首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Localization of cathepsin B in rat kidney was studied using immunocytochemical techniques. Cathepsin B was purified from rat liver and antibody to it was raised in rabbits. The antibody reacted with a lysosomal extract of rat kidney to form a single precipitin line in a double-diffusion test. Immunoblot analysis of lysosomal cathepsin B of rat kidney showed two species of 29K and 25K MW. After removal of Epon, semi-thin sections of glutaraldehyde-fixed tissue were stained by the indirect immunoenzyme technique. Dark-brown reaction product, indicating the antigenic sites for cathepsin B, was found in cytoplasmic granules throughout the nephron. Staining intensity and size of the positive granules varied widely in each segment of the nephron. In the glomeruli and distal tubules, a few small cytoplasmic granules were stained. In the proximal tubules, the S1 segment exhibited many large granules which were most heavily stained, whereas the S2 and S3 segments contained few positive granules. All segments of the distal tubules showed the smallest amount of positive granules. A few positive granules were also noted in the cortical and medullary collecting tubules. Control experiments confirmed the specificity of the staining. The results indicate that the major site for cathepsin B in rat kidney is the S1 segment of the proximal tubule which is known to actively take up proteins leaked through the glomerulus.  相似文献   

2.
《Free radical research》2013,47(9):1013-1026
Abstract

Oxidized and cross-linked modified proteins are known to accumulate in ageing. Little is known about whether the accumulation of proteins modified by advanced glycation end products (AGEs) is due to an affected intracellular degradation. Therefore, this study was designed to determine whether the intracellular enzymes cathepsin B, cathepsin D and the 20S proteasome are able to degrade AGE-modified proteins in vitro. It shows that AGE-modified albumin is degraded by cathepsin D, while cathepsin B was less effective in the degradation of aldehyde-modified albumin and the 20S proteasome was completely unable to degrade them. Mouse primary embryonic fibroblasts isolated from a cathepsin D knockout animals were found to have an extensive intracellular AGE-accumulation, mainly in lysosomes, and a reduction of AGE-modified protein degradation compared to cells isolated from wild type animals. In summary, it can be assumed that cathepsin D plays a significant role in the removal of AGE-modified proteins.  相似文献   

3.
Biosynthesis of cathepsin B in cultured normal and I-cell fibroblasts   总被引:2,自引:0,他引:2  
Biosynthesis and processing of cathepsin B in cultured human skin fibroblasts were investigated using immunological procedures. Upon metabolic labeling with [35S]methionine for 10 min, a precursor form with Mr 44,500 was identified. During an 80-min chase, about 50% of it was converted to an Mr 46,000 form. Further processing yielded mature forms with Mr 33,000 and 27,000, in a final quantitative ratio of about 3:1. Processing of cathepsin B was inhibited by leupeptin, which led to an accumulation of the Mr 33,000 polypeptide. The Mr 33,000 form appeared to be the most active form and showed a half-time of about 12 h. About 5% of newly synthesized enzyme was secreted as precursor, being detectable extracellularly already after 40 min. NH4Cl enhanced the secretion of the precursor about 20-fold. The precursor and the 33-kDa form contained phosphorylated N-linked oligosaccharides. Cleavage by peptide N-glycosidase F or biosynthesis in the presence of tunicamycin yielded a precursor with Mr 39,000. Evidence of a mannose 6-phosphate-dependent transport of cathepsin B in fibroblasts was obtained on the basis of the following results: (i) cathepsin B precursor from NH4Cl-stimulated secretions was internalized in a mannose 6-phosphate inhibitable manner, and (ii) I-cell fibroblasts secreted more than 95% of newly synthesized cathepsin B precursor. In conclusion, cathepsin B from human skin fibroblasts shows an analogous biosynthetic behavior as other lysosomal enzymes.  相似文献   

4.
Proteolytic degradation of elastic fibers is associated with a broad spectrum of pathological conditions such as atherosclerosis and pulmonary emphysema. We have studied the interaction between elastins and human cysteine cathepsins K, L, and S, which are known to participate in elastinolytic activity in vivo. The enzymes showed distinctive preferences in degrading elastins from bovine neck ligament, aorta, and lung. Different susceptibility of these elastins to proteolysis was attributed to morphological differences observed by scanning electron microscopy. Kinetics of cathepsin binding to the insoluble substrate showed that the process occurs in two steps. The enzyme is initially adsorbed on the elastin surface in a nonproductive manner and then rearranges to form a catalytically competent complex. In contrast, soluble elastin is bound directly in a catalytically productive manner. Studies of enzyme partitioning between the phases showed that cathepsin K favors adsorption on elastin; cathepsin L prefers the aqueous environment, and cathepsin S is equally distributed among both phases. Our results suggest that elastinolysis by cysteine cathepsins proceeds in cycles of enzyme adsorption, binding of a susceptible peptide moiety, hydrolysis, and desorption. Alternatively, the enzyme may also form a new catalytic complex without prior desorption and re-adsorption. In both cases the active center of the enzymes remains at least partly accessible to inhibitors. Elastinolytic activity was readily abolished by cystatins, indicating that, unlike enzymes such as leukocyte elastase, pathological elastinolytic cysteine cathepsins might represent less problematic drug targets. In contrast, thyropins were relatively inefficient in preventing elastinolysis by cysteine cathepsins.  相似文献   

5.
BACKGROUND: Cathepsin S is a member of the family of cysteine lysosomal proteases preferentially expressed in macrophages and microglia and is active after prolonged incubation in neutral pH. Upon activation of macrophages by a number of inflammatory mediators, there is an increase in secreted cathepsin S activity accompanied by a decrease in cellular cathepsin S activity and protein content, as well as a decrease in cathepsin S mRNA. The decrease in cathepsin S mRNA and protein at the cellular level is in contrast to the response observed in some in vivo scenarios. MATERIALS AND METHODS: We investigated the effect of basic fibroblast growth factor (bFGF) and nerve growth factor (NGF), two growth factors present during cell injury and inflammation but not known to activate macrophages and microglia, on the expression of cathepsin S, cathepsin B, and cathepsin L mRNAs in these cells, and on cathepsin S activity. We then tested the ability of cathepsin S to degrade myelin basic protein, and amyloid beta peptide at both acidic and neutral pH. RESULTS: Basic FGF and NGF treatment of macrophages and microglia significantly increased the levels of cathepsin S, B, and L mRNAs (2- to 5-fold). Basic FGF also increased cathepsin S activity intra- and extracellularly. Recombinant human cathepsin S was able to degrade myelin basic protein and monomeric and dimeric amyloid beta peptide at both acidic and neutral pH, as well as to process human amyloid precursor protein generating amyloidogenic fragments. CONCLUSIONS: These data suggest that bFGF and NGF may be the molecular signals that positively regulate the expression and activity of cysteine lysosomal proteases (cathepsin S in particular) in macrophages and microglia in vivo, and that there is an interplay between these factors and the activators of inflammation. Disruption of the balance between these two categories of signals may underlie the pathological changes that involve cysteine proteases. http://link.springer-ny.com/link/service/journals/00020/bibs /5n5p334. html  相似文献   

6.
The prodomains of several cysteine proteases of the papain family have been shown to be potent inhibitors of their parent enzymes. An increased interest in cysteine proteases inhibitors has been generated with potential therapeutic targets such as cathepsin K for osteoporosis and cathepsin S for immune modulation. The propeptides of cathepsin S, L and K were expressed as glutathione S-transferase-fusion proteins in Escherichia coli. The proteins were purified on glutathione affinity columns and the glutathione S-transferase was removed by thrombin cleavage. All three propeptides were tested for inhibitor potency and found to be selective within the cathepsin L subfamily (cathepsins K, L and S) compared with cathepsin B or papain. Inhibition of cathepsin K by either procathepsin K, L or S was time-dependent and occurred by an apparent one-step mechanism. The cathepsin K propeptide had a Ki of 3.6-6.3 nM for each of the three cathepsins K, L and S. The cathepsin L propeptide was at least a 240-fold selective inhibitor of cathepsin K (Ki = 0.27 nM) and cathepsin L (Ki = 0.12 nM) compared with cathepsin S (Ki = 65 nM). Interestingly, the cathepsin S propeptide was more selective for inhibition of cathepsin L (Ki = 0.46 nM) than cathepsin S (Ki = 7.6 nM) itself or cathepsin K (Ki = 7.0 nM). This is in sharp contrast to previously published data demonstrating that the cathepsin S propeptide is equipotent for inhibition of human cathepsin S and rat and paramecium cathepsin L [Maubach, G., Schilling, K., Rommerskirch, W., Wenz, I., Schultz, J. E., Weber, E. & Wiederanders, B. (1997), Eur J. Biochem. 250, 745-750]. These results demonstrate that limited selectivity of inhibition can be measured for the procathepsins K, L and S vs. the parent enzymes, but selective inhibition vs. cathepsin B and papain was obtained.  相似文献   

7.
A cysteine proteinase from purulent sputum was partially purified by a method involving affinity chromatography on Sepharose-aminohexanoylphenylalanylglycinaldehyde semicarbazone. It was immunologically related to lysosomal cathepsin B from human liver and was similar in many, but not all, other aspects. It was catalytically active, as demonstrated by active-site-directed radioiodination, and hydrolysed three cathepsin B substrates, two with Km values similar to those of lysosomal cathepsin B. In addition, the rates of inactivation of the sputum and lysosomal forms of the enzyme by L-3-carboxy-2,3-transepoxypropionyl-leucylamido(4-guanidino) butane (Compound E-64) were very similar. However, the sputum enzyme differed from lysosomal cathepsin B in the following respects. Inhibition by chicken cystatin was much weaker for sputum cathepsin B than for the lysosomal enzyme. Sputum cathepsin B had greater stability at pH 7.5 and a higher apparent Mr, even after deglycosylation, than lysosomal cathepsin B. We conclude that the form of cathepsin B found in sputum is probably a truncated form of human procathepsin B, with some differences in properties that could be of physiological importance.  相似文献   

8.
Resonance Raman spectroscopic data provide conclusive evidence for the existence of an acyl-enzyme intermediate during the reaction of a thionoester substrate, N-methyloxycarbonylphenylalanylglycine methyl thionoester (CH3OC(=O)-Phe-NHCH2C(=S) OCH3), with cathepsin B from porcine spleen. The resonance Raman spectrum of CH3OC(=O)-Phe-NHCH2C(=S)S-cathepsin B, where the thiol S is from the active-site cysteine residue, is compared to that of the corresponding papain acyl-enzyme. Within the limits of experimental error (+/-2 cm-1 for peak positions), there are no detectable spectral differences. Since the resonance Raman spectrum is sensitive to the torsional angles in the glycinic bonds and the cysteine linkages, the conformations are identical in those parts of the acyl-enzymes where chemical transformation occurs. A conformational analysis of the model compound CH3OC(=O)-Phe-NHCH2C(=S)SC2H5 demonstrates that the dithioacyl group in both dithioacyl-enzymes is present as a single population of a form known as conformer B. Conformer B is characterized by a small torsional angle about the glycinic NHCH2-CS(thiol) bond such that the nitrogen and S (thiol) atoms are in close contact. This conformer is widespread among the dithioacyl intermediates of plant cysteine proteinases, and it is apparent that the same chemistry is retained in a mammalian cysteine proteinase. Steady-state kinetic parameters are also reported for CH3OC(=O)-Phe-NHCH2C(=S)OCH3 reacting with papain and cathepsin B. The similarity of the Kcat values, 0.53 and 1.15 s-1, for papain and cathepsin B, respectively, provides further evidence for a conserved deacylation process.  相似文献   

9.
Cathepsin L is a lysosomal cysteine protease involved in intracellular protein degradation. Recently, several new cysteine proteases have been identified. Human cathepsin V, a thymus- and testis-specific human cysteine protease, shares 78% sequence identity with human cathepsin L. Due to the strong sequence similarity, highly selective reagents are needed to elucidate the physiological functions of the two enzymes. Monoclonal antibodies (mAbs) have been prepared against recombinant human cathepsin L. Antibodies produced by five clones reacted with procathepsin L and mature cathepsin L. They also reacted with cathepsin L in complex with a peptide fragment, which is identical to the alternatively spliced segment of the p41 form of MHC Class II associated invariant chain. Two mAbs, (M105 and H102) were specific for cathepsin L, while three (N135, B145 and D24) cross-reacted with cathepsin V. None of the mAbs cross-reacted with cathepsins B, H and S. We have developed a sandwich enzyme-linked immunosorbent assay (ELISA) for quantifying cathepsin L. This sandwich ELISA uses a combination of two monoclonal antibodies which recognize different, non-overlapping epitopes on the cathepsin L molecule. The lower detection limit of the sandwich ELISA was 5 ng of cathepsin L per ml.  相似文献   

10.
Cathepsin S (CatS) is a lysosomal cysteine protease belonging to the papain superfamily. Because of the relatively broad substrate specificity of this family, a specific substrate for CatS is not yet known. Based on a detailed study of the CatS endopeptidase specificity, using six series of internally quenched fluorescent peptides, we were able to design a specific substrate for CatS. The peptide series was based on the sequence GRWHTVGLRWE-Lys(Dnp)-DArg-NH2, which shows only one single cleavage site between Gly and Leu and where every substrate position between P-3 and P-3' was substituted with up to 15 different amino acids. The endopeptidase specificity of CatS was mainly determined by the P-2, P-1', and the P-3' substrate positions. Based on this result, systematically modified substrates were synthesized. Two of these modified substrates, Mca-GRWPPMGLPWE-Lys(Dnp)-DArg-NH2 and Mca-GRWHPMGAPWE-Lys(Dnp)-DArg-NH2, did not react with the purified cysteine proteases cathepsin B (CatB) and cathepsin L (CatL). Using a specific CatS inhibitor, we could further show that these two peptides were not cleaved by endosomal fractions of antigen presenting cells (APCs), when CatS was inhibited and related cysteine proteases cathepsin B, H, L and X were still active. Although aspartic proteases like cathepsin E and cathepsin D were also present, our substrates were suitable to quantify cathepsin S activity specifically in APCs, including B cells, macrophages, and dendritic cells without the use of any protease inhibitor. We find that CatS activity differs significantly not only between the three types of professional APCs but also between endosomal and lysosomal compartments.  相似文献   

11.
Vasiljeva O  Dolinar M  Turk V  Turk B 《Biochemistry》2003,42(46):13522-13528
Human procathepsin H was expressed in the form of inclusion bodies in Escherichia coli. Following refolding and autocatalytic activation, a recombinant cathepsin H form lacking the mini chain was produced. Removal of the mini chain completely abolished aminopeptidase activity of the enzyme and largely increased its endopeptidase activity (approximately 40-fold). Similarly to cathepsin S, Bz-FVR-AMC (k(cat)/K(m) value of 1070 mM(-1) s(-1)) was found to be the preferred substrate of recombinant cathepsin H. However, substrate inhibition was observed at a higher substrate (Z-FR-AMC, Bz-FVR-AMC) concentration. Endopeptidase activity of recombinant cathepsin H was seen also with the protein substrate insulin beta-chain with the major cleavage site between Glu13-Ala14. Recombinant human cathepsin H was inhibited by chicken cystatin, stefin A, and stefin B with the K(i) values in the range of 0.05-0.1 nM, which is slightly tighter than the inhibition of purified cathepsin H by the same inhibitors. These results thus indicate that the cathepsin H mini chain is essential for the aminopeptidase activity of the enzyme but has only a minor effect on the inhibition by cystatins.  相似文献   

12.
We reported that pyridoxal phosphate (PAP), a coenzyme form of vitamin B6, strongly inhibits activities of cathepsin B and weakly inhibits those of cathepsins S, K, and C in vitro. Either intraperitoneal injection or peroral administration of medication doses of vitamin B6 in the diet caused dose-dependent inhibition of hepatic cathepsins B, L, S, and C, and the inhibition was exhibited much more significantly in the case of a high protein diet than in a low protein diet. Administration of vitamin B6 induced the suppression of immune responses against ovalbumin (OVA) mediated by helper T lymphocyte type-2, based on the suppression of antigen processing by cathepsin B inhibition, as in the case of CA-074 administration, a cathepsin B specific inhibitor. Ovalbumin-dependent production of immunoglobulins IgE, IgG1 and interleukin IL-4 was suppressed by administration of medication doses of pyridoxal (PA) or pyridoxine (PI), while the production of IgG2alpha and interferon (INF)-gamma mediated by helper T lymphocyte type 1 was not changed. Administration of medication doses of vitamin B6 caused the inhibition of intracellular cathepsin B activity due to suppression of the functions of helper T lymphocyte type-2.  相似文献   

13.
Cysteine proteases are involved in many diverse cellular processes ranging from processing of precursor proteins to intracellular degradation. In an effort to identify novel cysteine proteases, we used the polymerase chain reaction and primers directed against the catalytic sites of previously cloned cysteine proteases. From rat brain mRNA, a 600-base pair band was amplified; cloning and partial sequence analysis of this band resulted in the identification of cathepsins B and L and five novel sequences. The novel cDNAs contained a number of residues conserved in lysosomal cysteine proteases, including the active site residue His159 (papain numbering). In addition, the amino acid homology between the novel sequences and either cathepsins B, L, or H, ranged from 63 to 32%. The insert with highest homology was used to screen a rat brain cDNA library; a 1334-base pair cDNA was isolated and the nucleotide sequence determined. This sequence encodes an open reading frame of 330 amino acids which is 82% homologous to human cathepsin S, suggesting that this sequence represents rat cathepsin S. Northern blot analysis for rat cathepsin S revealed tissue-specific expression distinct from the distribution of cathepsin B and L. The regulation of expression of rat cathepsin S mRNA in response to thyroid-stimulating hormone was studied in a rat thyroid cell line FRTL-5. The level of cathepsin S mRNA was substantially increased in response to thyroid-stimulating hormone, whereas cathepsin B and cathepsin L mRNA levels were not altered by this treatment. A portion of cDNA encoding the predicted mature protein of rat cathepsin S was expressed as a glutathione S-transferase-fusion protein. The affinity-purified protein exhibited proteolytic activity with properties similar to bovine cathepsin S. Taken together, these results imply highly specific functions for cathepsin S.  相似文献   

14.
The peptide-bond-specificity of bovine spleen cathepsin S in the cleavage of the oxidized insulin B-chain and peptide methylcoumarylamide substrates was investigated and the results are compared with those obtained with rat liver cathepsins L and B. Major cleavage sites in the oxidized insulin B-chain generated by cathepsin S are the bonds Glu13-Ala14, Leu17-Val18 and Phe23-Tyr26; minor cleavage sites are the bonds Asn3-Gln4, Ser9-His10 and Leu15-Tyr16. The bond-specificity of this proteinase is in part similar to the specificities of cathepsin L and cathepsin N. Larger differences are discernible in the reaction with synthetic peptide substrates. Cathepsin S prefers smaller neutral amino acid residues in the subsites S2 and S3, whereas cathepsin L efficiently hydrolyses substrates with bulky hydrophobic residues in the P2 and P3 positions. The results obtained from inhibitor studies differ somewhat from those based on substrates. Z-Phe-Ala-CH2F (where Z- represents benzyloxycarbonyl-) is a very potent time-dependent inhibitor for cathepsin S, and inhibits this proteinase 30 times more efficiently than it does cathepsin L and about 300 times better than it does cathepsin B. By contrast, the peptidylmethanes Z-Val-Phe-CH3 and Z-Phe-Lys(Z)-CH3 inhibit competitively both cathepsin S and cathepsin L in the micromolar range.  相似文献   

15.
Toll-like receptors (TLR) recognize a variety of microbial products and activate defense responses. Pathogen sensing by TLR2/4 requires accessory molecules, whereas little is known about a molecule required for DNA recognition by TLR9. After endocytosis of microbes, microbial DNA is exposed and recognized by TLR9 in lysosomes. We here show that cathepsins, lysosomal cysteine proteases, are required for TLR9 responses. A cell line Ba/F3 was found to be defective in TLR9 responses despite enforced TLR9 expression. Functional cloning with Ba/F3 identified cathepsin B/L as a molecule required for TLR9 responses. The protease activity was essential for the complementing effect. TLR9 responses were also conferred by cathepsin S or F, but not by cathepsin H. TLR9-dependent B cell proliferation and CD86 upregulation were apparently downregulated by cathepsin B/L inhibitors. Cathepsin B inhibitor downregulated interaction of CpG-B with TLR9 in 293T cells. These results suggest roles for cathepsins in DNA recognition by TLR9.  相似文献   

16.
Besides its physiological role in lysosomal protein breakdown, extralysosomal cathepsin B has recently been implicated in apoptotic cell death. Highly specific irreversible cathepsin B inhibitors that are readily cell-permeant should be useful tools to elucidate the effects of cathepsin B in the cytosol. We have covalently functionalised the poorly cell-permeant epoxysuccinyl-based cathepsin B inhibitor [R-Gly-Gly-Leu-(2S,3S)-tEps-Leu-Pro-OH; R=OMe] with the C-terminal heptapeptide segment of penetratin (R=epsilonAhx-Arg-Arg-Nle-Lys-Trp-Lys-Lys-NH2). The high inhibitory potency and selectivity for cathepsin B versus cathepsin L of the parent compound was not affected by the conjugation with the penetratin heptapeptide. The conjugate was shown to efficiently penetrate into MCF-7 cells as an active inhibitor, thereby circumventing an intracellular activation step that is required by other inhibitors, such as the prodrug-like epoxysuccinyl peptides E64d and CA074Me.  相似文献   

17.
The major active forms of cathepsins B and L were identified in Kirsten-virus-transformed mouse fibroblasts by the use of a specific radiolabelled inhibitor, benzyloxycarbonyl-Tyr(-125I)-Ala-CHN2. No other proteins were labelled, demonstrating the specificity of this inhibitor for cysteine proteinases. Cathepsins B and L were distinguished by the use of specific antibodies. One active form of cathepsin B, Mr 33,000-35,000, and two active forms of cathepsin L, Mr 30,000 and 23,000, were identified. The intracellular precursors of these proteins had higher Mr values of 39,000 and 36,000 for cathepsins B and L respectively, as shown by pulse-chase experiments with [35S]methionine-labelled proteins. These did not react with the inhibitor under our culture conditions. The precursor of cathepsin L was secreted whereas the precursor of cathepsin B was not, demonstrating that secretions of the two enzymes are regulated differently. In contrast with results found previously for the purified protein [Mason, Gal & Gottesman (1987) Biochem. J. 248, 449-454], the secreted precursor form of cathepsin L did not react with the inhibitor either, indicating that it is not active and therefore, as such, cannot be directly involved in tumour invasion. The secreted protein did react with the inhibitor when incubated at pH 3.0, showing that the protein can be activated, although this did not occur under our culture conditions.  相似文献   

18.
The specificity of compound CA074 [N-(L-3-trans-propylcarbamoyloxirane-2-carbonyl)-L-isoleucyl-L-pro line] for the inactivation of cathepsin B was quantified in in vitro measurements with cysteine endopeptidases from cattle, it being found that the compound is a very rapid inactivator of cathepsin B (rate constant 112,000 M-1.s-1), with barely detectable action on cathepsins H, L, and S or m-calpain. Conversion of the proline carboxyl group of the inhibitor to the methyl ester virtually abolished the effect on cathepsin B, and a possible explanation for the importance of the carboxyl is presented on the basis of the tertiary structure of cathepsin B. It was found that CA074 methyl ester (1 microM, 3 h) caused selective inactivation of the intracellular cathepsin B of human gingival fibroblasts in culture, in contrast to other available agents, and we suggest that CA074 methyl ester will be of value in the elucidation of the biological functions of cathepsin B.  相似文献   

19.
Song J  Xu P  Xiang H  Su Z  Storer AC  Ni F 《FEBS letters》2000,475(3):157-162
Human cathepsin B, the most abundant lysosomal cysteine protease, has been implicated in a variety of important physiological and pathological processes. It has been known for a long time that like other lysosomal cysteine proteases, cathepsin B becomes inactivated and undergoes irreversible denaturation at neutral or alkaline pH. However, the mechanism of this denaturation process remains mostly unknown up to this day. In the present work, nuclear magnetic resonance spectroscopy was used to characterize the molecular origin of the neutral-pH inactivation and the refolding barrier of human cathepsin B. Two forms of human cathepsin B, the native form with Cys-29 at the active site and a mutant with Cys-29 replaced by Ala, were shown to have well-folded structures at the active and slightly acidic condition of pH 5. Surprisingly, while the native cathepsin B irreversibly unfolds at pH 7.5, the C29A mutant was found to maintain a stable three-dimensional structure at neutral pH conditions. In addition, replacement of Cys-29 by Ala renders the process of the urea denaturation of human cathepsin B completely reversible, in contrast to the opposite behavior of the wild-type cathepsin B. These results are very surprising in that replacement of one single residue, the active-site Cys-29, can eliminate the neutral-pH denaturation and the refolding barrier. We speculate that this finding may have important implications in understanding the process of pH-triggered inactivation commonly observed for most lysosomal cysteine proteases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号