. Taken together, our results establish RpoN for the first time as a major regulator of biocontrol activity in Pseudomonas fluorescens.  相似文献   

5.
Pseudomonas aureofaciens Q2-87 produces the antibiotic 2,4-diacetophloroglucinol (Phl), which inhibits Gaeumannomyces graminis var. tritici and other fungi in vitro. Strain Q2-87 also provides biological control of take-all, a root disease of wheat caused by this fungus. To assess the role of Phl in the antifungal activity of strain Q2-87, a genetic analysis of antibiotic production was conducted. Two mutants of Q2-87 with altered antifungal activity were isolated by site-directed mutagenesis with Tn5. One mutant, Q2-87::Tn5-1, did not inhibit G. graminis var. tritici in vitro and did not produce Phl. Two cosmids were isolated from a genomic library of the wild-type strain by probing with the mutant genomic fragment. Antifungal activity and Phl production were coordinately restored in Q2-87::Tn5-1 by complementation with either cosmid. Mobilization of one of these cosmids into two heterologous Pseudomonas strains conferred the ability to synthesize Phl and increased their activity against G. graminis var. tritici, Pythium ultimum, and Rhizoctonia solani in vitro. Subcloning and deletion analysis of these cosmids identified a 4.8-kb region which was necessary for Phl synthesis and antifungal activity.  相似文献   

6.
Pseudomonas fluorescens strain CHA0, a root colonizing bacterium, has a broad spectrum of biocontrol activity against plant diseases. However, strain CHA0 is unable to utilize 1-aminocyclopropane-1-carboxylic acid (ACC), the immediate precursor of plant ethylene, as a sole source of nitrogen. This suggests that CHA0 does not contain the enzyme ACC deaminase, which cleaves ACC to ammonia and alpha-ketobutyrate, and was previously shown to promote root elongation of plant seedlings treated with bacteria containing this enzyme. An ACC deaminase gene, together with its regulatory region, was transferred into P. fluorescens strains CHA0 and CHA96, a global regulatory gacA mutant of CHA0. ACC deaminase activity was expressed in both CHA0 and CHA96. Transformed strains with ACC deaminase activity increased root length of canola plants under gnotobiotic conditions, whereas strains without this activity had no effect. Introduction of ACC deaminase genes into strain CHA0 improved its ability to protect cucumber against Pythium damping-off, and potato tubers against Erwinia soft rot in small hermetically sealed containers. In contrast, ACC deaminase activity had no significant effect on the ability of CHA0 to protect tomato against Fusarium crown and root rot, and potato tubers against soft rot in large hermetically sealed containers. These results suggest that (i) ACC deaminase activity may have lowered the level of plant ethylene thereby increasing root length; (ii) the role of stress-generated plant ethylene in susceptibility or resistance depends on the host-pathogen system, and on the experimental conditions used; and (iii) the constructed strains could be developed as biosensors for the role of ethylene in plant diseases.  相似文献   

7.
Pseudomonas aureofaciens Q2-87 produces the antibiotic 2,4-diacetophloroglucinol (Phl), which inhibits Gaeumannomyces graminis var. tritici and other fungi in vitro. Strain Q2-87 also provides biological control of take-all, a root disease of wheat caused by this fungus. To assess the role of Phl in the antifungal activity of strain Q2-87, a genetic analysis of antibiotic production was conducted. Two mutants of Q2-87 with altered antifungal activity were isolated by site-directed mutagenesis with Tn5. One mutant, Q2-87::Tn5-1, did not inhibit G. graminis var. tritici in vitro and did not produce Phl. Two cosmids were isolated from a genomic library of the wild-type strain by probing with the mutant genomic fragment. Antifungal activity and Phl production were coordinately restored in Q2-87::Tn5-1 by complementation with either cosmid. Mobilization of one of these cosmids into two heterologous Pseudomonas strains conferred the ability to synthesize Phl and increased their activity against G. graminis var. tritici, Pythium ultimum, and Rhizoctonia solani in vitro. Subcloning and deletion analysis of these cosmids identified a 4.8-kb region which was necessary for Phl synthesis and antifungal activity.  相似文献   

8.
In the biocontrol strain Pseudomonas fluorescens CHA0, the Gac/Rsm signal transduction pathway positively controls the synthesis of antifungal secondary metabolites and exoenzymes. In this way, the GacS/GacA two-component system determines the expression of three small regulatory RNAs (RsmX, RsmY, and RsmZ) in a process activated by the strain's own signal molecules, which are not related to N-acyl-homoserine lactones. Transposon Tn5 was used to isolate P. fluorescens CHA0 insertion mutants that expressed an rsmZ-gfp fusion at reduced levels. Five of these mutants were gacS negative, and in them the gacS mutation could be complemented for exoproduct and signal synthesis by the gacS wild-type allele. Furthermore, two thiamine-auxotrophic (thiC) mutants that exhibited decreased signal synthesis in the presence of 5 x 10(-8) M thiamine were found. Under these conditions, a thiC mutant grew normally but showed reduced expression of the three small RNAs, the exoprotease AprA, and the antibiotic 2,4-diacetylphloroglucinol. In a gnotobiotic system, a thiC mutant was impaired for biological control of Pythium ultimum on cress. Addition of excess exogenous thiamine restored all deficiencies of the mutant. Thus, thiamine appears to be an important factor in the expression of biological control by P. fluorescens.  相似文献   

9.
Pseudomonas fluorescens strain CHA0 is an effective biocontrol agent against soil-borne fungal plant pathogens. In this study, indole-3-acetic acid (IAA) biosynthesis in strain CHA0 was investigated. Two key enzyme activities were found to be involved: tryptophan side chain oxidase (TSO) and tryptophan transaminase. TSO was induced in the stationary growth phase. By fractionation of a cell extract of strain CHA0 on DEAE-Sepharose, two distinct peaks of constitutive tryptophan transaminase activity were detected. A pathway leading from tryptophan to IAA via indole-3-acetamide, which occurs in Pseudomonas syringae subsp. savastanoi, was not present in strain CHA0. IAA synthesis accounted for less than or equal to 1.5% of exogenous tryptophan consumed by resting cells of strain CHA0, indicating that the bulk of tryptophan was catabolized via yet another pathway involving anthranilic acid as an intermediate. Strain CHA750, a mutant lacking TSO activity, was obtained after Tn5 mutagenesis of strain CHA0. In liquid cultures (pH 6.8) supplemented with 10 mM-L-tryptophan, growing cells of strains CHA0 and CHA750 synthesized the same amount of IAA, presumably using the tryptophan transaminase pathway. In contrast, resting cells of strain CHA750 produced five times less IAA in a buffer (pH 6.0) containing 1 mM-L-tryptophan than did resting cells of the wild-type, illustrating the major contribution of TSO to IAA synthesis under these conditions. In artificial soils at pH approximately 7 or pH approximately 6, both strains had similar abilities to suppress take-all disease of wheat or black root rot of tobacco. This suggests that TSO-dependent IAA synthesis is not essential for disease suppression.  相似文献   

10.
Abstract The broad-host-range IncP plasmid RP1 could not be transferred by conjugation from Escherichia coli to Pseudomonas fluorescens strain CHA0. However, this conjugative transfer was possible with RP1 derivatives which had large deletions extending from the primase gene towards the Tra-2 region, thus lacking the kanamycin resistance gene and IS 21 . Such RP1 deletion derivatives permitted IncP cosmid mobilization to P. fluorescens CHA0 and could be used as vectors for transposon mutagenesis with a newly constructed Tn 5 derivative (carrying kanamycin and mercury resistance determinants) in strain CHA0 and another P. fluorescens soil isolate, strain S9.  相似文献   

11.
Little is known about the effects of Pseudomonas biocontrol inoculants on nontarget rhizosphere fungi. This issue was addressed using the biocontrol agent Pseudomonas fluorescens CHA0-Rif, which produces the antimicrobial polyketides 2,4-diacetylphloroglucinol (Phl) and pyoluteorin (Plt) and protects cucumber from several fungal pathogens, including Pythium spp., as well as the genetically modified derivative CHA0-Rif(pME3424). Strain CHA0-Rif(pME3424) overproduces Phl and Plt and displays improved biocontrol efficacy compared with CHA0-Rif. Cucumber was grown repeatedly in the same soil, which was left uninoculated, was inoculated with CHA0-Rif or CHA0-Rif(pME3424), or was treated with the fungicide metalaxyl (Ridomil). Treatments were applied to soil at the start of each 32-day-long cucumber growth cycle, and their effects on the diversity of the rhizosphere populations of culturable fungi were assessed at the end of the first and fifth cycles. Over 11,000 colonies were studied and assigned to 105 fungal species (plus several sterile morphotypes). The most frequently isolated fungal species (mainly belonging to the genera Paecilomyces, Phialocephala, Fusarium, Gliocladium, Penicillium, Mortierella, Verticillium, Trichoderma, Staphylotrichum, Coniothyrium, Cylindrocarpon, Myrothecium, and Monocillium) were common in the four treatments, and no fungal species was totally suppressed or found exclusively following one particular treatment. However, in each of the two growth cycles studied, significant differences were found between treatments (e.g., between the control and the other treatments and/or between the two inoculation treatments) using discriminant analysis. Despite these differences in the composition and/or relative abundance of species in the fungal community, treatments had no effect on species diversity indices, and species abundance distributions fit the truncated lognormal function in most cases. In addition, the impact of treatments at the 32-day mark of either growth cycle was smaller than the effect of growing cucumber repeatedly in the same soil.  相似文献   

12.
Soil bacteria such as pseudomonads may reduce pathogen pressure for plants, both by activating plant defence mechanisms and by inhibiting pathogens directly due to the production of antibiotics. These effects are hard to distinguish under field conditions, impairing estimations of their relative contributions to plant health. A split-root system was set up with barley to quantify systemic and local effects of pre-inoculation with Pseudomonas fluorescens on the subsequent infection process by the fungal pathogen Fusarium graminearum. One root half was inoculated with F. graminearum in combination with P. fluorescens strain CHA0 or its isogenic antibiotic-deficient mutant CHA19. Bacteria were inoculated either together with the fungal pathogen or in separate halves of the root system to separate local and systemic effects. The short-term plant response to fungal infection was followed by using the short-lived isotopic tracer (11)CO(2) to track the delivery of recent photoassimilates to each root half. In the absence of bacteria, fungal infection diverted carbon from the shoot to healthy roots, rather than to infected roots, although the overall partitioning from the shoot to the entire root system was not modified. Both local and systemic pre-inoculation with P. fluorescens CHA0 prevented the diversion of carbon as well as preventing a reduction in plant biomass in response to F. graminearum infection, whereas the non-antibiotic-producing mutant CHA19 lacked this ability. The results suggest that the activation of plant defences is a central feature of biocontrol bacteria which may even surpass the effects of direct pathogen inhibition.  相似文献   

13.
Abstract Pseudomonas fluorescens strain CHA0 protects plants from various root diseases. Antibiotic metabolites synthesized by this strain play an important role in disease suppression; their production is mediated by the g lobal ac tivator gene gacA . Here we show by complementation that the gacA gene is also essential for the expression of two extracellular enzymes in P. fluorescens CHA0: phospholipase C and a 47-kDa metalloprotease. In contrast, the production of another exoenzyme, lipase, is not regulated by the gacA gene. Protease, phospholipase and antibiotics of P. fluorescens are all known to be optimally produced at the end of exponential growth; thus the gacA gene appears to be a general stationary-phase regulator.  相似文献   

14.
Pseudomonas fluorescens CHA0 protects various crop plants against root diseases caused by pathogenic fungi. Among a range of exoproducts excreted by strain CHA0, the antifungal compounds 2,4-diacetylphloroglucinol (DAPG) and pyoluteorin (PLT) are particularly relevant to the strain's biocontrol potential. Here, we report on the characterization of MvaT and MvaV as novel regulators of biocontrol activity in strain CHA0. We establish the two proteins as further members of an emerging family of MvaT-like regulators in pseudomonads that are structurally and functionally related to the DNA-binding protein H-NS. In mvaT and mvaV in frame-deletion mutants of strain CHA0, PLT production was enhanced about four- and 1.5-fold, respectively, whereas DAPG production remained at wild-type levels. Remarkably, PLT production was increased up to 20-fold in an mvaT mvaV double mutant. DAPG biosynthesis was almost completely repressed in this mutant. The effects on antibiotic production could be confirmed by following expression of gfp-based reporter fusions to the corresponding biosynthetic genes. MvaT and MvaV also influenced levels of other exoproducts, motility, and physicochemical cell-surface properties to various extents. Compared with the wild type, mvaT and mvaV mutants had an about 20% reduced capacity (in terms of plant fresh weight) to protect cucumber from a root rot caused by Pythium ultimum. Biocontrol activity was nearly completely abolished in the double mutant Our findings indicate that MvaT and MvaV act together as further global regulatory elements in the complex network controlling expression of biocontrol traits in plant-beneficial pseudomonads.  相似文献   

15.
The phytotoxic pathogenicity factor fusaric acid (FA) represses the production of 2,4-diacetylphloroglucinol (DAPG), a key factor in the antimicrobial activity of the biocontrol strain Pseudomonas fluorescens CHA0. FA production by 12 Fusarium oxysporum strains varied substantially. We measured the effect of FA production on expression of the phlACBDE biosynthetic operon of strain CHA0 in culture media and in the wheat rhizosphere by using a translational phlA'-'lacZ fusion. Only FA-producing F. oxysporum strains could suppress DAPG production in strain CHA0, and the FA concentration was strongly correlated with the degree of phlA repression. The repressing effect of FA on phlA'-'lacZ expression was abolished in a mutant that lacked the DAPG pathway-specific repressor PhlF. One FA-producing strain (798) and one nonproducing strain (242) of F. oxysporum were tested for their influence on phlA expression in CHA0 in the rhizosphere of wheat in a gnotobiotic system containing a sand and clay mineral-based artificial soil. F. oxysporum strain 798 (FA(+)) repressed phlA expression in CHA0 significantly, whereas strain 242 (FA(-)) did not. In the phlF mutant CHA638, phlA expression was not altered by the presence of either F. oxysporum strain 242 or 798. phlA expression levels were seven to eight times higher in strain CHA638 than in the wild-type CHA0, indicating that PhlF limits phlA expression in the wheat rhizosphere.  相似文献   

16.
A variety of stress situations may affect the activity and survival of plant-beneficial pseudomonads added to soil to control root diseases. This study focused on the roles of the sigma factor AlgU (synonyms, AlgT, RpoE, and sigma(22)) and the anti-sigma factor MucA in stress adaptation of the biocontrol agent Pseudomonas fluorescens CHA0. The algU-mucA-mucB gene cluster of strain CHA0 was similar to that of the pathogens Pseudomonas aeruginosa and Pseudomonas syringae. Strain CHA0 is naturally nonmucoid, whereas a mucA deletion mutant or algU-overexpressing strains were highly mucoid due to exopolysaccharide overproduction. Mucoidy strictly depended on the global regulator GacA. An algU deletion mutant was significantly more sensitive to osmotic stress than the wild-type CHA0 strain and the mucA mutant were. Expression of an algU'-'lacZ reporter fusion was induced severalfold in the wild type and in the mucA mutant upon exposure to osmotic stress, whereas a lower, noninducible level of expression was observed in the algU mutant. Overexpression of algU did not enhance tolerance towards osmotic stress. AlgU was found to be essential for tolerance of P. fluorescens towards desiccation stress in a sterile vermiculite-sand mixture and in a natural sandy loam soil. The size of the population of the algU mutant declined much more rapidly than the size of the wild-type population at soil water contents below 5%. In contrast to its role in pathogenic pseudomonads, AlgU did not contribute to tolerance of P. fluorescens towards oxidative and heat stress. In conclusion, AlgU is a crucial determinant in the adaptation of P. fluorescens to dry conditions and hyperosmolarity, two major stress factors that limit bacterial survival in the environment.  相似文献   

17.
Bacteria released in large numbers for biocontrol or bioremediation purposes might exchange genes with other microorganisms. Two model systems were designed to investigate the likelihood of such an exchange and some factors which govern the conjugative exchange of chromosomal genes between root-colonizing pseudomonads in the rhizosphere of wheat. The first model consisted of the biocontrol strain CHA0 of Pseudomonas fluorescens and transposon-facilitated recombination (Tfr). A conjugative IncP plasmid loaded with transposon Tn5, in a CHA0 derivative carrying a chromosomal Tn5 insertion, promoted chromosome transfer to auxotrophic CHA0 recipients in vitro. A chromosomal marker (pro) was transferred at a frequency of about 10(sup-6) per donor on wheat roots under gnotobiotic conditions, provided that the Tfr donor and recipient populations each contained 10(sup6) to 10(sup7) CFU per g of root. In contrast, no conjugative gene transfer was detected in soil, illustrating that the root surface stimulates conjugation. The second model system was based on the genetically well-characterized strain PAO of Pseudomonas aeruginosa and the chromosome mobilizing IncP plasmid R68.45. Although originally isolated from a human wound, strain PAO1 was found to be an excellent root colonizer, even under natural, nonsterile conditions. Matings between an auxotrophic R68.45 donor and auxotrophic recipients produced prototrophic chromosomal recombinants at 10(sup-4) to 10(sup-5) per donor on wheat roots in artificial soil under gnotobiotic conditions and at about 10(sup-6) per donor on wheat roots in natural, nonsterile soil microcosms after 2 weeks of incubation. The frequencies of chromosomal recombinants were as high as or higher than the frequencies of R68.45 transconjugants, reflecting mainly the selective growth advantage of the prototrophic recombinants over the auxotrophic parental strains in the rhizosphere. Although under field conditions the formation of chromosomal recombinants is expected to be reduced by several factors, we conclude that chromosomal genes, whether present naturally or introduced by genetic modification, may be transmissible between rhizosphere bacteria.  相似文献   

18.
Extracellular polysaccharides play an important role in the formation of bacterial biofilms. We tested the biofilm-forming ability of two mutant strains with increased production of acidic extracellular polysaccharides compared with the wild-type biocontrol strain Pseudomonas fluorescens CHA0. The anchoring of bacteria to axenic nonmycorrhizal and mycorrhizal roots as well as on extraradical mycelium of the arbuscular mycorrhizal fungus Glomus intraradices was investigated. The nonmucoid wild-type strain P. fluorescens CHA0 adhered very little on all surfaces, whereas both mucoid strains formed a dense and patchy bacterial layer on the roots and fungal structures. Increased adhesive properties of plant-growth-promoting bacteria may lead to more stable interactions in mixed inocula and the rhizosphere.  相似文献   

19.
Pyrroloquinoline quinone (PQQ) is a small, redox active molecule that serves as a cofactor for several bacterial dehydrogenases, introducing pathways for carbon utilization that confer a growth advantage. Early studies had implicated a ribosomally translated peptide as the substrate for PQQ production. This study presents a sequence- and structure-based analysis of the components of the pqq operon. We find the necessary components for PQQ production are present in 126 prokaryotes, most of which are Gram-negative and a number of which are pathogens. A total of five gene products, PqqA, PqqB, PqqC, PqqD, and PqqE, are identified as being obligatory for PQQ production. Three of the gene products in the pqq operon, PqqB, PqqC, and PqqE, are members of large protein superfamilies. By combining evolutionary conservation patterns with information from three-dimensional structures, we are able to differentiate the gene products involved in PQQ biosynthesis from those with divergent functions. The observed persistence of a conserved gene order within analyzed operons strongly suggests a role for protein-protein interactions in the course of cofactor biosynthesis. These studies propose previously unidentified roles for several of the gene products, as well as identifying possible new targets for antibiotic design and application.  相似文献   

20.
AIMS: To assess the impact of the biocontrol strain Pseudomonas fluorescens CHA0 on a collection of barley rhizosphere bacteria using an agar plate inhibition assay and a plant microcosm, focusing on a CHA0-sensitive member of the Cytophaga-like bacteria (CLB). METHODS AND RESULTS: The effect of strain CHA0 on a collection of barley rhizosphere bacteria, in particular CLB and fluorescent pseudomonads sampled during a growth season, was assessed by a growth inhibition assay. On average, 85% of the bacteria were sensitive in the May sample, while the effect was reduced to around 68% in the July and August samples. In the May sample, around 95% of the CLB and around 45% of the fluorescent pseudomonads were sensitive to strain CHA0. The proportion of CHA0-sensitive CLB and fluorescent pseudomonad isolates decreased during the plant growth season, i.e. in the July and August samples. A particularly sensitive CLB isolate, CLB23, was selected, exposed to strain CHA0 (wild type) and its genetically modified derivatives in the rhizosphere of barley grown in gnotobiotic soil microcosms. Two dry-stress periods were imposed during the experiment. Derivatives of strain CHA0 included antibiotic or exopolysaccharide (EPS) overproducing strains and a dry-stress-sensitive mutant. Despite their inhibitory activity against CLB23 in vitro, neither wild-type strain CHA0, nor any of its derivatives, had a major effect on culturable and total cell numbers of CLB23 during the 23-day microcosm experiment. Populations of all inoculants declined during the two dry-stress periods, with soil water contents below 5% and plants reaching the wilting point, but they recovered after re-wetting the soil. Survival of the dry-stress-sensitive mutant of CHA0 was most affected by the dry periods; however, this did not result in an increased population density of CLB23. CONCLUSIONS: CLB comprise a large fraction of barley rhizosphere bacteria that are sensitive to the biocontrol pseudomonad CHA0 in vitro. However, in plant microcosm experiments with varying soil humidity conditions, CHA0 or its derivatives had no major impact on the survival of the highly sensitive CLB strain, CLB23, during two dry-stress periods and a re-wetting period; all co-existed well in the rhizosphere of barley plants. SIGNIFICANCE AND IMPACT OF THE STUDY: Results indicate a lack of interaction between the biocontrol pseudomonad CHA0 and a sensitive CLB when the complexity increases from agar plate assays to plant microcosm experiments. This suggests the occurrence of low levels of antibiotic production and/or that the two bacterial genera occupy different niches in the rhizosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号