首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microglia play various important roles in the CNS via the synthesis of cytokines. The ATP‐evoked production of interleukin‐6 (IL‐6) and its intracellular signals were examined using a mouse microglial cell line, MG‐5. ATP, but not its metabolites, produced IL‐6 in a concentration‐dependent manner. Although ATP activated two mitogen‐activated protein kinases, i.e. p38 and extracellular signal‐regulated protein kinase, only p38 was involved in the IL‐6 induction. However, the activation of p38 was not sufficient for the IL‐6 induction because 2′‐ and 3′‐O‐(4‐benzoylbenzoyl) ATP, an agonist to P2X7 receptors, failed to produce IL‐6 despite the fact that it activated p38. Unlike in other cytokines in microglial cells, P2Y rather than P2X7 receptors seem to have a major role in the IL‐6 production by the cells. The ATP‐evoked IL‐6 production was attenuated by Gö6976, an inhibitor of Ca2+‐dependent protein kinase C (PKC). The P2Y receptor responsible for these responses was insensitive to pertussis toxin (PTX) and was linked to phospholipase C. Taken together, ATP acting on PTX‐insensitive P2Y receptors activates p38 and Ca2+‐dependent PKC, thereby resulting in the mRNA expression and release of IL‐6 in MG‐5. This is a novel pathway for the induction of cytokines in microglia.  相似文献   

2.
Autophosphorylation of the protein kinase dependent on double-stranded RNA   总被引:45,自引:0,他引:45  
The double-stranded RNA (dsRNA)-dependent protein kinase (p68 kinase) from interferon-treated human cell is a Mr 68,000 protein induced by interferon. By the use of a specific monoclonal antibody, we have been able to study the two distinct protein kinase activities characteristic of purified p68 kinase. The first activity is functional for endogenous phosphorylation of the enzyme (p68 kinase), whereas the second one is responsible for the phosphorylation of exogenous substrates such as eukaryotic initiation factor 2 and histone. When activated by dsRNA in the presence of Mn2+ and ATP, p68 kinase is autophosphorylated and is then capable of catalyzing phosphorylation of histone in the absence of dsRNA. Whereas binding of 8-azido-[alpha-32P] ATP (8-N3ATP) to p68 kinase is dependent on both dsRNA and Mn2+, phosphorylated p68 kinase binds 8-N3ATP independent of dsRNA. This is consistent with a dsRNA requirement for the autophosphorylation of p68 kinase, but not for the phosphorylation of exogenous substrates. p68 kinase is mainly associated with the ribosomal pellet. It could be recovered efficiently by a buffer containing both high salt and a nonionic detergent. Synthesis of p68 kinase is induced several-fold by interferon in different types of human cells. Partial proteolysis of [35S]methionine and an 8-N3ATP-labeled p68 kinase preparation by Staphylococcus aureus V8 protease indicated the presence of a major Mr 48,000 polypeptide (p48) with a specific ATP-binding site. p48 probably contains the catalytic unit of p68 kinase and is analogous to a similar protein which we have previously described as a distinct protein present in a complexed form with p68 kinase. We now believe that the presence of p48 in previously purified kinase preparations was due to partial degradation of p68 kinase.  相似文献   

3.
Double-stranded RNA (dsRNA) is produced during replicative viral infection or genotoxic stress. Thus knowledge of the cellular response to dsRNA is necessary to understand the effects of DNA damage or viral infection in biliary epithelia. We assessed the effect of dsRNA on biliary epithelial cell proliferation and apoptosis and the role of the stress-activated p38 MAPK signaling pathway in these responses. dsRNA did not induce apoptosis or proliferation in Mz-ChA-1 human malignant cholangiocytes, but decreased cytotoxicity induced by camptothecin or tumor necrosis factor-related apoptosis inducing ligand and decreased activity of caspases 3, 8, and 9. Furthermore, dsRNA increased p38 MAPK and JNK kinase active site phosphorylation but had no effect on either MAPK kinase (MEK)1/2 or protein kinase R phosphorylation. Inhibition of p38 MAPK with SB-203580 increased basal caspase activity. Thus dsRNA stimulates a p38 MAPK-dependent cell-survival pathway in biliary epithelial cells that may modulate the response of the biliary epithelia to dsRNA produced during genotoxic injury or virus infection.  相似文献   

4.
5.
A heat-stable, low-molecular-weight inhibitor of protein synthesis is formed on incubation of haemin-supplemented rabbit reticulocyte lysates with ATP and double-stranded RNA (dsRNA). It inhibits the translation of both added encephalomyocarditis virus RNA (EMC RNA) and endogeneous messenger RNA in reticulocyte lysates and mouse L-cell extracts. The enzyme responsible for the synthesis of the inhibitor binds to dsRNA and can be purified on a column of poly(I).poly (C) bound to an inert support. The highly purified enzyme in its stable column-bound state can be conveniently employed to synthesise the inhibitor and to label it with [3H]ATP, or [alpha-32P]ATP or [gamma-32P]ATP as substrate. The radioactive inhibitor synthesised in this way with material from rabbit reticulocyte lysates shows the same spectrum of resistance and sensitivity to alkali and a variety of enzymes as corresponding material similarly synthesised with extracts from interferon-treated mouse L-cells. The inhibitors from the two systems have comparable absorbance spectra, are chromatographically and electrophoretically indistinguishable and are apparently identical in specific activity in the inhibition of protein synthesis in the cell-free system. The inhibitor is also formed on inhibition of protein synthesis by dsRNA in reticulocyte lysates. On comparison of the spectrum of polypeptide products synthesised in response to EMC RNA in the reticulocyte lysate, the effects of the inhibitor or dsRNA were similar: a distinctly different effect was obtained with the haemin-controlled repressor, a known inhibitor of initiation. The significance of these results with respect to the mechanism of action of the inhibitor and its role in the inhibition observed in response to dsRNA is discussed.  相似文献   

6.
Toll-like receptors are a family of pattern-recognition receptors that contribute to the innate immune response. Toll-like receptor 3 (TLR3) signals in response to foreign, endogenous and synthetic ligands including viral dsRNA, bacterial RNA, mitochondrial RNA, endogenous necrotic cell mRNA and the synthetic dsRNA analog, poly(I:C). We have generated a monoclonal antibody (mAb CNTO2424) that recognizes the extracellular domain (ECD) of human TLR3 in a conformation-dependent manner. CNTO2424 down-regulates poly(I:C)-induced production of IL-6, IL-8, MCP-1, RANTES, and IP-10 in human lung epithelial cells. In addition, mAb CNTO2424 was able to interfere with the known TLR3-dependent signaling pathways, namely NF-κB, IRF-3/ISRE, and p38 MAPK. The generation of this neutralizing anti-TLR3 mAb provides a unique tool to better understand TLR3 signaling and potential cross-talk between TLR3 and other molecules.  相似文献   

7.
In response to virus infection or treatment with dsRNA, macrophages express the inducible form of cyclooxygenase-2 (COX-2) and produce proinflammatory prostaglandins. Recently, we have shown that NF-kappaB is required for encephalomyocarditis virus (EMCV)- and dsRNA-stimulated COX-2 expression in mouse macrophages. The dsRNA-dependent protein kinase R is not required for EMCV-stimulated COX-2 expression, suggesting the presence of protein kinase R-independent pathways in the regulation of this antiviral gene. In this study, the role of MAPK in the regulation of macrophage expression of cyclooxygenase-2 (COX)-2 in response to EMCV infection was examined. Treatment of mouse macrophages or RAW-264.7 cells with dsRNA or infection with EMCV stimulates the rapid activation of the MAPKs p38, JNK, and ERK. Inhibition of p38 and JNK activity results in attenuation while ERK inhibition does not modulate dsRNA- and EMCV-induced COX-2 expression and PGE2 production by macrophages. JNK and p38 appear to selectively regulate COX-2 expression, as inhibition of either kinase fails to prevent dsRNA- or EMCV-stimulated inducible NO synthase expression by macrophages. Using macrophages isolated from TLR3-deficient mice, we show that p38 and JNK activation and COX-2 expression in response to EMCV or poly(IC) does not require the presence the dsRNA receptor TLR3. These findings support a role for p38 and JNK in the selective regulation of COX-2 expression by macrophages in response to virus infection.  相似文献   

8.
p68 RNA helicase, a nuclear RNA helicase, was identified 2 decades ago. The protein plays very important roles in cell development and organ maturation. However, the biological functions and enzymology of p68 RNA helicase are not well characterized. We report the expression and purification of recombinant p68 RNA helicase in a bacterial system. The recombinant p68 is an ATP-dependent RNA helicase. ATPase assays demonstrated that double-stranded RNA (dsRNA) is much more effective than single-stranded RNA in stimulating ATP hydrolysis by the recombinant protein. Consistently, RNA-binding assays showed that p68 RNA helicase binds single-stranded RNA weakly in an ATP-dependent manner. On the other hand, the recombinant protein has very high affinity for dsRNA. Binding of the protein to dsRNA is ATP-independent. The data indicate that p68 may directly target dsRNA as its natural substrate. Interestingly, the recombinant p68 RNA helicase unwinds dsRNA in both 3' --> 5' and 5' --> 3' directions. This is the second example of a Asp-Glu-Ala-Asp (DEAD) box RNA helicase that unwinds RNA duplexes in a bi-directional manner.  相似文献   

9.
10.
Adenosine 5'-triphosphate (ATP) has been implicated in the recruitment of professional phagocytes (neutrophils and macrophages) to sites of infection and tissue injury in two distinct ways. First, ATP itself is thought to be a chemotactic "find me" signal released by dying cells, and second, autocrine ATP signaling is implicated as an amplifier mechanism for chemotactic navigation to end-target chemoattractants, such as complement C5a. Here we show using real-time chemotaxis assays that mouse peritoneal macrophages do not directionally migrate to stable analogs of ATP (adenosine-5'-(γ-thio)-triphosphate (ATPγS)) or its hydrolysis product ADP (adenosine-5'-(β-thio)-diphosphate (ADPβS)). HPLC revealed that these synthetic P2Y(2) (ATPγS) and P2Y(12) (ADPβS) receptor ligands were in fact slowly degraded. We also found that ATPγS, but not ADPβS, promoted chemokinesis (increased random migration). Furthermore, we found that photorelease of ATP or ADP induced lamellipodial membrane extensions. At the cell signaling level, C5a, but not ATPγS, activated Akt, whereas both ligands induced p38 MAPK activation. p38 MAPK and Akt activation are strongly implicated in neutrophil chemotaxis. However, we found that inhibitors of phosphatidylinositol 3-kinase (PI3K; upstream of Akt) and p38 MAPK (or conditional deletion of p38α MAPK) did not impair macrophage chemotactic efficiency or migration velocity. Our results suggest that PI3K and p38 MAPK are redundant for macrophage chemotaxis and that purinergic P2Y(2) and P2Y(12) receptor ligands are not chemotactic. We propose that ATP signaling is strictly autocrine or paracrine and that ATP and ADP may act as short-range "touch me" (rather than long-range find me) signals to promote phagocytic clearance via cell spreading.  相似文献   

11.
A role for alpha/beta interferon (IFN-alpha/beta) in the IFN-gamma antiviral response has long been suggested. Accordingly, possible roles for autocrine or double-stranded-RNA (dsRNA)-induced IFN-alpha/beta in the IFN-gamma response were investigated. Use was made of wild-type and a variety of mutant human fibrosarcoma cell lines, including mutant U5A cells, which lack a functional IFN-alpha/beta receptor and hence an IFN-alpha/beta response. IFN-gamma did not induce detectable levels of IFN-alpha/beta in any of the cell lines, nor was the IFN-gamma response per se dependent on autocrine IFN-alpha/beta. On the other hand, a number of responses to dsRNA [poly(I). poly(C)] and encephalomyocarditis virus were greatly enhanced by IFN-gamma pretreatment (priming) of wild-type cells or of mutant cells lacking an IFN-alpha/beta response; these include the primary induction of dsRNA-inducible mRNAs, including IFN-beta mRNA, and, to a lesser extent, the dsRNA-mediated activation of the p38 mitogen-activated protein (MAP) kinase(s). IFN-gamma priming of mRNA induction by dsRNA is dependent on JAK1 and shows biphasic kinetics, with an initial rapid (<30-min) response being followed by a more substantial effect on overnight incubation. The IFN-gamma-primed dsRNA responses appear to be subject to modulation through the p38, phosphatidylinositol 3-kinase, and ERK1/ERK2 MAP kinase pathways. It can be concluded that despite efficient priming of IFN-beta production, the IFN-alpha/beta pathways play no significant role in the primary IFN-gamma antiviral response in these cell-virus systems. The observed IFN-gamma priming of dsRNA responses, on the other hand, will likely play a significant role in combating virus infection in vivo.  相似文献   

12.
The double-stranded RNA (dsRNA)-activated protein kinase R (PKR) has been invoked in different signaling pathways. In cells pre-exposed to the PKR inhibitor 2-aminopurine or in PKR-null cells, the activation of p38 mitogen-activated protein kinase (MAPK) following dsRNA stimulation is attenuated. We found that the p38 MAPK activator MKK6, but not its close relatives MKK3 or MKK4, exhibited an increased affinity for PKR following the exposure of cells to poly(rI:rC), a dsRNA analog. In vitro kinase assays revealed that MKK6 was efficiently phosphorylated by PKR, and this could be inhibited by 2-aminopurine. Expression of kinase-inactive PKR (K296R) in cells inhibited the poly(IC)-induced phosphorylation of MKK3/6 detected by phosphospecific antiserum but did not affect the poly(IC)-induced gel migration retardation of MKK3. This suggests that poly(IC)-mediated in vivo activation of MKK6, but not MKK3, is through PKR. Consistent with this observation, PKR was capable of activating MKK6 as assessed in a coupled kinase assay containing the components of the p38 MAPK pathway. Our results indicate that the interaction of MKK6 and PKR provides a mechanism for regulating p38 MAPK activation in response to dsRNA stimulation.  相似文献   

13.
Extracellular ATP is a pro-inflammatory mediator involved in the release of prostaglandin from articular chondrocytes, but little is known about its effects on intracellular signaling. ATP triggered the rapid release of prostaglandin E(2) (PGE(2)) by acting on P2Y(2) receptors in rabbit articular chondrocytes. We have explored the signaling events involved in this synthesis. ATP significantly increased arachidonic acid production, which involved the activation of the 85-kDa cytosolic phospholipase A(2) (cPLA(2)) but not a secreted form of PLA(2), as demonstrated by various PLA(2) inhibitors and translocation experiments. We also showed that ATP induced the phosphorylation of p38 and ERK1/2 mitogen-activated-protein kinases (MAPKs). Both PD98059, an inhibitor of the ERK pathway, and SB203580, an inhibitor of p38 MAPK, completely inhibited the ATP-induced release of PGE(2). Finally, dominant-negative plasmids encoding p38 and ERK transfected alone into the cells impaired the ATP-induced release of PGE(2) to about the same extent as both plasmids transfected together. These results suggest that PGE(2) production induced by ATP requires the activation of both ERK1/2 and p38 MAPKs. Thus, ATP acts via P2Y(2)-purine receptors to recruit cPLA(2) by activating both ERK1/2 and p38 MAPKs and stimulates the release of PGE(2) from articular chondrocytes.  相似文献   

14.
Muscle contractions strongly activate p38 MAP kinases, but the precise contraction‐associated sarcoplasmic event(s) (e.g., force production, energetic demands, and/or calcium cycling) that activate these kinases are still unclear. We tested the hypothesis that during contraction the phosphorylation of p38 isoforms is sensitive to the increase in ATP demand relative to ATP supply. Energetic demands were inhibited using N‐benzyl‐p‐toluene sulphonamide (BTS, type II actomyosin) and cyclopiazonic acid (CPA, SERCA). Extensor digitorum longus muscles from Swiss Webster mice were incubated in Ringer's solution (37°C) with or without inhibitors and then stimulated at 10 Hz for 15 min. Muscles were immediately freeze‐clamped for metabolite and Western blot analysis. BTS and BTS + CPA treatment decreased force production by 85%, as measured by the tension time integral, while CPA alone potentiated force by 310%. In control muscles, contractions resulted in a 73% loss of ATP content and a concomitant sevenfold increase in IMP content, a measure of sustained energetic imbalance. BTS or CPA treatment lessened the loss of ATP, but BTS + CPA treatment completely eliminated the energetic imbalance since ATP and IMP levels were nearly equal to those of non‐stimulated muscles. The independent inhibition of cytosolic ATPase activities had no effect on contraction‐induced p38 MAPK phosphorylation, but combined treatment prevented the increase in phosphorylation of the γ isoform while the α/β isoforms unaffected. These observations suggest that an energetic signal may trigger phosphorylation of the p38γ isoform and also may explain how contractions differentially activate signaling pathways. J. Cell. Biochem. 114: 1445–1455, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

15.
Inhibition of p38alpha MAP kinase is a potential approach for the treatment of inflammatory disorders. MKK6-dependent phosphorylation on the activation loop of p38alpha increases its catalytic activity and affinity for ATP. An inhibitor, BIRB796, binds at a site used by the purine moiety of ATP and extends into a "selectivity pocket", which is not used by ATP. It displaces the Asp168-Phe169-Gly170 motif at the start of the activation loop, promoting a "DFG-out" conformation. Some other inhibitors bind only in the purine site, with p38alpha remaining in a "DFG-in" conformation. We now demonstrate that selectivity pocket compounds prevent MKK6-dependent activation of p38alpha in addition to inhibiting catalysis by activated p38alpha. Inhibitors using only the purine site do not prevent MKK6-dependent activation. We present kinetic analyses of seven inhibitors, whose crystal structures as complexes with p38alpha have been determined. This work includes four new crystal structures and a novel assay to measure K(d) for nonactivated p38alpha. Selectivity pocket compounds associate with p38alpha over 30-fold more slowly than purine site compounds, apparently due to low abundance of the DFG-out conformation. At concentrations that inhibit cellular production of an inflammatory cytokine, TNFalpha, selectivity pocket compounds decrease levels of phosphorylated p38alpha and beta. Stabilization of a DFG-out conformation appears to interfere with recognition of p38alpha as a substrate by MKK6. ATP competes less effectively for prevention of activation than for inhibition of catalysis. By binding to a different conformation of the enzyme, compounds that prevent activation offer an alternative approach to modulation of p38alpha.  相似文献   

16.
Li Y  Limmon GV  Imani F  Teng C 《Biochimie》2009,91(1):58-67
Lactoferrin (LF) is a multifunctional protein. While its functions and mechanism of actions are actively being investigated, the cellular signals that regulate LF expression have not been as explored. We have previously demonstrated that LF is upregulated by estrogen in the reproductive system. In this study, we show that the expression of LF was stimulated by bacterial lipopolysaccharide (LPS) and double-stranded RNA (dsRNA) in normal mouse mammalian HC-11 cells. When cells were exposed to either LPS or dsRNA, the mRNA and protein of LF were increased in a dose- and time-dependent manner, yet the kinetics of LF induction by dsRNA or LPS were different. The LPS and dsRNA-induced LF was mainly released into the culture medium where it blocked TNF-alpha production in exposed cells. We explored the mechanisms of LF induction by LPS and dsRNA using specific inhibitors and found that the induction could be attenuated by inhibitors to PKC, NF-kappaB, p38 and JNK, but not by an inhibitor to PKA. Interestingly, ERK inhibitor was effective against dsRNA but not against LPS induction of LF. These data suggest that LF was induced by LPS and dsRNA through PKC, NF-kappaB and MAPK pathways which in turn play an inhibitory role in the continuation of innate inflammation.  相似文献   

17.
Viral double-stranded RNA (dsRNA) is recognised by pathogen recognition receptors such as Toll-Like Receptor 3 (TLR3) and retinoic acid inducible gene-I (RIG-I), and results in cytokine and interferon production. Fas, a well characterised death receptor, has recently been shown to play a role in the inflammatory response. In this study we investigated the role of Fas in the anti-viral immune response. Stimulation of Fas on macrophages did not induce significant cytokine production. However, activation of Fas modified the response of macrophages to the viral dsRNA analogue poly I:C. In particular, poly I:C-induced IP-10 production was significantly enhanced. A similar augmentation of IP-10 by Fas was observed following stimulation with both poly A:U and Sendai virus. Fas activation suppressed poly I:C-induced phosphorylation of the MAP kinases p38 and JNK, while overexpression of the Fas adaptor protein, Fas-associated protein with death domain (FADD), activated AP-1 and inhibited poly I:C-induced IP-10 production. Consistent with an inhibitory role for AP-1 in IP-10 production, mutation of the AP-1 binding site on the IP-10 promoter resulted in augmented poly I:C-induced IP-10. These results demonstrate that engagement of the Fas receptor plays a role in modifying the innate immune response to viral RNA.  相似文献   

18.
Primary rat microglia stimulated with either ATP or 2'- and 3'-O-(4-benzoylbenzoyl)-ATP (BzATP) release copious amounts of superoxide (O(2)(-)*). ATP and BzATP stimulate O(2)(-)* production through purinergic receptors, primarily the P2X(7) receptor. O(2)(-)* is produced through the activation of the NADPH oxidase. Although both p42/44 MAPK and p38 MAPK were activated rapidly in cells stimulated with BzATP, only pharmacological inhibition of p38 MAPK attenuated O(2)(-)* production. Furthermore, an inhibitor of phosphatidylinositol 3-kinase attenuated O(2)(-)* production to a greater extent than an inhibitor of p38 MAPK. Both ATP and BzATP stimulated microglia-induced cortical cell death indicating this pathway may contribute to neurodegeneration. Consistent with this hypothesis, P2X(7) receptor was specifically up-regulated around beta-amyloid plaques in a mouse model of Alzheimer's disease (Tg2576).  相似文献   

19.
In Drosophila, Dicer‐1 produces microRNAs (miRNAs) from pre‐miRNAs, whereas Dicer‐2 generates small interfering RNAs from long double‐stranded RNA (dsRNA), a process that requires ATP hydrolysis. We previously showed that inorganic phosphate inhibits Dicer‐2 cleavage of pre‐miRNAs, but not long dsRNAs. Here, we report that phosphate‐dependent substrate discrimination by Dicer‐2 reflects dsRNA substrate length. Efficient processing by Dicer‐2 of short dsRNA requires a 5′ terminal phosphate and a two‐nucleotide, 3′ overhang, but does not require ATP. Phosphate inhibits cleavage of such short substrates. In contrast, cleavage of longer dsRNA requires ATP but no specific end structure: phosphate does not inhibit cleavage of these substrates. Mutation of a pair of conserved arginine residues in the Dicer‐2 PAZ domain blocked cleavage of short, but not long, dsRNA. We propose that inorganic phosphate occupies a PAZ domain pocket required to bind the 5′ terminal phosphate of short substrates, blocking their use and restricting pre‐miRNA processing in flies to Dicer‐1. Our study helps explain how a small molecule can alter the substrate specificity of a nucleic acid processing enzyme.  相似文献   

20.
The initial step in an immune response toward a viral infection is the induction of inflammatory cytokines. This innate immune response is mediated by expression of a variety of cytokines exemplified by TNF-alpha and IL-1beta. A key signal for the recognition of intracellular viral infections is the presence of dsRNA. Viral infections and dsRNA treatment can activate several signaling pathways including the protein kinase R pathway, mitogen-activated protein kinase (MAPK) pathways, and NF-kappaB, which are important in the expression of inflammatory cytokines. We previously reported that activation of protein kinase R was required for dsRNA induction of TNF-alpha, but not for IL-1beta. In this study, we report that activation of the p38 MAPK pathway by respiratory viral infections is necessary for induction of inflammatory cytokines in human bronchial epithelial cells. Inhibition of p38 MAPK by two different pharmacological inhibitors showed that expression of both TNF-alpha and IL-1beta required activation of this signaling pathway. Interestingly, inhibition of NF-kappaB did not significantly reduce viral induction of either cytokine. Our data show that, during the initial infections of epithelial cells with respiratory viruses, activation of the p38 MAPK pathway is associated with induction of inflammation, and NF-kappaB activation may be less important than previously suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号