首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With the use of an antiserum generated in rabbits against synthetic human calcitonin gene-related peptide (CGRP) the distribution of CGRP-like immunoreactive cell bodies and nerve fibers was studied in the rat central nervous system. A detailed stereotaxic atlas of CGRP-like neurons was prepared. CGRP-like immunoreactivity was widely distributed in the rat central nervous system. CGRP positive cell bodies were observed in the preoptic area and hypothalamus (medial preoptic, periventricular, anterior hypothalamic nuclei, perifornical area, medial forebrain bundle), premamillary nucleus, amygdala medialis, hippocampus and dentate gyrus, central gray and the ventromedial nucleus of the thalamus. In the midbrain a large cluster of cells was contained in the peripeduncular area ventral to the medial geniculate body. In the hindbrain cholinergic motor nuclei (III, IV, V, VI, VII XII) contained CGRP-immunoreactivity. Cell bodies were also observed in the ventral tegmental nucleus, the parabrachial nuclei, superior olive and nucleus ambiguus. The ventral horn cells of the spinal cord, the trigeminal and dorsal root ganglia also contained CGRP-immunoreactivity. Dense accumulations of fibers were observed in the amydala centralis, caudal portion of the caudate putamen, sensory trigeminal area, substantia gelatinosa, dorsal horn of the spinal cord (laminae I and II). Other areas containing CGRP-immunoreactive fibers are the septal area, nucleus of the stria terminalis, preoptic and hypothalamic nuclei (e.g., medial preoptic, periventricular, dorsomedial, median eminence), medial forebrain bundle, central gray, medial geniculate body, peripeduncular area, interpeduncular nucleus, cochlear nucleus, parabrachial nuclei, superior olive, nucleus tractus solitarii, and in the confines of clusters of cell bodies. Some fibers were also noted in the anterior and posterior pituitary and the sensory ganglia. As with other newly described brain neuropeptides it can only be conjectured that CGRP has a neuroregulatory action on a variety of functions throughout the brain and spinal cord.  相似文献   

2.
The beta-2 subunit of the mammalian brain voltage-gated sodium channel (SCN2B) was examined in the rat trigeminal ganglion (TG) and trigeminal sensory nuclei. In the TG, 42.6 % of sensory neurons were immunoreactive (IR) for SCN2B. These neurons had various cell body sizes. In facial skins and oral mucosae, corpuscular nerve endings contained SCN2B-immunoreactivity. SCN2B-IR nerve fibers formed nerve plexuses beneath taste buds in the tongue and incisive papilla. However, SCN2B-IR free nerve endings were rare in cutaneous and mucosal epithelia. Tooth pulps, muscle spindles and major salivary glands were also innervated by SCN2B-IR nerve fibers. A double immunofluorescence method revealed that about 40 % of SCN2B-IR neurons exhibited calcitonin gene-related peptide (CGRP)-immunoreactivity. However, distributions of SCN2B- and CGRP-IR nerve fibers were mostly different in facial, oral and cranial structures. By retrograde tracing method, 60.4 and 85.3 % of TG neurons innervating the facial skin and tooth pulp, respectively, showed SCN2B-immunoreactivity. CGRP-immunoreactivity was co-localized by about 40 % of SCN2B-IR cutaneous and tooth pulp TG neurons. In trigeminal sensory nuclei of the brainstem, SCN2B-IR neuronal cell bodies were common in deep laminae of the subnucleus caudalis, and the subnuclei interpolaris and oralis. In the mesencephalic trigeminal tract nucleus, primary sensory neurons also exhibited SCN2B-immunoreactivity. In other regions of trigeminal sensory nuclei, SCN2B-IR cells were very infrequent. SCN2B-IR neuropil was detected in deep laminae of the subnucleus caudalis as well as in the subnuclei interpolaris, oralis and principalis. These findings suggest that SCN2B is expressed by various types of sensory neurons in the TG. There appears to be SCN2B-containing pathway in the TG and trigeminal sensory nuclei.  相似文献   

3.
Using an antiserum generated in rabbits against synthetic galanin (GA) and the indirect immunofluorescence method, the distribution of GA-like immunoreactive cell bodies and nerve fibers was studied in the rat central nervous system (CNS) and a detailed stereotaxic atlas of GA-like neurons was prepared. GA-like immunoreactivity was widely distributed in the rat CNS. Appreciable numbers of GA-positive cell bodies were observed in the rostral cingulate and medial prefrontal cortex, the nucleus interstitialis striae terminalis, the caudate, medial preoptic, preoptic periventricular, and preoptic suprachiasmatic nuclei, the medial forebrain bundle, the supraoptic, the hypothalamic periventricular, the paraventricular, the arcuate, dorsomedial, perifornical, thalamic periventricular, anterior dorsal and lateral thalamic nuclei, medial and central amygdaloid nuclei, dorsal and ventral premamillary nuclei, at the base of the hypothalamus, in the central gray matter, the hippocampus, the dorsal and caudoventral raphe nuclei, the interpeduncular nucleus, the locus coeruleus, ventral parabrachial, solitarii and commissuralis nuclei, in the A1, C1 and A4 catechaolamine areas, the posterior area postrema and the trigeminal and dorsal root ganglia. Fibers were generally seen where cell bodies were observed. Very dense fiber bundles were noted in the septohypothalamic tract, the preoptic area, in the hypothalamus, the habenula and the thalamic periventricular nucleus, in the ventral hippocampus, parts of the reticular formation, in the locus coeruleus, the dorsal parabrachial area, the nucleus and tract of the spinal trigeminal area and the substantia gelatinosa, the superficial layers of the spinal cord and the posterior lobe of the pituitary. The localization of the GA-like immunoreactivity in the locus coeruleus suggests a partial coexistence with catecholaminergic neurons as well as a possible involvement of the GA-like peptide in a neuroregulatory role.  相似文献   

4.
Summary The origin of nerve fibers to the superficial temporal artery of the rat was studied by retrograde tracing with the fluorescent dye True Blue (TB). Application of TB to the rat superficial temporal artery labeled perikarya in the superior cervical ganglion, the otic ganglion, the sphenopalatine ganglion, the jugular-nodose ganglionic complex, and the trigeminal ganglion. The labeled perikarya were located in ipsilateral ganglia; a few neuronal somata were, in addition, seen in contralateral ganglia. Judging from the number of labeled nerve cell bodies the majority of fibers contributing to the perivascular innervation originate from the superior cervical, sphenopalatine and trigeminal ganglia. A moderate labeling was seen in the otic ganglion, whereas only few perikarya were labeled in the jugular-nodose ganglionic complex. Furthermore, TB-labeled perikarya were examined for the presence of neuropeptides. In the superior cervical ganglion, all TB-labeled nerve cell bodies contained neuropeptide Y. In the sphenopalatine and otic ganglia, the majority of the labeled perikarya were endowed with vasoactive intestinal polypeptide. In the trigeminal ganglion, the majority of the TB-labeled nerve cell bodies displayed calcitonin gene-related peptide, while a small population of the TB-labeled neuronal elements contained, in addition, substance P. In conclusion, these findings indicate that the majority of peptide-containing nerve fibers to the superficial temporal artery originate in ipsilateral cranial ganglia; a few fibers, however, may originate in contralateral ganglia.  相似文献   

5.
The horseradish peroxidase (HRP) histochemical technique was used to examine the peripheral distribution and afferent projections of the trigeminal nerve in the goldfish, Carassius auratus. Sensory fibers of the trigeminal nerve distribute over the head via four branches. The ophthalmic branch distributes fibers to the region above the eye and naris. The maxillary and mandibular branches innervate the regions of the upper and lower lip, respectively. A fourth branch of the trigeminal nerve was demonstrated to be present in the hyomandibular trunk. Upon entering the medulla the trigeminal afferent fibers divide into a rostromedially directed bundle and a caudally directed bundle. The rostromedially directed bundle terminates in the sensory trigeminal nucleus (STN) located within the rostral medulla. The majority of fibers turn caudally, forming the descending trigeminal tract. Fibers of the descending trigeminal tract terminate within three medullary nuclei: the nucleus of the descending trigeminal tract (NDTV), the spinal trigeminal nucleus (Spv), and the medial funicular nucleus (MFn). All projections, except for those to the MFn, are ipsilateral. Contralateral projections were observed at the level of the MFn following the labeling of the ophthalmic and maxillomandibular branches. All branches of the trigeminal nerve project to all four of the trigeminal medullary nuclei. Projections to the STN and MFn were found to be topographically organized such that the afferents of the ophthalmic branch project onto the ventral portion of these nuclei, while the afferents of the maxillo- and hyomandibular branches project to the dorsal portion of these nuclei. Cells of the mesencephalic trigeminal nucleus were retrogradely labeled following HRP application to the ophthalmic, maxillary, and mandibular branches of the trigeminal nerve. In addition to demonstrating the ascending mesencephalic trigeminal root fibers, HRP application to the above-mentioned branches also revealed descending mesencephalic trigeminal fibers. The descending mesencephalic trigeminal fibers course caudally medial to the branchiomeric motor column and terminate in the ventromedial portion of the MFn.  相似文献   

6.
This study was undertaken to localize substance P-like immunoreactivity (SP) in the nerve fibers innervating the palate, identify the ganglion of the palatine nerve and determine whether it contains SP cell bodies, in the frog Rana pipiens. The palatine nerve which is a branch of the maxillo-mandibular subdivision of the trigeminal nerve was traced to the trigeminal ganglion that connects to the medulla by the trigeminal nerve root. Using an immunocytochemical method, SP containing fibers with varicosities were found in the connective tissue layer of the palate. Some of these fibers were observed adjacent to blood vessels to the epithelial layer of the palate in apparent innervation of the ciliated epithelial and mucus cells. SP-labeling was also observed in small to medium cells of the trigeminal ganglion. These results appear to support the pharmacological studies of SP on the regulation of mucociliary activity in the frog R. pipiens.  相似文献   

7.
Summary The iris and choroid membrane of the adult rat contain nerve fibers expressing immunoreactivity to the neuropeptide galanin. The density and distribution of galanin-positive nerve fibers varied from iris to iris and, particularly, among animals. Smooth, non-terminal axons were seen running in nerve bundles consisting of otherwise negative fibers. From the choroid membrane these bundles reached the iris via the ciliary body. Axons were frequently seen to branch giving rise to a sparse system of varicose, single fibers in the dilator plate and sphincter area. Galanin-positive fibers were sometimes also seen outlining blood vessels.Capsaicin, in a dose that causes permanent depletion of substance P- and cholecystokinin-immunoreactive fibers in the iris, caused no change in amount of galanin-positive fibers. Removal of the superior cervical ganglion caused a rapid and pronounced increase in the number of galanin-immunoreactive nerve fibers. Similarly, removal of the ciliary ganglion appeared to increase galanin immunoreactivity, while removal of the pterygopalatine ganglion was less effective. Lesioning of the trigeminal ganglion caused a disappearance of galanin immunoreactivity. The sympathetectomy-induced increase was counteracted by capsaicin.Galanin-positive nerve cell bodies were present in both the superior cervical and the trigeminal ganglia. In the superior cervical ganglion, immunoreactive galanin did not seem to coexist with neuropeptide Y-positive cells; in the trigeminal ganglion, some galanin-positive cells also contained calcitonin gene-related peptide (CGRP) immunoreactivity, while most cells did not. In the iris, double-staining suggested that CGRP and galanin immunoreactivities were contained in different fiber populations.We conclude that the rat iris and choroid membrane contain a sparse plexus of nerve fibers expressing galanin-like immunoreactivity. It is suggested that these fibers are derived from the trigeminal ganglion. The iris is able to respond with a pronounced increase in number of galanin-immunoreactive nerve fibers to certain denervation procedures.  相似文献   

8.
Summary The distribution and origin of nerve fibers of presumed sensory nature in the ear drum and middle-ear mucosa of the rat were studied by a retrograde tracing technique in combination with immunocytochemistry.Application of True Blue (TB) on the ear drum or on the middle-ear mucosa labeled nerve cell bodies in the jugular, trigeminal, geniculate and cervical dorsal root ganglia (C2–C4). Judging from the number of TB-labeled nerve cell bodies the jugular and trigeminal ganglia contributed the major component to the sensory innervation of the ear drum and the middle-ear mucosa, while the contribution from the geniculate and cervical dorsal root ganglia was relatively minor.The majority of the TB-labeled nerve cell bodies contained calcitonin gene-related peptide (CGRP), whereas minor populations stored substance P (SP) and neurokinin A (NKA). Nerve fibers containing SP, NKA and CGRP were moderate in number in the middle-ear mucosa and few in the ear drum. Double immunostaining revealed that SP invariably coexisted with NKA in nerve cell bodies in the ganglia examined. The SP/NKA-containing nerve cell bodies constituted a subpopulation of those storing CGRP.The findings indicate that several ganglia project to the ear drum and middle-ear mucosa and that many neuropeptides are involved in the mediation of middle-ear sensitivity.  相似文献   

9.
Summary The distribution of FMRFamide-like immunoreactivity was investigated in the brain of a myxinoid, the Pacific hagfish,Eptatretus stouti, by means of immunocytochemistry. In the forebrain, labelled cell bodies occurred in the infundibular nucleus of the hypothalamus and some closely adjacent nuclei. Labelled fibers formed a diffuse network in the forebrain, but there was no evidence for the presence of intracerebral ganglionic cells of the terminal nerve or a central projection of the terminal nerve. In the hindbrain, a group of labelled cells was found in the trigeminal sensory nucleus. A distinet terminal arborization occurred in the ventrally adjacent nucleus A of Kusunoki and around the nuclei of the branchial motor column. These findings suggest that FMRFamide may play a role in the central control of branchiomotor activity.  相似文献   

10.
The distribution of perivascular nerve fibers displaying calcitonin gene-related peptide (CGRP) immunoreactivity and the effect of CGRP on vascular smooth muscle were studied in the guinea-pig. Perivascular CGRP fibers were seen in all vascular beds. Generally, they were more numerous around arteries than veins. Small arteries in the respiratory tract, gastrointestinal tract and genitourinary tract had numerous CGRP fibers. The gastroepiploic artery in particular received a rich supply of such fibers. Coronary blood vessels had a moderate supply of CGRP fibers. In the heart, a moderate number of CGRP fibers was seen running close to myocardial fibers. The atria had a richer supply than the ventricles. Numerous CGRP immunoreactive nerve cell bodies and nerve fibers were seen in sensory (trigeminal, jugular and spinal dorsal root) ganglia. Sequential or double immunostaining with antibodies against substance P and CGRP suggested co-existence of the two peptides in nerve cell bodies in the ganglia and in perivascular fibers. In agreement with previous findings CGRP turned out to be a strong vasodilator in vitro as tested on several blood vessels (e.g. basilar, gastroepiploic and mesenteric arteries). Conceivably, perivascular CGRP/SP fibers have a dual role as regulator of local blood flow and as carrier of sensory information.  相似文献   

11.
目的:经眼神经注入DiI研究小鼠三叉神经节的形态学结构。方法:小鼠10只,体重25—30克,雌雄不拘,进行灌注固定后,在外科显微镜下开颅并确认三叉神经节和眼神经,分别于双侧眼神经植入DiI染色晶体。37℃恒温箱放置3个月,待DiI染色晶体扩散后,取出植入DiI染色晶体的眼神经和三叉神经节,再根据神经走向切片,通过荧光显微镜观察DiI染色晶体在三又神经节内的分布。结果:眼神经离三叉神经节约1cm处植入DiI染色晶体后,应用荧光显微镜明视野观察,均可见到高密度标记的眼神经纤维,行向后内,穿经眶上裂入颅。逐步靠近三叉神经节外上方,并进入三叉神经节内,眼神经标记的神经元位于三叉神经节的前内侧。在三叉神经节内可见到DiI标记的神经节细胞及神经纤维。神经纤维平行致密排列,并被神经节细胞神经纤维分隔成群或簇。神经节细胞呈圆形和卵圆形,大小不一,部分节细胞呈蜂窝状排列。亦可见神经元的突起,有的呈螺旋状连于胞体,有的呈线状连于胞体,并可见到双极神经元。结论:小鼠经眼神经注入DiI后,三叉神经节细胞和神经纤维的排列循序跟其他动物基本一致。  相似文献   

12.
Summary The seventh cranial nerve in Rana pipiens is a slender nerve with limited peripheral distribution. We investigated the afferent and efferent components of this nerve by labeling its major branch, the hyomandibular, with horseradish peroxidase. The efferent portion of the seventh nerve originates from a small cell group in the upper medulla which contains two subdivisions. Afferent fibers carried in nerve VII travel in the solitary tract and the dorsolateral funiculus. The solitary component consists of a small number of ascending fibers that reach the level of the trigeminal nucleus and a large descending component that terminates slightly caudal to the obex in the commissural nuclei of the solitary complex. Afferent fibers also descend in the dorsolateral funiculus; many of these fibers cross dorsal to the central canal in the lower medulla. Most of the fibers in the dorsolateral funiculus terminate in the ipsilateral and contralateral dorsal horns and in nuclei of the dorsal column. A few ipsilateral fibers reach lower thoracic levels of the spinal cord.  相似文献   

13.
Horseradish peroxidase histochemical studies of afferent and efferent projections of the trigeminal nerve in two species of chondrostean fishes revealed medial, descending and ascending projections. Entering fibers of the trigeminal sensory root project medially to terminate in the medial trigeminal nucleus, located along the medial wall of the rostral medulla. Other entering sensory fibers turn caudally within the medulla, forming the trigeminal spinal tract, and terminate within the descending trigeminal nucleus. The descending trigeminal nucleus consists of dorsal (DTNd) and ventral (DTNv) components. Fibers of the trigeminal spinal tract descend through the lateral alar medulla and into the dorsolateral cervical spinal cord. Fibers exit the spinal tract throughout its length, projecting to the ventral descending trigeminal nucleus (DTNv) in the medulla and to the funicular nucleus at the obex. Retrograde transport of HRP through sensory root fibers also revealed an ascending bundle of fibers that constitutes the neurites of the mesencephalic trigeminal nucleus, cell bodies of which are located in the rostral optic tectum. Retrograde transport of HRP through motor root fibers labeled ipsilateral cells of the trigeminal motor nucleus, located in the rostral branchiomeric motor column.  相似文献   

14.
Distribution of gastrin and CCK-like peptides in rat brain   总被引:2,自引:0,他引:2  
Summary The distribution of gastrin and CCK-like peptides in the rat brain was studied by immunocytochemistry using an antiserum reacting equally well with both groups of peptides. Immunoreactive nerve cell bodies were detected in all cortical areas, in the hippocampus where they were particularly numerous, in the mesencephalic central gray and in the medulla oblongata. After colchicine treatment immunoreactive material appeared also in cell bodies of the magnocellular hypothalamic system. Immunoreactive nerve fibers were widely distributed in the brain. Particularly dense accumulations were seen in the hippocampus near the ventral surface of the brain, in the caudate nucleus, in the interpeduncular nucleus, the parabrachial nucleus, the dorsal part of the medulla oblongata and in the dorsal horn of the spinal cord. In the hypothalamus immunoreactive nerve fibers were observed in all nuclei, being most frequent in the ventromedial, dorsal and lateral hypothalamic nuclei. A rich supply of nerve fibers was seen in the outer zone of the median eminence and in the neurohypophysis. From previous immunochemical analysis it appears that the peptide demonstrated in most parts of the brain is identical with CCK-8. In the neurosecretory cell bodies of the hypothalamus, the median eminence and the neurohypophysis, however, the immunoreactive material is probably identical with gastrin.  相似文献   

15.
Summary Afferents to the cerebellum in frogs (Rana esculenta, Rana temporaria) were studied by use of retrograde transport of horseradish peroxidase. Following injections restricted to the molecular layer of the cerebellum cell labelling was found in the contralateral inferior olive and the ventral portion of the caudal medullary raphe. Injections involving the granular layer resulted in labelling in the ventral horn of the cervical spinal cord, the caudal spinal trigeminal nucleus, the nucleus caudalis and the medial portion of the nucleus ventralis of the vestibular nerve, the inferior reticular nucleus and the nucleus of the fasciculus longitudinalis medialis. Following larger injections, which may have spread significantly into the cerebellar, secondary gustatory, trigeminal or vestibular nuclei, labelled cell bodies were also found in the nucleus ruber, nucleus solitarius, the rostral spinal trigeminal nucleus and the rostral rhombencephalic reticular formation. It is unclear whether the fibers from these latter areas innervate the cerebellum of the frog, as they do in mammals, or only reach the underlying areas. This situation emphasizes a limitation of the HRP technique when applied to small structures as is often the case in lower vertebrates.Supported by Grant Gr 276 to U. G.-C. from the Deutsche Forschungsgemeinschaft.  相似文献   

16.
The cobalt-labelling technique was used to investigate the termination areas of trigeminal primary afferent fibers. The familiar somatotopic arrangement of fibers and terminals of the three divisions of the trigeminal nerve was recognized both in the spinal tract and in the nuclear complex of the trigeminus. The spinal tract could be traced as far as the 3rd cervical segment of the spinal cord where fibers crossed to the contralateral side. The different divisions of the nuclear complex could be unambiguously defined on the basis of the pattern of fiber terminations. The nucleus principalis was characterized by the even distribution of terminals in the nucleus. The nucleus spinalis was characterized by small bundles of fibers of intranuclear origin, which broke up the even distribution pattern of terminals. The presence of mesencephalic trigeminal fibers in the nucleus oralis distinguished this nucleus from the nucleus interpolaris. The nucleus caudalis was recognized on the ground of its striated structure. Primary trigeminal afferent fibers were located in the following sites: in the solitary nucleus, in the lateral part of the reticular formation, in the dorsal-column nuclei and in the superior vestibular nuclei. Primary fiber terminations could not be observed in the cerebellum.  相似文献   

17.
Development of the facial nerve was studied in normal chicken embryos and after surgical disruption of ingrowing sensory facial nerve fibers at 38-72 h of incubation. Disruption of facial nerve fibers by otocyst removal often induced a rostral deviation of the facial nerve and ganglion to the level of the trigeminal ganglion. Cell bodies of the geniculate ganglion trailed their deviating neurites and occupied an abnormal rostral position adjacent to the trigeminal ganglion. Deviating facial nerve fibers were labeled with the carbocyanine fluorescent tracer DiI in fixed tissue. Labeled fibers penetrated the cranium adjacent to the trigeminal ganglion, but they did not follow the trigeminal nerve fibers into the brain stem. Rather, after entering the cranium, they projected caudally to their usual site of entrance and proceeded towards their normal targets. This rostral deviation of the facial nerve was observed only after surgery at 48-72 h of incubation, but not in cases with early otocyst removal (38-48 h). A rostral deviation of the facial nerve was seen in cases with partial otocyst removal when the vestibular nerve was absent. The facial nerve followed its normal course when the vestibular nerve persisted. We conclude that disruption of the developing facial pathway altered the routes of navigating axons, but did not prevent pathfinding and innervation of the normal targets. Pathfinding abilities may not be restricted to pioneering axons of the facial nerve; later-developing facial nerve fibers also appeared to have positional information. Our findings are consistent with the hypothesis that navigating axons may respond to multiple guidance cues during development. These cues appear to differ as a function of position of the navigating axon.  相似文献   

18.
Development of the facial nerve was studied in normal chicken embryos and after surgical disruption of ingrowing sensory facial nerve fibers at 38–72 h of incubation. Disruption of facial nerve fibers by otocyst removal often induced a rostral deviation of the facial nerve and ganglion to the level of the trigeminal ganglion. Cell bodies of the geniculate ganglion trailed their deviating neurites and occupied an abnormal rostral position adjacent to the trigeminal ganglion. Deviating facial nerve fibers were labeled with the carbocyanine fluorescent tracer Dil in fixed tissue. Labeled fibers penetrated the cranium adjacent to the trigeminal ganglion, but they did not follow the trigeminal nerve fibers into the brain stem. Rather, after entering the cranium, they projected caudally to their usual site of entrance and proceeded towards their normal targets. This rostral deviation of the facial nerve was observed only after surgery at 48–72 h of incubation, but not in cases with early otocyst removal (38–48 h). A rostral deviation of the facial nerve was seen in cases with partial otocyst removal when the vestibular nerve was absent. The facial nerve followed its normal course when the vestibular nerve persisted. We conclude that disruption of the devloping facial pathway altered the routes of navigating axons, but did not prevent pathfinding and innervation of the normal targets. Pathfinding abilities may not be restricted to pioneering axons of the facial nerve; later-developing facial nerve fibers also appeared to have positional information. Our findings are consistent with the hypothesis that navigating axons may respond to multiple guidance cues during development. These cues appear to differ as a function of position of the navigating axon. © 1992 John Wiley & Sons, Inc.  相似文献   

19.
本研究用免疫细胞化学技术观察了大鼠脑内参与兴奋性突触传递的代谢型谷氨酸受体5亚型(mGluR5)的精确定位分布.mGluR5阳性浓染的神经元胞体和纤维密集地分布于大脑皮质浅层、嗅球、伏核、尾壳核、前脑基底部、隔区、苍白球、腹侧苍白球、海马CA1和CA2区、下丘中央核、被盖背侧核和三叉神经脊束核尾侧亚核浅层;淡染而稀疏的mGluR5阳性神经元胞体和纤维见于屏状核、终纹床核、杏仁中央核、丘脑部分核团、上丘浅灰质层、外侧丘系背侧核和延髓中央灰质.  相似文献   

20.
In this work, the presence and distribution of serotonin in the cyprid of the barnacle Balanus amphitrite were investigated by immunohistochemical methods. Serotonin-like immuno-reactive neuronal cell bodies were detected in the central nervous system only. Various clusters of immunoreactive neuronal cell bodies are distributed in the brain (protocerebrum, deutocerebrum, optical lobes), and at least, four pairs of neuronal cell bodies were detected in the centrally positioned neuropil of the posterior ganglion. Rich plexuses of immunoreactive nerve fibers in the neuropil area were also observed. Furthermore, bundles of strongly immunoreactive nerve fibers surrounding the gut wall were localized, and immunoreactive nerve terminals in the antennules and compound eyes were observed. These data demonstrate the presence of a serotonin-like immunoreactive substance in the barnacle cyprids; furthermore, its immunolocalization in the cephalic nerve terminals allows us to postulate the involvement of this bioactive molecule in substrate recognition during the settlement process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号