首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interferons (IFN) are multi-functional proteins that induce a large number of genes which mediate many biological processes including host defense, cell growth control, signaling, and metabolism. Bioinformatics analysis of the 3'-untranslated regions of IFN-stimulated genes (ISGs) showed that the AU-rich elements (ARE) exist in approximately 10% of the mRNA induced by IFN. The human epithelial cell lines, WISH and 293, and the human B cell lines, Daudi and RPMI 1788, were assessed for their response to type-I IFN. Due to their differential response to the anti-viral and anti-proliferative action of IFN-alpha, they were used as cellular models for genome wide ARE-gene expression. The anti-viral and anti-proliferative actions of IFN-alpha were substantially more potent against WISH and Daudi cells than 293 and RPMI 1788 cells, respectively. These results correlated with the Stat1-driven gene expression as assessed by monitoring the expression of Stat1-mediated IFN-inducible 6-16 mRNA. Interferons were able to induce a significant proportion of common and distinct ARE-genes, but the patterns of expression were different and dependent on the type of the cell, type of IFN, and status of the cellular sensitivity to IFN. Clustering algorithms generated two informative expressed gene clusters that were selectively associated with cellular sensitivity and resistance to the anti-viral and anti-proliferative action of IFN. Use of rationally designed microarray experiments in IFN biology yielded informative clusters that may provide candidate genes for diagnostic or for evaluation of therapeutic possibilities.  相似文献   

2.
The opportunistic gram-positive pathogen Staphylococcus aureus is a leading cause of pneumonia and?sepsis. Staphylococcal α-toxin, a prototypical pore-forming toxin, is a major virulence factor of S.?aureus clinical isolates, and lung epithelial cells are highly sensitive to α-toxin's cytolytic activity. Type I interferon (IFN) signaling activated in response to S.?aureus increases pulmonary cell resistance to α-toxin, but the underlying mechanisms are uncharacterized. We show that IFNα protects human lung epithelial cells from α-toxin-induced intracellular ATP depletion and cell death by reducing extracellular ATP leakage. This effect depends on protein palmitoylation and induction of phospholipid scramblase 1 (PLSCR1). IFNα-induced PLSCR1 associates with the cytoskeleton after exposure to α-toxin, and cellular depletion of PLSCR1 negates IFN-induced protection from α-toxin. PLSCR1-deficient mice display enhanced sensitivity to inhaled α-toxin and an α-toxin-producing S.?aureus strain. These results uncover PLSCR1 activity as part of an innate protective mechanism to a bacterial pore-forming toxin.  相似文献   

3.
Drug resistance in bacteria is increasing and the pace at which new antibiotics are being produced is slowing. It is now almost commonplace to hear about methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), multi-drug resistance in Mycobacterium tuberculosis (MDRTB) strains and multi-drug-resistant (MDR) gram-negative bacteria. So-called new and emerging pathogens add to the gravity of the situation. Reduced susceptibility to biocides is also apparently increasing, but is more likely to be low level in nature and to concentrations well below those used in hospital, domestic an industrial practice. A particular problem, however, is found with bacteria and other micro-organisms present in biofilms, where a variety of factors can contribute to greater insusceptibility compared with cells in planktonic culture. Also of potential concern is the possibility that widespread usage of biocides is responsible for the selection and maintenance of antibiotic-resistant bacteria. The basic mechanisms of action of, and bacterial resistance to, antibiotics are generally well documented, although data continue to accumulate about the nature and importance of efflux systems. In contrast, the modes of action of most biocides are poorly understood and consequently, detailed evaluation of bacterial resistance mechanisms is often disappointing. During this Symposium, the mechanisms of bacterial resistance to antibiotics and biocides are discussed at length. It is hoped that this knowledge will be used to develop newer, more effective drugs and biocides that can be better and perhaps, on occasion, more logically used to combat the increasing problem of bacterial resistance.  相似文献   

4.
Interferons and cell growth control   总被引:8,自引:0,他引:8  
Cytokines modulate cell growth, differentiation, and immune defenses in the vertebrates. Interferons (IFNs) are a unique class of cytokines that stimulate antiviral, antitumor and antigen presentation by inducing the expression of several cellular genes. Recent studies have identified a novel gene regulatory pathway activated by IFNs, which serves as a paradigm for most cytokine signal transduction pathways. A number of genes induced by IFNs participate in cell growth regulation and apoptosis. These include novel tumor suppressor genes. Although discovered as IFN-regulated factors, deletions of these genes cause leukemias in experimental models and in human patients. Genetic approaches have identified several novel regulators of apoptosis. Studies on the mechanism of action of these growth regulatory molecules are not only useful in identifying novel targets for the development of therapeutics but also help understand the molecular basis for loss of cell growth control and resistance to IFNs. This review focuses on the functions and roles of IFN regulated factors in cell growth control and mechanisms of disruption of IFN action in cancer cells.  相似文献   

5.
We examined the sensitivity of four human germ-cell-tumor cell lines exhibiting different stages of differentiation to human interferons (IFNs) in vitro. The cell lines were derived from two embryonal carcinomas (NEC 8 and NEC 14), a choriocarcinoma (IMa), and a yolk-sac tumor (HUOT). Treatment with poly I:C induced IFN production in IMa and HUOT cells, but not in NEC-8 and NEC-14 cells. In the two embryonal-carcinoma cell lines, the addition of IFN-alpha, IFN-beta, and IFN-gamma did not prevent infection by vesicular stomatitis virus and encephalomyocarditis virus. Also, in these two lines, 2-5A synthetase was not induced by the addition of IFN-alpha. In contrast, both IMa and HUOT showed sensitivity to the antiviral action of IFN-alpha and IFN-beta against the two viruses, and 2-5A synthetase was induced by IFN-alpha. IFNs added at doses of up to 1000 IU/ml had no antiproliferative effect on NEC 8, NEC 14, and HUOT, whereas colony formation by IMa cells was greatly suppressed by all three forms of IFN. These results indicate that the production of and sensitivity to IFN are developmentally regulated and are related to the level of differentiation of human germ-cell stem cells.  相似文献   

6.
The action of mouse serum interferon--alpha/beta (IFN) at the dose of 100 U/ml, of its inhibitor (I) at the dose of 8 U/ml as well as of their combination with the above doses on sensitivities of mouse target cells (TC) of sensitive to IFN line L 929 and resistant to the one line MCB in natural cytotoxic reaction was studied. Cytotoxic activity of human natural killer cells was detected in 14 hrs cytotoxic test using 3H-uridine for labelling of TC. IFN, I, and IFN+I were added to cell cultures for 24 hrs at 37 degrees C with following removing of preparations. It has been shown that I abolished protective effect of IFN on TC L 929 whereas the one possessed the protective action on TC MCB in natural cytotoxic reaction. These data confirmed a suggestion about immunoregulatory properties of I which displayed in abolition or realization of protective effect on TC in natural cytotoxic reaction in dependence on initial sensitivity of TC to antiviral IFN action.  相似文献   

7.
It is known that IL-2 induces lymphocytes to produce interferon-gamma (IFN-gamma) and this IFN type is particularly efficient in inducing tumor cell resistance to natural killer (NK) cell-mediated lysis. We have investigated the effect of IFN on tumor cell sensitivity to LAK cell-mediated cytotoxicity. Pretreatment of the human K562 leukemia and HHMS melanoma with IFN-gamma and the Daudi lymphoma with IFN-alpha caused a significant reduction in sensitivity to lysis by human LAK cells generated in vitro in the presence of human recombinant IL-2 (100 U/ml). The LAK activity was mediated by cells expressing NK cell markers (CD16,NKH1) as well as by cells with T cell markers (CD3, CD5). IFN-treated K562 cells were protected from lysis mediated by all these populations. Supernatants from LAK cultures containing IFN-gamma were able to induce NK and LAK resistance when used to pretreat K562 overnight. Antibodies to IFN-gamma but not to IFN-alpha were able to neutralize this activity. Taken together, these results indicate that the production of IFN-gamma by LAK cells may be of importance in induction of tumor cell resistance to LAK cell-mediated lysis.  相似文献   

8.
The influence of the human tumor suppressor PTEN on sensitivity of tumor cells to cytostatic drugs was studied. Rat ras-transformed (N-ras Asp12 ) fibroblasts were stably transfected with a full-size PTEN gene. Transfected clone was characterized by an enhanced expression of PTEN and a more normal phenotype in comparison with the parental cells. The effect of transient transfection with PTEN on the sensitivity of several malignant cell lines to the cytostatic drugs colchicine and adriablastine was studied. These drugs differ from each other in action mechanisms and intracellular targets. The tumor cell lines tested in this study included parental cell lines and stable sublines possessing drug resistance due to overexpression of P-glycoprotein. In all cell lines, introduction of exogenous PTEN caused a decrease in proliferation rates. This indicated that transgene was active. The chemosensitivity of some drug-resistant sublines was changed after PTEN transfection, but the drug sensitivity of parental cell lines remained unaffected. The effect of PTEN overexpression on chemosensitivity of malignant cells to cytostatic drugs was found to depend both on their mechanisms of action and on the origin of transfected cells. Our data suggest that PTEN is involved into the molecular mechanisms of drug resistance in cells studied.  相似文献   

9.
Interferon (IFN)-β inhibits cell proliferation and affects cell cycle in keratinocytes transformed by both mucosal high risk Human Papilloma Virus (HPV) and cutaneous HPV E6 and E7 proteins. In particular, upon longer IFN-β treatments, cutaneous HPV38 expressing cells undergo senescence. IFN-β appears to induce senescence by upregulating the expression of the tumor suppressor PML, a well known IFN-induced gene. Indeed, experiments in gene silencing via specific siRNAs have shown that PML is essential in the execution of the senescence programme and that both p53 and p21 pathways are involved. IFN-β treatment leads to a modulation of p53 phosphorylation and acetylation status and a reduction in the expression of the p53 dominant negative ΔNp73. These effects allow the recovery of p53 transactivating activity of target genes involved in the control of cell proliferation. Taken together, these studies suggest that signaling through the IFN pathway might play an important role in cellular senescence. This additional understanding of IFN antitumor action and mechanisms influencing tumor responsiveness or resistance appears useful in aiding further promising development of biomolecular strategies in the IFN therapy of cancer.  相似文献   

10.
To assess the effects of chronic virus infection on NK cells, the related phenomena of interferon (IFN) production, NK cell activation, and resistance to tumor implants were studied in mice persistently infected with lymphocytic choriomeningitis virus (LCMV). NK cells from these LCMV-carrier mice displayed augmented killing of the NK-sensitive YAC-1 target cell. They did not lyse the more resistant targets L-929 and P815, whereas NK cells from acutely infected mice efficiently lysed all three cell types. The plasma from LCMV-carrier mice contained an antiviral substance identified as IFN type I, based on species specificity, virus nonspecificity, resistance to pH 2, and sensitivity to antibody to type I IFN. IFN titers in plasma from LCMV-carrier mice were 32 to 64 U/ml, about 20-fold less than those in acutely infected mice. Both the IFN and NK cell levels continuously remained elevated in the LCMV carrier mice up to at least 6 months of age. IFN is known to activate NK cells and to induce their blastogenesis in vivo. As determined by centrifugal elutriation, large NK blast-size cells were isolated from the spleens of acutely infected mice, but not from either normal or LCMV-carrier mice, suggesting augmented NK cell-mediated lysis in the absence of enhanced proliferation. Poly inosinic-cytidylic acid induced high levels of NK cell-mediated cytotoxicity and blastogenesis in both control and LCMV-carrier mice, but IFN was induced to lower levels in carriers as compared with controls. Coincidental with augmented NK cell activity, the LCMV-carrier mice rejected intravenously injected 125IUdR-labeled tumor cells more efficiently than did normal mice. Thus, LCMV carrier mice have low levels of type I IFN, moderately augmented NK cell activity lasting for at least 6 months, and increased resistance to tumor cell implants. This indicates that augmented NK cell-mediated cytotoxicity can be maintained in vivo over prolonged periods of time in the presence of chronic low-level IFN stimulation.  相似文献   

11.
12.
Summary When confluent monolayers of cells derived from chicken embryos of different gestational age were cultured for several days without a medium change, a condition termed in vitro aging, the cells' developed an increased capacity to express the interferon (IFN) system. The capacity to both produce IFN and to respond to its antiviral action were enhanced up to 1000- and 100-fold, respectively. Remarkably, the programmed development of the IFN system in these cells seemed to continue virtually uninterrupted after monodispersion of the cells and seeding at high cell density. Cells prepared from young embryos required more time to develop the IFN system than cells from older embryos with the yield of IFN, and sensitivity to its action, related directly to the total in ovo and in vitro age of the cells in culture. For example, essentially the same yields of IFN were obtained from cell cultures made from 5-d-old embryos “aged” for 10 d in vitro, as were obtained from 10-d-old embryos whose cells were aged in vitro for 5 d. In contrast, inducibility of 2′–5′ oligoadenylate synthetase by IFN and the induction of heat shock genes by elevated temperature are not enhanced with in vitro aging. The programmed development of the IFN system that starts in ovo seems to continue on schedule in vitro, making the development of the IFN system in chick embryo cells appear as a time-dependent process. This study was supported by the grant RO1 AI18381 from the national Institute of Allergy and Infectious Diseases, Bethesda, MD, and benefited from services of the Cell Culture Facility of the Biotechnology Center at The Univeristy of Connecticut.  相似文献   

13.
A mouse leukemic cell line L1210 Sg with a low sensitivity to interferon-γ (IFN-γ) was described. On the nature of the antiviral action and binding of IFN, L1210 Sg cells were compared with L1210m cell line which is sensitive to IFN-γ. For a half reduction of the vesicular stomatitis virus-RNA synthesis, L1210 Sg cells required 500–fold more IFN-γ than L1210m cells did. However, both cell lines were induced to the antiviral state to the same extent with IFN-α or -β. L1210 Sg and L1210m cells were sensitive to the anti-proliferative action of IFN-α and -β, but insensitive to IFN-γ. (2′-5′)Oligoadenylate synthetase was induced in these cell lines by IFN-β, but not by IFN-γ, which suggests that the induction of this synthetase may not be responsible for the antiviral action of IFN-γ. No substantial difference between L1210 Sg and L1210m cells was found in IFN receptors for IFN-γ and IFN-β either in number per cell or in their affinity to corresponding IFN type. However, differences were noted in time course profiles of cell-associated IFN-γ at 37 C: in L1210m cells, a rise-and-decay profile of IFN-γ bound to cells was observed at 37 C, but in L1210 Sg cells, rise and slight decay was observed. On the other hand, a similar rise-and-decay curve of IFN-β bound to these cells was observed. These results indicated that the low sensitivity of L1210 Sg cells to IFN-γ may be due to this slight decay of receptor-bound IFN-γ.  相似文献   

14.
15.
Interferon-specific effects on protein synthesis in P3HR-1 cells.   总被引:2,自引:0,他引:2       下载免费PDF全文
The effect of interferon (IFN) on protein synthesis was studied in the Burkitt's lymphoma cell line P3HR-1 by [35S]methionine labelling of the cells, followed by two-dimensional gel electrophoresis of cell extracts. De novo synthesis of three proteins (mol. wts. 33 000, 62 000, and 98 000, respectively) and alterations in the rate of synthesis for a small number of additional proteins were observed during the first 12 h of treatment, while the rate of overall protein synthesis was unaffected. Treatment of P3HR-1 cells with 12-O-tetradecanoyl-phorbol-13-acetate (TPA) or hydrocortisone (HC), which induce similar changes in cell cycle distribution as does IFN, did not induce comparable changes in the rates of protein synthesis. Thus, the effects were specific for IFN and not induced by the change in cell cycle distribution per se, i.e., accumulation in G0. Treatment of cells with 2'-5' pA core did not mimic the effect of IFN at the translational level. A substrain of P3HR-1 cells, selected for resistance to the anti-proliferative effect of IFN, lacked six proteins found in the wild-type. The 62 000 mol. wt. protein was induced in this substrain as well as in native P3HR-1 cells on addition of IFN. The resistant substrain still developed an anti-viral effect in response to IFN. Thus, it seems as if the anti-proliferative and anti-viral effects of IFN, at least in some cells are mediated by different intracellular molecular mechanisms.  相似文献   

16.
The cytotoxic activity of peripheral blood natural killers (NK) against target cells (TC) J-96 and L-929 with high sensitivity to interferon (IFN) action, J-41 and MCB resistant to IFN action and line K-562 labelled by H3-uridine was studied in 14 hrs cytotoxic test. It has been shown that human TC J-96 didn't differ from the J-41 in their sensitivity to NK cytotoxicity and they are strongly resistant to NK than TC K-562. The murine TC L-929 as the human TC didn't differ from the MCB in their sensitivity to NK lysis and had also the same sensitivity to NK as the K-562 cells.  相似文献   

17.
Pretreatment of human K562 leukemia cells with rIFN-alpha and rIFN-gamma resulted in decreased susceptibility to lysis by human peripheral blood NK cells. The reduction of NK-susceptibility after IFN treatment was not due to a general effect of IFN on the stability of the cell membrane because the susceptibility of K562 cells to lysis by antibodies plus C, distilled water, or lysolecithin was unaffected. Binding studies with effector cell preparations enriched for NK cells with large granular lymphocyte morphology revealed no difference in binding to control and IFN-gamma-treated target cells. The sensitivity to soluble NK cytotoxic factors was not affected significantly by the IFN treatment. In contrast, the susceptibility of IFN-treated target cells to the cytotoxic activity of purified cytoplasmic granules from a rat large granular lymphocyte tumor was significantly reduced, indicating that the IFN-induced resistance acted at the level of susceptibility to the lytic mechanism of NK cells. However, IFN-alpha was more effective than IFN-gamma in inducing resistance to the cytoplasmic granules although resulting in only a weak resistance in the cell-mediated cytotoxic assay. IFN-gamma but not IFN-alpha caused a reduction in the frequency of effector cells that had reoriented their Golgi apparatus toward their bound target cell. In addition, IFN-gamma treated K562 cells failed to elicit an influx of Ca2+ into effector cells. Taken together, the results suggest that IFN-gamma in addition to an increased resistance to the lytic molecules released by NK cells can also induce changes in the target cells which prevent the triggering and activation of the effector cell.  相似文献   

18.
Two sublines of mouse L929 cells designated L929B and L929M were studied. The L929B cells, which displayed a 2-3-fold higher IFN production in response to Sendai virus than that of the L929M cells, had a higher sensitivity to the antiviral and priming effects of IFN and were more resistant to VSV. In good accord with the amount of IFN produced, more translatable IFN mRNA was isolated from the L929B cells. IFN production and IFN mRNA activities were proportionally increased in the IFN-primed cultures of both sublines. Results indicate that both inherent and priming-induced increased-IFN production are based on pretranslational control mechanisms.  相似文献   

19.
The E3L gene of vaccinia virus (VACV) encodes the E3 protein that in cultured cells inhibits the activation of interferon (IFN)-induced proteins, double-stranded RNA-dependent protein kinase (PKR), 2′-5′-oligoadenylate synthetase/RNase L (2-5A system) and adenosine deaminase (ADAR-1), thus helping the virus to evade host responses. Here, we have characterized the in vivo E3 functions in a murine inducible cell culture system (E3L-TetOFF) and in transgenic mice (TgE3L). Inducible E3 expression in cultured cells conferred on cells resistance to the antiviral action of IFN against different viruses, while expression of the E3L gene in TgE3L mice triggered enhanced sensitivity of the animals to pathogens. Virus infection monitored in TgE3L mice by different inoculation routes (intraperitoneal and tail scarification) showed that transgenic mice became more susceptible to VACV infection than control mice. TgE3L mice were also more susceptible to Leishmania major infection, leading to an increase in parasitemia compared to control mice. The enhanced sensitivity of TgE3L mice to VACV and L. major infections occurred together with alterations in the host immune system, as revealed by decreased T-cell responses to viral antigens in the spleen and lymph nodes and by differences in the levels of specific innate cell populations. These results demonstrate that expression of the E3L gene in transgenic mice partly reverses the resistance of the host to viral and parasitic infections and that these effects are associated with immune alterations.  相似文献   

20.
Immortalization of human B-lymphocytes by Epstein-Barr virus (EBV) is associated with a decreased anti-proliferative response to interferon (IFN). In the present investigation we show that the resistance to the anti-proliferative effect of IFN class I on certain EBV-carrying Burkitt lymphoma cell lines is connected to the presence of the EBNA-2 gene and parts of the EBNA-5 gene of the EBV genome. Transfection of the genomic segment comprising these open reading frames into an IFN-sensitive lymphoma cell line demonstrated that it is sufficient to make cells resistant towards the antiproliferative effect of IFN class I. Expression of the EBNA-2 gene seems to be correlated with the IFN-resistant phenotype. The antiviral function of IFN, as tested by inhibition by vesicular stomatitis virus (VSV) infection, and the IFN-receptor binding are not suppressed. The present results suggest that the neutralization of the anti-proliferative effect of IFN-alpha is involved in the EBV-mediated immortalization of B-cells and that the anti-proliferative action of IFN class I does not necessarily recruit the same mechanism as the antiviral effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号