首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synthesis and EPR investigations of new aminated hypocrellin derivatives   总被引:2,自引:0,他引:2  
Hypocrellins are novel photodynamic agents. A recent advance in the synthesis of hypocrellin congeners results in the production of two amino-substituted hypocrellin B derivatives in high yield via photochemical reaction. Both compounds exhibit similar photodynamic activity as hypocrellin B in terms of type I and type II mechanisms. In anaerobic media, semiquinone anion radicals can be detected by electron paramagnetic resonance (EPR) under irradiation; while superoxide anion radical, hydroxyl radical and singlet oxygen are photoproduced when oxygen was present. The quantum yields of singlet oxygen by these two new compounds are determined to be 0.72 and 0.64, respectively, similar to that of hypocrellin B. The comparison of the photosensitization chemistry of compounds 1 and 2 in liposomes with that in homogeneous solution has also been made. In liposomes, the type II photoprocess was favored and predominant over the type I photoprocess due to the decreased interactions between dye molecules. Both compounds exhibit much stronger red light absorption than the parent hypocrellin and therefore, merit investigation as photosensitizers.  相似文献   

2.
Sulfonamides of halogenated bacteriochlorins bearing Cl or F substituents in the ortho positions of the phenyl rings have adequate properties for photodynamic therapy, including strong absorption in the near-infrared (λ(max) ≈ 750 nm, ε ≈ 10(5) M(-1) cm(-1)), controlled photodecomposition, large cellular uptake, intracellular localization in the endoplasmic reticulum, low cytotoxicity, and high phototoxicity against A549 and S91 cells. The roles of type I and type II photochemical processes are assessed by singlet oxygen luminescence and intracellular hydroxyl radical detection. Phototoxicity of halogenated sulfonamide bacteriochlorins does not correlate with singlet oxygen quantum yields and must be mediated both by electron transfer (superoxide ion, hydroxyl radicals) and by energy transfer (singlet oxygen). The photodynamic efficacy is enhanced when cellular death is induced by both singlet oxygen and hydroxyl radicals.  相似文献   

3.
A. B. Uzdensky 《Biophysics》2016,61(3):461-469
The photodynamic effect, viz., photodamage of stained cells in the presence of oxygen, is used for destruction of tumors and other abnormal cells. The present review considers the biophysical mechanisms of the photodynamic action on cells. The importance of two major mechanisms of photodynamic damage of cells is discussed. The first one is mediated by electron or proton transfer, whereas the second one involves singlet oxygen. Another question that is considered is the importance of oxidation of membrane lipids or proteins for the photodynamic damage of cells. The phototransformation of photosensitizers and their intracellular localization and delivery to cells and tissues that have undergone abnormal changes are discussed. The current data on photosensitizer nanotransporters are presented. The potential sensors for reactive oxygen species in cells are discussed.  相似文献   

4.
Some of the photophysical properties (stationary absorbance and fluorescence, fluorescence decay times and singlet oxygen quantum yields) of pheophorbide a, metal-free, ClAl-, Cu- and Mg-t-butyl-substituted phthalocyanines, metal-free, ClAl- and Cu-t-butyl-substituted naphthalocyanines and of a number of tetraphenylporphyrins (5,10,15,20-tetraphenylporphyrin, 5,10,15,20-tetra(m-hydroxyphenyl)porphyrin, 5,10,15,20-tetra(p-hydroxyphenyl)porphyrin) have been studied in comparison with hematoporphyrin IX in order to select potent photosensitizers for the photodynamic treatment of cancer. The photodynamic activity of these compounds was investigated using Lewis lung carcinoma in mice. As a consequence of the photophysical parameters (relatively short singlet state lifetimes, and high singlet oxygen quantum yields) the photodynamic activities of pheophorbide a, t-butyl-substituted ClAl-phthalocyanine and ClAl-naphthalocyanine were selected for study in greater detail. Under the conditions employed in the present study, pheophorbide a was found to be the most effective sensitizer, as judged from its strong absorption at the excitation wavelength as compared with the hematoporphyrin derivative and greater singlet oxygen quantum yield relative to the phthalocyanines and naphthalocyanines. The photodynamic activity was observed to be strongly dependent on the photophysical parameters of the compounds. The primary mechanism underlying the photodynamic activity of these sensitizers probably consists of energy transfer from the lowest triplet state of the dyes to molecular oxygen, resulting in the formation of singlet oxygen (type II of photosensitization).  相似文献   

5.
Bases, nucleosides, nucleotides, and polynucleotides were exposed to chemically generated singlet oxygen to determine whether the species oxidized paralleled those oxidized in photodynamic reactions. In neutral or basic aqueous solution guanine, guanosine, deoxyguanosine, guanylic acid, deoxyguanylic acid, thymine, and uracil reacted with singlet oxygen. Since these compounds are oxidized in photodynamic processes, this study provides further evidence that singlet oxygen is the active intermediate in the photodynamic oxidation of nucleic acid constituents. Dienophilic attack by singlet oxygen is considered to be a plausible mechanism in these reactions.  相似文献   

6.
This review starts from a brief historical account devoted to the principles of the Bach-Engler peroxidation theory and experiments and ideas which led A. N. Bach to its creation. Then, the discovery of photodynamic action is described, which was shown to result from pigment photosensitized activation of molecular oxygen. The dramatic history of mechanistic studies of oxygen photoactivation is reviewed starting from the Bach-Engler peroxidation theory to the hypothesis of moloxide, discovery of singlet oxygen and free radicals and, then, to modern views on the primary photoactivation processes. The origin of widely used division of photodynamic processes into type I and type II and the relation of these processes to the nature of the primary photochemical reactions of photosensitizers are discussed. New definitions of these reactions are proposed on the basis of the mechanisms of oxygen photoactivation. Photographs of the scientists who greatly contributed to the development of this field of research are presented. Published in Russian in Biokhimiya, 2007, Vol. 72, No. 10, pp. 1311–1329.  相似文献   

7.
The photodynamic properties of a second-generation photodynamic sensitizer, meta-tetra(hydroxyphenyl)chlorin (mTHPC) were studied by dye-sensitized photoinactivation (650 nm) of HT29 human adenocarcinoma cells in culture. The photocytotoxicity of mTHPC in vitro depended on the presence of molecular oxygen. A strong inhibition of the photocytotoxicity of mTHPC was observed upon addition of sodium azide, a known singlet oxygen quencher. Photocytotoxicity was not inhibited by scavengers of superoxide anion radical, hydrogen peroxide and hydroxyl radicals. We suggest that mTHPC photosensitizes cell killing predominantly by type II, singlet oxygen-mediated photodynamic reactions. Illumination of cells preloaded with mTHPC induced peroxidation of membrane lipids. Inhibition of photoperoxidation by alpha-tocopherol (0.1 mM) present during illumination did not result in any decrease in toxicity, suggesting that reactions of lipid peroxidation play only a minor role in the overall photocytotoxic effect of mTHPC.  相似文献   

8.
光敏剂特性影响光动力治疗鲜红斑痣的数学仿真研究   总被引:1,自引:0,他引:1  
目的:通过建立光动力治疗鲜红斑痣中激光、光敏剂、氧的分布及其相互作用关系的数学模型,对表皮、真皮、血管中单线态氧的产生过程进行仿真,了解光敏剂的药代动力学和扩散特性对单线态氧产生的影响,进而了解光敏剂特性在光动力治疗鲜红斑痣中的作用和意义。方法:用’Monte Carlo方法描述光在组织中的分布;用药代动力学描述光敏剂在血管中的变化规律;用Fick定律描述光敏剂和氧在组织中的扩散和分布;用与氧含量有关的二级动力学描述光敏剂的漂白;用Lambert—Beer定律和单线态氧的量子产率来计算各层组织中单线态氧的产生。结果:光敏剂药代动力学的变化,使注射光敏剂后开始照光的时间对各层组织中单线态氧产量有明显的影响。光敏剂扩散特性的改变,对真皮和表皮中单线态氧的产生有较大影响,对血管中单线态氧的产生没有影响。结论:光敏剂的特性对光动力治疗鲜红斑痣有明显的影响,数学仿真能较全面地反应这种作用的特点和意义。  相似文献   

9.
The generation, occurrence and action of singlet oxygen in plant tissue is reviewed. Particular emphasis is placed upon its formation from triplet sensitizers and its reactivity with molecules of biological importance such as lipids and amino acids. The possibility of singlet oxygen generation in chloroplasts is discussed in relation to potential quenching systems such as carotenoid pigments, ascorbate and α-tocopherol. The problems associated with carotenoid diminution and some stress and herbicide treatment conditions are related to the possibility of damage by singlet oxygen. The action of a number of secondary plant substances, including quinones, furanocoumarins, polyacetylenes and thiophenes, as plant defence agents is discussed in relation to the photodynamic generation of singlet oxygen.  相似文献   

10.
"Comet assay" showed light activated (3.15 Jcm-2 over 30 min) phenothiazinium based photosensitisers (PhBPs) to induce photo-damage of Staphylococcus aureus DNA, as indicated by DNA "tails" between 80 and 120 microm. In general, PhBPs exhibited significant singlet oxygen yields (Phi(DeltaPhBP)>0.7), suggesting the use of type II mechanisms of photo-oxidation. However, the photodynamic action of PhBPs on DNA showed generally insignificant production of 7,8-dihydro-8-oxo-2'-deoxyguanosine, normally a major product of type II DNA photo-oxidation. These combined results show DNA to be a major site of action of PhBPs and suggest that this action may involve type II attack on a nucleoside(s) other than guanosine.  相似文献   

11.
Carbon nanodots can function as photosensitizers that have the ability to generate reactive oxygen species such as singlet oxygen, hydroxy (OH) radicals, and superoxide ions. However, most of these can only be generated upon ultraviolet light excitation. Additionally, the mechanism of reactive oxygen species generation by carbon nanodots remains unclear. The development of carbon nanodots that can photosensitize under visible light irradiation is desirable for applications such as photodynamic therapy and pollutant decomposition under visible light. Here, we report novel carbon nanodot-based photosensitizers that generate reactive oxygen species under visible light; they were synthesized using a solvothermal method with two solvents (formamide and water) and amidol as the carbon source. Carbon nanodots from the solvothermal synthesis in formamide showed blue fluorescence, while those obtained in water showed green fluorescence. The photo-excited blue-fluorescent carbon nanodots produced OH radicals, superoxide ions, and singlet oxygen, and therefore could function as both type I and type II photosensitizers. In addition, photo-excited green-fluorescent carbon nanodots generated only singlet oxygen, therefore functioning as type II photosensitizers. It is proposed that the two photosensitizers have different origins of reactive oxygen species generation: the enrichment of graphitic N for blue-fluorescent carbon nanodots and molecular fluorophores for green-fluorescent carbon nanodots.  相似文献   

12.
Photodynamic therapy is an alternative method for cancer treatment in which a photosensitizer exposed to a light source of suitable wavelength is excited and can subsequently react through free radical mechanisms. Recently, oxygen free radical-mediated changes in gene expression have been established. The present study shows the effect of photoactivated hypericin on the expression of the human epidermal growth factor receptor 2 (HER2) oncogene at both the mRNA and the protein level in SKBR-3 and MCF-7 breast adenocarcinoma cell lines. The photodynamic therapy-induced decrease in mRNA expression was reversed by the singlet oxygen scavenger trolox, which supports a role for singlet oxygen. In addition, prevention of the generation of reactive oxygen species by pretreatment with trolox effectively blocked the antiproliferation activity of photoactivated hypericin. These results may have important implications at least for recurrent breast cancer with HER2 expression alone or in combination with conventional therapies.  相似文献   

13.
We report a systematic study of the photophysical parameters relevant to photodynamic therapy (PDT) by a new type of sensitizers, conjugated porphyrin oligomers. Due to the strong nonlinear properties of oligomers containing 2, 4 and 8 porphyrin units, these molecules are attractive candidates for PDT via multiphoton excitation. The triplet state energy levels for all molecules have been determined by the triplet quenching method, phosphorescence measurements and DFT calculations. We find that the triplet energies of all the oligomers are sufficient to generate singlet oxygen, >94 kJ mol(-1). However, low singlet oxygen quantum yields are observed for the tetramer and the octamer, as compared to the conjugated dimer and monomeric porphyrin, reflecting the decrease in triplet yield. Thus the conjugated porphyrin dimer is the most promising core structure for PDT applications via multiphoton excitation.  相似文献   

14.
The motility of green and dark bleachedEuglena gracilis was studied under artificial and solar UV-B radiation. The percentage of motile cells in the population was drastically impaired after exposure to unfiltered sunlight for only a few hours. Dark bleached cells were even more affected than green organisms. The effect is caused mainly by the solar UV-B component, since filtering the sunlight by either a layer of ozone or a UV-B-absorbing filter substantially increased the survival rate. Addition ofp-quinone, a scavenger of free radicals produced in a type I photodynamic reaction, did not relieve the UV-B effects, but was cytotoxic at higher concentrations. Likewise, 1,4-diazobicyclo[2,2,2]octane and imidazole, which quench singlet oxygen (1O2) generated in a type II photodynamic reaction, did not prolong the survival in UV-B irradiation. D2O, which, in contrast, prolongs the lifetime of1O2, is tolerated by the cells but does not aggravate the UV-B inhibition. Thus, photodynamic processes of both type I and II can be ruled out as possible mechanisms of UV-B inhibition of motility inEuglena gracilis.  相似文献   

15.
Onoue S  Seto Y  Ochi M  Inoue R  Ito H  Hatano T  Yamada S 《Phytochemistry》2011,72(14-15):1814-1820
Extracts from St. John's Wort (SJW: Hypericum perforatum) have been used for the treatment of mild-to-moderate depression. In spite of the high therapeutic potential, orally administered SJW sometimes causes phototoxic skin responses. As such, the present study aimed to clarify the phototoxic mechanisms and to identify the major phototoxins of SJW extract. Photobiochemical properties of SJW extract and 19 known constituents were characterized with focus on generation of reactive oxygen species (ROS), lipid peroxidation, and DNA photocleavage, which are indicative of photosensitive, photoirritant, and photogenotoxic potentials, respectively. ROS assay revealed the photoreactivity of SJW extract and some SJW ingredients as evidenced by type I and/or II photochemical reactions under light exposure. Not all the ROS-generating constituents caused photosensitized peroxidation of linoleic acid and photodynamic cleavage of plasmid DNA, and only hypericin, pseudohypericin, and hyperforin exhibited in vitro photoirritant potential. Concomitant UV exposure of quercitrin, an SJW component with potent UV/Vis absorption, with hyperforin resulted in significant attenuation of photodynamic generation of singlet oxygen from hyperforin, but not with hypericin. In conclusion, our results suggested that hypericin, pseudohypericin, and hyperforin might be responsible for the in vitro phototoxic effects of SJW extract.  相似文献   

16.
A large series of compounds was screened for ability to protect trypsin from eosin-sensitized photodynamic inactivation. Eosin-sensitized photooxidation reactions of this type typically proceed via the triplet state of the dye and often involve singlet state oxygen as the oxidizing entity. In order to determine the mechanisms by which trypsin is protected from photoinactivation, a number of good protective agents (inhibitors) and some non-protective agents were selected for more detailed flash photolysis studies. Good inhibitors such as p-phenylenediamine, n-propyl gallate, serotonin creatinine sulfate and p-toluenediamine competed efficiently with oxygen and with trypsin for reaction with the triplet state of eosin. The inhibitors were shown to quench triplet eosin to the ground state and/or reduce triplet eosin to form the semireduced eosin radical and an oxidized form of the inhibitor. In the latter case, oxidized inhibitor could react by a reverse electron transfer reaction with the semi-reduced eosin radical to regenerate ground state eosin and the inhibitor. The good inhibitors also competed effectively with trypsin for oxidation by semioxidized eosin, thus giving another possible protective mechanism. Non-inhibitors such as halogen ions and the paramagnetic ions Co++, Cu++ and Mn++ reacted only slowly with triplet and with seimioxidized eosin. The primary pathway for the eosin-sensitized photooxidation of trypsin at pH 8.0 involved singlet oxygen, although semioxidized eosin may also participate.  相似文献   

17.
15-Deacetyl-13-glycine-substituted hypocrellin B (GDHB) is a new type of hypocrellin derivative with an enhanced red absorption longer than 600 nm and water solubility. Visible light (> 470 nm) irradiation of an anaerobic aqueous solution of GDHB, the formation of GDHB*- was detected by an ESR method in the absence or presence of electron donor. When exposed to oxygen, superoxide anion radical and singlet oxygen were formed. The superoxide anion radical was generated by GDHB*- via electron transfer to oxygen and this process was significantly enhanced by the presence of electron donors. Singlet oxygen ((1)O2) was also formed in the photosensitization of GDHB in aerobic solution and 1,4-diazabicyclo [2,2,2] octane (DABCO), sodium azide (NaN3) and histidine inhibited the generation of (1)O2. A 9,10-diphenyl antracene (DPA)-bleaching method was used to determine the quantum yield of (1)O2 generated from GDHB photosensitization. The (1)O2 quantum yield was estimated to be 0.65. With the depletion of oxygen, the accumulation of GDHB*- would replace that of (1)O2. Evidence accumulated that the photodynamic action of GDHB may proceed via both type I and type II mechanisms and that a type II mechanism will be transformed into a type I mechanism as oxygen gets depleted.  相似文献   

18.
Phycobiliproteins (PBPs) are a type of promising sensitizers for photodynamic therapy (PDT). Upon irradiation (lambda>500nm) of an oxygen-saturated aqueous solution of phycobiliproteins, particularly, C-phycocyanin (C-PC), allophycocyanin (APC) or R-phycoerythrin (R-PE), the formation of singlet oxygen (1O2) was detected by using imidazole in the presence of p-nitrosodimethylaniline (RNO). The bleaching of RNO caused by the presence of imidazole in our system showed typical concentration dependence with a maximum at about 8mM imidazole, which is in agreement with the formation of 1O2. In addition, the generation of 1O2 was verified further in the presence of D2O and specific singlet oxygen quencher 1,4-diazabicyclo [2,2,2] octane (DABCO) and sodium azide (NaN3). Our experimental results indicated that APC possesses high ability to generate reactive oxygen species and the relative quantum yields of photogeneration of 1O2 by PBPs are as follows: APC > C-PC > R-PE.  相似文献   

19.
Carotenoids, natural pigments widely distributed in algae and plants, have a conjugated double bond system. Their excitation energies are correlated with conjugation length. We hypothesized that carotenoids whose energy states are above the singlet excited state of oxygen (singlet oxygen) would possess photosensitizing properties. Here, we demonstrated that human skin melanoma (A375) cells are damaged through the photo-excitation of several carotenoids (neoxanthin, fucoxanthin and siphonaxanthin). In contrast, photo-excitation of carotenoids that possess energy states below that of singlet oxygen, such as β-carotene, lutein, loroxanthin and violaxanthin, did not enhance cell death. Production of reactive oxygen species (ROS) by photo-excited fucoxanthin or neoxanthin was confirmed using a reporter assay for ROS production with HeLa Hyper cells, which express a fluorescent indicator protein for intracellular ROS. Fucoxanthin and neoxanthin also showed high cellular penetration and retention. Electron spin resonance spectra using 2,2,6,6-tetramethil-4-piperidone as a singlet oxygen trapping agent demonstrated that singlet oxygen was produced via energy transfer from photo-excited fucoxanthin to oxygen molecules. These results suggest that carotenoids such as fucoxanthin, which are capable of singlet oxygen production through photo-excitation and show good penetration and retention in target cells, are useful as photosensitizers in photodynamic therapy for skin disease.  相似文献   

20.
In recent years, choloroaluminum phthalocyanine tetrasulfonate (A1PCTS) has been shown to be a promising photosensitizer for the photodynamic therapy (PDT) of cancer. Although its mechanism of photodynamic action is not well defined, A1PCTS is going to be under clinical trials of PDT. In this study, in vitro addition of A1PCTS to a suspension of rat epidermal microsomes followed by irradiation with red light (approximately 675 nm) resulted in significant destruction of cytochrome P-450 and associated monooxygenase activities. The photodestructive effect was dependent on both the dose of A1PCTS and the duration of light exposure. Studies using various quenchers of reactive oxygen species showed that only scavengers of singlet oxygen such as histidine, 2,5-dimethylfuran, beta-carotene and sodium azide afforded substantial protection against photodestruction. Our data indicate the direct involvement of singlet oxygen in the A1PCTS-mediated photodestructive process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号