首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The yellow ladybeetle, Illeis koebelei Timberlake, is a potential biological agent for powdery mildew. The objective of this study was to construct development and oviposition models of I. koebelei. Development experiment was conducted at eight temperatures ranging from 15.4 to 39.5?°C. Development rates were well fitted with linear and nonlinear models. Lower developmental thresholds for egg, first instar, second instar, third instar, and fourth instar larva, pre-pupa, pupa, and total immature stage were estimated to be 3.6, 12.7, 12.1, 11.3, 11.3, 12.8, 14.7, and 14.2?°C, respectively. Their respective thermal requirements in degree days (DD) were 86.6, 16.0, 22.5, 30.2, 49.3, 14.5, 43.8 and 217.4, respectively. Survivorship was the highest at 25.1?°C for immatures. Oviposition experiment was conducted at nine temperatures, ranging from 15.4 to 35.3?°C. Mean fecundity ranged from 18.6 eggs at 29.3?°C to 205.3 eggs at 20.3?°C. It was well described by extreme value function. Adult survival and cumulative oviposition rates of I. koebelei were fitted to a sigmoid function and a two-parameter Weibull function, respectively. Findings of this study provide basic information for ecology of I. koebelei. They can be used to optimize environmental conditions for mass-rearing and shipping, comparing optimal occurrence conditions between I. koebelei and powdery mildew, and forecasting phenology and population dynamics of I. koebelei in the fields.  相似文献   

2.
《Journal of Asia》2022,25(3):101927
Arma chinensis (Fallou) is a predaceous pentatomid with the potential to control a wide range of insect pests. In this study, the stage-specific temperature-dependent development and survival of A. chinensis was investigated under seven constant temperatures (range 18–35 °C) when fed with yellow mealworm (Tenebrio molitor L.). Developmental times (in days) for the immature stage, entire nymphal stage, and egg-to-adult development were inversely proportional to temperatures between 18 and 33 °C (30 °C for eggs and 1st instar nymphs). The lowest survival rate of A. chinensis was observed at 18 °C (6.7%), whereas it was the highest (80–93.3%) at temperatures ranging from 21 to 24 °C. The low temperature thresholds for the egg, entire nymph stage, and egg-to-adult development were 14.3, 12.28, and 12.8 °C, respectively, while the thermal constants for these stages were estimated to be 85.47, 334.9, and 423.8° days. Among the three non-linear models examined, the Taylor model showed the best fit for the egg data, the Briére1 model was the best fit for the 1st instar nymph stage, and the Lactin1 model was more approprate for all the other instar stages, the entire nymphal stage, and overall development. The upper temperature thresholds estimated using the Lactin1 model for eggs, overall nymphal stage, and egg-to-adult development were 38.57, 38.9, and 40.0 °C. The optimal temperature for the overall egg-to-adult period was estimated to be 33.5 °C. The results of this study can be used for the mass rearing of this natural pest enemy and development of phenology models of its seasonal progress.  相似文献   

3.
Subsequent to the widespread adoption of Bt transgenic cotton in China and an associated reduction in pesticide use, Adelphocoris spp. (Hemiptera: Miridae) are the key pests of this crop. Three species (Adelphocoris suturalis, Adelphocoris fasciaticollis and Adelphocoris lineolatus) are found in Chinese Bt cotton fields, each with a distinct geographic distribution and phenology. In the present study, the development and fecundity of the three species are compared in the laboratory at various temperatures in the range 10–35 °C. Although nymphal development and adult moulting occurs under all temperature regimes, egg eclosion is not observed at 10 °C. In general, egg and nymphal development periods decrease with increasing temperature up to 30 °C. The lower and upper development thresholds are, respectively, 5.6 and 40.1 °C for A. suturalis eggs; 5.0 and 38.4 °C for nymphs; 6.3 and 39.0 °C for A. fasciaticollis eggs, 3.0 and 41.9 °C for nymphs; 5.6 and 41.3 °C for A. lineolatus eggs; and 6.2 and 38.8 °C for nymphs. Thermal constants are 189.9 degree days (DD) (egg) and 308.8 DD (nymph) for A. suturalis, 188.8 DD (egg) and 366.7 DD (nymph) for A. fasciaticollis, and 231.7 DD (egg) and 291.6 DD (nymph) for A. lineolatus. Temperatures above 30 °C affect egg development of A. fasciaticollis and A. lineolatus adversely, but not that of A. suturalis. At the same time, nymphal survival of A. suturalis is reduced at 10 °C. Longevity of all species declines with increasing temperature, whereas extremes of temperature (i.e. 10 and 35 °C) interfere with oviposition. The estimated optimum range for oviposition is 23–25 °C, irrespective of species. In general, development and fecundity of the three Adelphocoris spp. is consistent with their respective distribution and seasonal dynamics. The present study provides insight into the distribution and phenology of Adelphocoris spp., and contributes to the modelling of their population dynamics.  相似文献   

4.
《Journal of Asia》2014,17(2):135-142
This study was carried out to develop temperature-driven models for immature development and oviposition of the pink citrus rust mite Aculops pelekassi (Keifer). A. pelekassi egg development times decreased as the temperature increased, ranging from 6.6 days at 16 °C to 1.9 days at 35 °C. Total nymph development times decreased from 8.2 days at 16 °C to 3.3 days at 35 °C. The egg-to-adult development durations were 14.8, 11.6, 9.7, 8.0, 7.3, 6.1, and 5.2 days at 16, 20, 24, 26, 28, 32, and 35 °C, respectively. The lower developmental threshold temperatures for eggs, nymphs, and total egg-to-adult development were calculated as 9.3, 4.3, and 6.9 °C, respectively. The thermal constants were 54.0, 101.8, and 153.8 degree days for each of the above stages. The non-linear biophysical model fitted well for the relationship between the development rate and temperature for all stages. The Weibull function provided a good fit for the distribution of development times of each stage. Temperature affected the longevity and fecundity of A. pelekassi. Adult longevity decreased as the temperature increased and ranged from 24.2 days at 16 °C to 14.6 days at 35.0 °C. A. pelekassi had a maximum fecundity of 33.1 eggs per female at 28 °C, which declined to 18.8 eggs per female at 16 °C. In addition, three temperature-dependent components for an oviposition model of A. pelekassi were developed with sub-models estimated: total fecundity, age-specific cumulative oviposition rate, and age-specific survival rate. The oviposition model, coupled with the stage emergence model, should be useful to construct a population model for A. pelekassi in the future.  相似文献   

5.
The development rates and fecundity of three important pests of strawberry in the UK were determined over a range of temperatures. Development time of the strawberry tarsonemid mite, Phytonemus pallidus, from egg lay to adult, ranged from a mean of 28.4 days at 12.5°C to 8.8 days at 25°C. No nymphs developed to adult at 10°C. Females lived for up to 45 days and laid a mean of 24.3 and 28.5 eggs at 20°C and 25°C respectively. Total development time from egg lay to adult for the strawberry blossom weevil, Anthonomus rubi, ranged from a mean of 95.7 days at 10°C to 18.2 days at 25°C. Mean fecundity at 20°C was 157.6 eggs, and the oviposition period averaged 71.6 days. When nymphs were reared on strawberry, development of the European tarnished plant bug, Lygus rugulipennis, from egg lay to adult, ranged from 83.8 days at 15°C to 28.8 days at 25°C. Development times on groundsel were shorter and ranged from 65.6 to 22.2 days at 15°C and 25°C. Only two nymphs developed to adults at 10°C; no eggs hatched at that temperature. Mean fecundity at 20°C was 75.4 eggs, but ranged from 23 to 179. Under a fluctuating temperature regime of 10°C for 12 h:20°C for 12 h, nymphs of L. rugulipennis took 40.3 days to become adult on strawberry, and 33.4 days on groundsel. Simple linear models fitted the developmental rate ‐ constant temperature relationship well for all species, accounting for 95–98% of the total variation in observed developmental rates. Development under fluctuating temperatures illustrated the potential problem of extrapolating linear models beyond the conditions of the experiment.  相似文献   

6.
《Journal of Asia》2014,17(4):803-810
The effect of constant temperatures on development and survival of Lista haraldusalis (Walker) (Lepidoptera: Pyralidae), a newly reported insect species used to produce insect tea in Guizhou province (China), was studied in laboratory conditions at seven temperatures (19 °C, 22 °C, 25 °C, 28 °C, 31 °C, 34 °C, and 37 °C) on Platycarya strobilacea. Increasing the temperature from 19 °C to 31 °C led to a significant decrease in the developmental time from egg to adult emergence, and then the total developmental time increased at 34 °C. Egg incubation was the stage where L. haraldusalis experienced the highest mortality at all temperatures. The survival of L. haraldusalis was significantly higher at 25 °C and 28 °C, whereas none of the eggs hatched at 37 °C. Common and Ikemoto linear models were used to describe the relationship between the temperature and the developmental rate for each immature stage of L. haraldusalis. The estimated values of the lower temperature threshold and thermal constant of the total immature stages using Common and Ikemoto linear models were 11.34 °C and 11.20 °C, and 939.85 and 950.41 degree-days, respectively. Seven nonlinear models were used to fit the experimental data to estimate the developmental rate of L. haraldusalis. Based on the biological significance for model evaluation, Ikemoto linear, Logan-6, and SSI were the best models that fitted each immature stage of L. haraldusalis and they were used to estimate the temperature thresholds. These thermal requirements and temperature thresholds are crucial for facilitating the development of factory-based mass rearing of L. haraldusalis.  相似文献   

7.
The cabbage stem flea beetle, Psylliodes chrysocephala (L.) (Coleoptera: Chrysomelidae), is a major pest of winter oilseed rape. Despite the importance of this pest, detailed information on reproduction to predict risk of crop damage is lacking. This study investigates the effect of temperature on parameters of reproduction, egg development and viability at five constant temperatures. Significant temperature effects were found on the pre‐oviposition period, total number of eggs laid, daily oviposition rate, female longevity, egg‐development rate and viability. The mean length of the pre‐oviposition period ranged from 93.1 days at 4°C to 14.6 days at 20°C. Analysis of total number of eggs laid and daily oviposition rate during female lifespan estimated the highest total number of eggs laid (696 eggs/female) at 16°C and the highest oviposition rate (6.8 eggs/female and day) at 20°C. The daily oviposition rate at 20°C was not significantly higher than 5.4 eggs/female and day at 16°C. Female longevity was significantly longer at 4°C, shorter at 20°C and not significantly different between 8, 12 and 16°C. Estimated 50% survival time of females was 239, 153, 195, 186 and 78 days at 4, 8, 12, 16 and 20°C, respectively. A linear model of egg development at 8–20°C estimated the lower developmental threshold to be 5.1°C and the thermal constant for development 184.9 degree‐days. The percentage of eggs hatching was significantly lower at 4°C than at all other temperatures tested. The estimated mean hatching percentages were 47.3%, 70.0%, 72.4%, 66.2% and 67.9% at 4, 8, 12, 16 and 20°C, respectively. These results can be used to predict the start and intensity of egg‐laying in the autumn and the appearance of larvae in the field from knowledge about time of field invasion and from monitoring the weather.  相似文献   

8.
Temperature-dependent development and oviposition component models were developed for Deraeocoris brevis (Uhler) (Hemiptera: Miridae). Egg development times decreased with increasing temperature and ranged from 35.8 d at 15 °C to 6.7 d at 32 °C. Total development times of nymphs reared on frozen Ephestia kuehniella (Zeller) (Lepidoptera: Pyralidae) eggs decreased from an estimated 55.6 d at 15 °C to 9.2 d at 32 °C and 10.0 d at 34.6 °C. By fitting linear models to the data the lower developmental threshold temperatures for eggs, small nymphs (1st to 3rd instar), large nymphs (4th to 5th instar), and all nymphs combined were calculated as 10.5, 12.5, 11.8, and 11.9 °C, respectively. The thermal constants were 144.1, 90.3, 95.0, and 190.8 degree-days for each of the above stages. The non-linear model was based on a Gaussian equation, which fit the relationship between development rate and temperature well for all stages. The Weibull function provided a good fit for the distribution of development times of each stage. Adult longevity decreased with increasing temperature and ranged from 52.9 d at 21.7 to 16.8 d at 32.0 °C. D. brevis had a maximum fecundity of 471 eggs per female at 24 °C, which declined to 191 eggs per female at 32 °C. Also, three temperature-dependent components for an oviposition model of D. brevis were developed including models for total fecundity, age-specific cumulative oviposition rate, and age-specific survival rate.  相似文献   

9.
We studied the development of Geocoris varius (Uhler) and Geocoris proteus Distant reared on Ephestia kuehniella Zeller eggs at 20, 24, 26, 30, 33, or 36?°C. The lower developmental thresholds (T 0) and the thermal constants (K) of eggs and nymphs of G. varius were 13.3?°C, 151.1 degree-days and 13.4?°C, 433.0 degree-days, respectively; those of G. proteus were 16.1?°C, 98.3 degree-days and 16.9?°C, 226.9 degree-days, respectively. The hatch rate of G. varius eggs was significantly lower at 33?°C than at ??30?°C, and no eggs hatched at 36?°C. That of G. proteus was lowest at 20?°C and did not decline significantly at 36?°C. The survival rate throughout the nymphal period increased with temperature up to 30?°C in G. varius, and it was lowest at 20?°C in G. proteus. Thus, the optimal rearing temperatures for immature stages appear to be about 24?C30?°C for G. varius and 26?C33?°C for G. proteus. It might be possible to improve the efficiency of their mass production by controlling the rearing temperature in the above ranges. This would also make the developmental stages of nymphs more uniform and so prevent cannibalism in mass rearing.  相似文献   

10.
11.
Due to ongoing climate change, short-term extreme heat waves in the summer are expected to be more frequent. Insect eggs are sensitive to thermal stress. This raises the question of whether herbivore insects' thermal adaptability would be changed after a single extreme heat wave at the egg stage. In this study, we examined the developmental performance of Ostrinia furnacalis Guenée at 25?°C, 27?°C, 29?°C or 31?°C after a single extreme heat wave (42?°C) for 0?h (control), 1?h, 2?h, or 3?h at the egg stage. The results showed that O. furnacalis at the egg or larval stage was more sensitive to a single heat wave than it was at the pupae or adult stage. After a single heat wave, O. furnacalis showed a reduced egg-hatching rate or reduced larval survival rate, but the optimum temperature for egg hatching and larval survival was higher than that in the control. The upper temperature threshold and optimum temperature for larval development in the control were higher than that after a single extreme heat wave. Both male and female pupal weight decreased with increasing temperature, and pupal weight decreased faster in females than in males. The Cox proportional hazard model showed that when O. furnacalis developed at 25?°C, the instantaneous death risk of adults with a 3?h heat wave at the egg stage was higher than that of the control, but when O. furnacalis developed at 29?°C and 31?°C, the instantaneous death risk of adults after a heat wave was significantly lower than that of the control. Our study highlights the effect of a single heat wave on O. furnacalis eggs and the subsequent development of survival individuals.  相似文献   

12.
An invasive planthopper, Ricania shantungensis, is an important pest in agriculture and forestry in Korea. Best target stage for insecticide application is known to be newly hatched first instar. Thus, the objective of the present study was to predict the occurrence of first instars of R. shantungensis. Effects of temperature on development and survival of R. shantungensis eggs were examined at seven constant temperatures (12.4, 16.4, 20.4, 24.8, 28.3, 32.4, and 36.9 °C). Development and survival of R. shantungensis eggs were quantitatively described by applying empirical models as a function of temperature over a wide thermal range. Lower developmental threshold, thermal constant, optimal developmental temperature, and upper developmental threshold were estimated to be 12.1 °C, 202 DD, 31 °C, and 36.9 °C, respectively. Survivorship was the highest at 23.3 °C. The models well predicted timing of field occurrences at three sites (Buyeo, Gwangyang, and Habcheon) in Korea. Therefore, results of this study would increase the prediction accuracy of R. shantungensis occurrence and management efficiency of R. shantungensis.  相似文献   

13.
The effects of temperature on the development (egg–adult emergence) of Gonatocerus morgani Triapitsyn, a newly-described parasitoid of Homalodisca vitripennis (Germar), were determined at 14.8, 18.7, 23.5, 26.9, 28.7, 30.4, 32.8, and 33.8 °C in the laboratory. Survival rate (percent adult emergence from parasitized host eggs) varied significantly among the experimental temperatures, with the highest (59%) and lowest (0%) occurring at 30.4 and 33.8 °C, respectively. The survival rates (%) were fitted with a polynomial model to describe a temperature-dependent pattern. Developmental rates (1/d) across seven temperatures were fitted with the nonlinear Briere model, which estimated the lower threshold to be 8.06 °C, the optimal temperature to be 29.22 °C, and the upper threshold to be 33.49 °C. A linear model fitted to developmental rates at 14.8–28.7 °C indicated that 189.75 degree-days above the lower threshold of 9.71 °C were required to complete development. A simulation model of G. morgani adult emergence was constructed to predict daily counts over the entire range of constant temperatures by incorporating the survival rate model, the Briere model, and the Weibull model. In outdoor validation, a degree-day model for predicting adult emergence showed ?2 d differences between prediction and observation. Based on the observed temperature requirement, the insect could complete thirteen to sixteen generations per year in southern California, depending on weather and location.  相似文献   

14.
The reproductive tract of the parasitoidMicroctonus hyperodae was found to comprise 6.1±0.2 ovarioles containing a total of 40–60 oöcytes. After oviposition into its hostListronotus bonariensis, the parasitoid's egg volume increased by 205 times prior to hatching. At 19.1°C ovipositingM. hyperodae survived for a mean 21±4 days and laid a mean of 48±8 eggs.M. hyperodae collected from Colonia, Uruguay laid a mean of 62±15 eggs which was significantly more than the other ecotypes. Under caging conditions with an ample supply of hosts,M. hyperodae laid 51% of its eggs in the first 72 hours and on average 41% of the species' life-span occurred after the exhaustion of its egg supply. Minimum temperature forM. hyperodae oviposition was found to be c. 5°C; beyond this the rate of increase in egg-laying was approximately linear until 30°C whereafter the rate fell abruptly. There was effectively no egg-laying at 39°C. The parasitoid showed no preference for one host sex or the other either in the laboratory or under field conditions. Compared to otherMicroctonus spp.,M. hyperodae appeared to show low fecundity and high longevity. The adaptive implications of this are discussed.  相似文献   

15.
The effects of temperature on age‐specific fecundity and life table parameters of the egg parasitoid Trissolcus semistriatus (Nees, 1834) (Hymenoptera: Scelionidae) were examined under four constant temperature conditions (17, 20, 26 and 32°C), using eggs of the sunn pest Eurygaster integriceps Puton, 1881 (Hemiptera: Scutelleridae), an important pest of wheat, as hosts. The intrinsic rate of increase increased linearly, while the mean generation time and the doubling time decreased with increases in temperature. The net reproductive rate, however, varied without clear correlation with temperature. Fecundity tended to be higher at higher temperatures. The total number of eggs per female was estimated as 52.0 and 116.4 eggs, respectively, at 17°C and 32°C, with the highest fecundity rate during the first day of oviposition. The oviposition rate fluctuated from 4.4 to 14.3 eggs per day. Oviposition and postoviposition periods and longevity decreased when temperature increased. Maximum longevity for females was 21.6 days at 20°C, and female parasitoids lived longer than males at all temperatures. The development period ranged from 7.1 days (32°C) to 35.6 days (17°C) for males and from 8.4 days (32°C) to 37.2 days (17°C) for females. The development of female T. semistriatus required 166.7 degree‐days (DD) above a theoretical threshold of 11.8°C and the development of males required 142.9 DD above 13.1°C. The numbers of generations per year for female and male T. semistriatus, given the temperature in Tekirdag, Turkey, were estimated to be 9.0 and 8.8, respectively. The potential of the egg parasitoid for the control of E. integriceps is discussed.  相似文献   

16.
17.
The objective of this study was to elucidate how temperature affects the reproduction and development of Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), an emerging major pest of blueberry in Japan. Although extensive studies of the biology of this pest have been carried out, the effects of temperature on its reproduction and development remain unknown. We found that when adults mated at 31 °C for 4 days, none of the eggs hatched. Female oviposition and egg hatching rate were also reduced as temperature increased during the oviposition period. When D. suzukii larvae developed above 31 °C, pupation and adult eclosion were abolished. According to field observations, adult D. suzukii ceased to appear from the end of July 2010, when the average temperature exceeded 28 °C or when the temperature within a day exceeded 33 °C for 8 h or more. Experiments in which the mating temperature fluctuated within a day revealed that both the number of eggs oviposited and their hatch rate were significantly suppressed when the daily temperature regime during mating was either 31 °C for 12 h/25 °C for 12 h or 33 °C for 8 h/25 °C for 16 h, relative to the values at 25 °C for 24 h.  相似文献   

18.
M. J. Gormally 《BioControl》1988,33(4):387-395
The effect of 5 constant temperatures (10, 14, 17, 20 and 23°C) on the oviposition and longevity ofIlione albiseta was investigated. Most eggs were laid at 14–17°C and mean oviposition period declined progressively above and below 14°C. There was no significant difference between oviposition rates or preoviposition periods at each constant temperature, but the mean number of days between egg laying for each female was significantly greater at 10 °C than at 17, 20 and 23 °C than at 20 °C. The percentage of infertile eggs laid ranged from 9.2% at 23 °C to 17.9 % at 20 °C and these eggs tended to be laid at the beginning and end of each oviposition period. A possible association between sex ratio of the emergent adult and temperature is also discussed.   相似文献   

19.
20.
The spotted‐wing drosophila (SWD), Drosophila suzukii (Diptera: Drosophilidae), originally distributed across a few Asian countries including South Korea, has invaded North America and Europe but is absent from Australia. In order to export the South Korean grape cultivar Campbell Early to Australia, its potential to serve as an oviposition and development medium for SWD must first be determined. In this study, we determined the oviposition and development potential of SWD on Campbell Early, after elucidating the SWD life cycle and establishing an artificial diet‐based mass‐culturing system. An investigation of the life cycle under five temperature regimes (16, 19, 22, 25 and 28°C) showed that the durations of the egg, larval and adult stages were shortened when temperature was increased from 16, 19, 22, 25 and 28°C, but pupal duration was shortest at 25°C and extended again at 28°C. A test of oviposition and development potential of SWD on Campbell Early grape clusters showed oviposition of 30.8 ± 6.8 eggs per cluster of injured grapes and 157.7 ± 16.2 eggs on a culture dish of artificial diet. However, in a similar experiment using uninjured grape clusters, only a single egg was deposited on the grape skin, which soon dried. In light of these results, newly harvested grapes left at vineyards during daily harvests are unlikely to serve as an oviposition and development medium for SWD, as long as the grapes remain uninjured.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号