首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pak4 is a member of the group B family of Pak serine/threonine kinases, originally identified as an effector protein for the Rho GTPase Cdc42. Pak4 knockout mice are embryonic lethal and do not survive past embryonic day 11.5. Previous work on Pak4 knockout mice has focused on studying the phenotype of the embryo. Abnormalities in the extraembryonic tissue, however, are common causes of early embryonic death in knockout mice. Extraembryonic tissue associated with the Pak4-null embryos was therefore examined. Abnormalities in both yolk sacs and placentas resulted when Pak4 was deleted. These included a lack of vasculature throughout the extraembryonic tissue, as well as an abnormally formed labyrinthine layer of the placenta. Interestingly, epiblast-specific deletion of Pak4 using a conditional knockout system, did not rescue the embryonic lethality. In fact, it did not even rescue the extraembryonic tissue defects. Our results suggest that the extraembryonic tissue abnormalities are secondary to defects that occur in response to epiblast abnormalities. More detailed analysis suggests that abnormalities in vasculature throughout the extraembryonic tissue and the epiblast may contribute to the death of the Pak4-null embryos.  相似文献   

2.
During embryonic development tissues remain malleable to participate in morphogenetic movements but on completion of morphogenesis they must acquire the toughness essential for independent adult life. Desmosomes are cell-cell junctions that maintain tissue integrity especially where resistance to mechanical stress is required. Desmosomes in adult tissues are termed hyper-adhesive because they adhere strongly and are experimentally resistant to extracellular calcium chelation. Wounding results in weakening of desmosomal adhesion to a calcium-dependent state, presumably to facilitate cell migration and wound closure. Since desmosomes appear early in mouse tissue development we hypothesised that initial weak adhesion would be followed by acquisition of hyper-adhesion, the opposite of what happens on wounding. We show that epidermal desmosomes are calcium-dependent until embryonic day 12 (E12) and become hyper-adhesive by E14. Similarly, trophectodermal desmosomes change from calcium-dependence to hyper-adhesiveness as blastocyst development proceeds from E3 to E4.5. In both, development of hyper-adhesion is accompanied by the appearance of a midline between the plasma membranes supporting previous evidence that hyper-adhesiveness depends on the organised arrangement of desmosomal cadherins. By contrast, adherens junctions remain calcium-dependent throughout but tight junctions become calcium-independent as desmosomes mature. Using protein kinase C (PKC) activation and PKCα-/- mice, we provide evidence suggesting that conventional PKC isoforms are involved in developmental progression to hyper-adhesiveness. We demonstrate that modulation of desmosomal adhesion by PKC can regulate migration of trophectoderm. It appears that tissue stabilisation is one of several roles played by desmosomes in animal development.  相似文献   

3.
Mechanisms by which microtubule plus ends interact with regions of cell–cell contact during tissue development and morphogenesis are not fully understood. We characterize a previously unreported interaction between the microtubule binding protein end-binding 1 (EB1) and the desmosomal protein desmoplakin (DP), and demonstrate that DP–EB1 interactions enable DP to modify microtubule organization and dynamics near sites of cell–cell contact. EB1 interacts with a region of the DP N terminus containing a hotspot for pathogenic mutations associated with arrhythmogenic cardiomyopathy (AC). We show that a subset of AC mutations, in addition to a mutation associated with skin fragility/woolly hair syndrome, impair gap junction localization and function by misregulating DP–EB1 interactions and altering microtubule dynamics. This work identifies a novel function for a desmosomal protein in regulating microtubules that affect membrane targeting of gap junction components, and elucidates a mechanism by which DP mutations may contribute to the development of cardiac and cutaneous diseases.  相似文献   

4.
5.
PHD1, PHD2, and PHD3 are prolyl hydroxylase domain proteins that regulate the stability of hypoxia-inducible factor alpha subunits (HIF-alpha). To determine the roles of individual PHDs during mouse development, we disrupted all three Phd genes and found that Phd2(-/-) embryos died between embryonic days 12.5 and 14.5 whereas Phd1(-/-) or Phd3(-/-) mice were apparently normal. In Phd2(-/-) mice, severe placental and heart defects preceded embryonic death. Placental defects included significantly reduced labyrinthine branching morphogenesis, widespread penetration of the labyrinth by spongiotrophoblasts, and abnormal distribution of trophoblast giant cells. The expression of several trophoblast markers was also altered, including an increase in the spongiotrophoblast marker Mash2 and decreases in the labyrinthine markers Tfeb and Gcm1. In the heart, trabeculae were poorly developed, the myocardium was remarkably thinner, and interventricular septum was incompletely formed. Surprisingly, while there were significant global increases in HIF-alpha protein levels in the placenta and the embryo proper, there was no specific HIF-alpha increase in the heart. Taken together, these data indicate that among all three PHD proteins, PHD2 is uniquely essential during mouse embryogenesis.  相似文献   

6.
We have previously shown that the targeted deletions of both type I keratins (K) 18 and 19 cause lethality by embryonic day (e) 9.5 due to fragility and cytolysis of trophoblast giant cells. The development of the embryo proper appeared to be unaffected and its death was caused by nutrient deficiency. In order to address the function of keratins within the embryo proper, lethality due to extraembryonic tissue failure must be overcome. One approach to rescue doubly deficient embryos is by aggregating knockout embryos with tetraploid wild-type embryos. As a general tool, tetraploid aggregation can be used to rescue embryonic lethality caused by defects in extraembryonic tissues like the placenta, trophoblast or yolk sac. We rescued K18-/- K19-/- embryos until e11.5, using this approach, proving that the loss of the keratin cytoskeleton causes defects in the trophoblast giant cell layer, but has no effect on early development of the embryo proper.  相似文献   

7.
Desmosomes     
  相似文献   

8.
Desmocollin 1 (Dsc1) is part of a desmosomal cell adhesion receptor formed in terminally differentiating keratinocytes of stratified epithelia. The dsc1 gene encodes two proteins (Dsc1a and Dsc1b) that differ only with respect to their COOH-terminal cytoplasmic amino acid sequences. On the basis of in vitro experiments, it is thought that the Dsc1a variant is essential for assembly of the desmosomal plaque, a structure that connects desmosomes to the intermediate filament cytoskeleton of epithelial cells. We have generated mice that synthesize a truncated Dsc1 receptor that lacks both the Dsc1a- and Dsc1b-specific COOH-terminal domains. This mutant transmembrane receptor, which does not bind the common desmosomal plaque proteins plakoglobin and plakophilin 1, is integrated into functional desmosomes. Interestingly, our mutant mice did not show the epidermal fragility previously observed in dsc1-null mice. This suggests that neither the Dsc1a- nor the Dsc1b-specific COOH-terminal cytoplasmic domain is required for establishing and maintaining desmosomal adhesion. However, a comparison of our mutants with dsc1-null mice suggests that the Dsc1 extracellular domain is necessary to maintain structural integrity of the skin.  相似文献   

9.
10.
Ceramide transfer protein (CERT) functions in the transfer of ceramide from the endoplasmic reticulum (ER) to the Golgi. In this study, we show that CERT is an essential gene for mouse development and embryonic survival and, quite strikingly, is critical for mitochondrial integrity. CERT mutant embryos accumulate ceramide in the ER but also mislocalize ceramide to the mitochondria, compromising their function. Cells in mutant embryos show abnormal dilation of the ER and degenerating mitochondria. These subcellular changes manifest as heart defects and cause severely compromised cardiac function and embryonic death around embryonic day 11.5. In spite of ceramide accumulation, CERT mutant mice do not die as a result of enhanced apoptosis. Instead, cell proliferation is impaired, and expression levels of cell cycle–associated proteins are altered. Individual cells survive, perhaps because cell survival mechanisms are activated. Thus, global compromise of ER and mitochondrial integrity caused by ceramide accumulation in CERT mutant mice primarily affects organogenesis rather than causing cell death via apoptotic pathways.  相似文献   

11.
Regulator of telomere length (RTEL) is a DNA helicase-like protein that has recently been demonstrated to be required for the maintenance of telomere length and genomic stability. Rtel null mice are embryonic lethal with the defects in the nervous system, the heart, the vasculature, and extra-embryonic tissues. Rtel could also be important for the postnatal development as its expression is strongly induced in the proliferating adult cells. To further characterize the role of RTEL in adult tissue function and homeostasis, we have generated the floxed (loxP-flanked) alleles allowing to inactivate RTEL through Cre-mediated recombination in a cell- or tissue-specific manner and also to circumvent the embryonic lethality of the Rtel null allele. Mice heterozygous or homozygous for these alleles are viable and fertile. Crossing the floxed Rtel allele with a ubiquitous Cre transgenic line resulted in embryonic defects identical to those previously described for the Rtel null embryos. These conditional alleles will therefore be the important genetic tools for dissecting the spatial and temporal roles of RTEL in the regulation of telomere length and genomic stability during postnatal development and tumorigenesis.  相似文献   

12.
Caspase-8 plays the role of initiator in the caspase cascade and is a key molecule in death receptor-induced apoptotic pathways. To investigate the physiological roles of caspase-8 in vivo, we have generated caspase-8-deficient mice by gene targeting. The first signs of abnormality in homozygous mutant embryos were observed in extraembryonic tissue, the yolk sac. By embryonic day (E) 10.5, the yolk sac vasculature had begun to form inappropriately, and subsequently the mutant embryos displayed a variety of defects in the developing heart and neural tube. As a result, all mutant embryos died at E11.5. Importantly, homozygous mutant neural and heart defects were rescued by ex vivo whole-embryo culture during E10.5-E11.5, suggesting that these defects are most likely secondary to a lack of physiological caspase-8 activity. Taken together, these results suggest that caspase-8 is indispensable for embryonic development.  相似文献   

13.
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited heart disease, associated with a high risk of sudden cardiac death. ARVC has been termed a ‘disease of the desmosome’ based on the fact that in many cases, it is caused by mutations in genes encoding desmosomal proteins at the specialised intercellular junctions between cardiomyocytes, the intercalated discs. Desmosomes maintain the structural integrity of the ventricular myocardium and are also implicated in signal transduction pathways. Mutated desmosomal proteins are thought to cause detachment of cardiac myocytes by the loss of cellular adhesions and also affect signalling pathways, leading to cell death and substitution by fibrofatty adipocytic tissue. However, mutations in desmosomal proteins are not the sole cause for ARVC as mutations in non-desmosomal genes were also implicated in its pathogenesis. This review will consider the pathology, genetic basis and mechanisms of pathogenesis for ARVC.  相似文献   

14.
Desmosomes are cell-cell adhesion structures that integrate cytoskeletal networks. In addition to binding intermediate filaments, the desmosomal protein desmoplakin (DP) regulates microtubule reorganization in the epidermis. In this paper, we identify a specific subset of centrosomal proteins that are recruited to the cell cortex by DP upon epidermal differentiation. These include Lis1 and Ndel1, which are centrosomal proteins that regulate microtubule organization and anchoring in other cell types. This recruitment was mediated by a region of DP specific to a single isoform, DPI. Furthermore, we demonstrate that the epidermal-specific loss of Lis1 results in dramatic defects in microtubule reorganization. Lis1 ablation also causes desmosomal defects, characterized by decreased levels of desmosomal components, decreased attachment of keratin filaments, and increased turnover of desmosomal proteins at the cell cortex. This contributes to loss of epidermal barrier activity, resulting in completely penetrant perinatal lethality. This work reveals essential desmosome-associated components that control cortical microtubule organization and unexpected roles for centrosomal proteins in epidermal function.  相似文献   

15.
NF-κB essential modulator (NEMO) and cylindromatosis protein (CYLD) are intracellular proteins that regulate the NF-κB signaling pathway. Although mice with either CYLD deficiency or an alteration in the zinc finger domain of NEMO (K392R) are born healthy, we found that the combination of these two gene defects in double mutant (DM) mice is early embryonic lethal but can be rescued by the absence of TNF receptor 1 (TNFR1). Notably, NEMO was not recruited into the TNFR1 complex of DM cells, and consequently NF-κB induction by TNF was severely impaired and DM cells were sensitized to TNF-induced cell death. Interestingly, the TNF signaling defects can be fully rescued by reconstitution of DM cells with CYLD lacking ubiquitin hydrolase activity but not with CYLD mutated in TNF receptor-associated factor 2 (TRAF2) or NEMO binding sites. Therefore, our data demonstrate an unexpected non-catalytic function for CYLD as an adapter protein between TRAF2 and the NEMO zinc finger that is important for TNF-induced NF-κB signaling during embryogenesis.  相似文献   

16.
Mutations in genes encoding epidermal keratins cause skin disorders, while those in internal epithelial keratins, such as K8 and K18, are risk factors for liver diseases. The effect of dominant mutations in K8 or K18 during embryonic development and tissue homeostasis has not been examined so far. Here we demonstrate that the dominant mutation hK18 R89C, that is highly similar to hK14 R125C, causing EBS in humans, leads to cell type-specific lethality in mice, depending on the ratio of mutant to endogenous keratins. Mice expressing hK18 R89C in the absence of endogenous K19 and K18 died at mid-gestation from defects in trophoblast giant cells, accompanied by haematomas. A single, endogenous K18 allele rescued embryonic lethality but caused aggregation of keratins in all adult internal epithelia, surprisingly without spontaneous cell fragility. Closer analysis revealed that both filaments and aggregates coexisted in the same cell, depending on the ratio of mutant to endogenous keratins. Our results demonstrate that balanced overexpression of a wild-type keratin rescued the lethal consequences of a dominant-negative mutation. This has important implications for therapy approaches of keratinopathies, suggesting that suppressing the mutant allele is not necessary in vivo.  相似文献   

17.
Less is known about the connection between the malfunction of βarrestins and developmental defects as the mice with either of two βarrestin isoforms knockout appear normal. In order to address the biological function of βarrestins during developmental process, we generate βarrestin1/2 double knockout mice. We found that βarrestin1/2 dual-null mice developed respiratory distress and atelectasis that subsequently caused neonatal death. Morphological examination revealed type II pneumocyte immaturity. Our results indicate that not only βarrestin1/2 double knockout lung tissue show disturbances in cell proliferation but βarrestin1 and βarrestin2 contribute to pulmonary surfactant complex generation during pulmonary maturation. Intra-amniotic delivery of recombinant adenovirus expressing βarrestin1 or βarrestin2 enhances surfactant-associated proteins synthesis in vivo. Our mRNA microarray data further reveal that βarrestin1/2 double knockout results in downregulation of a significant proportion of genes involved in several lung morphogenesis processes. Together, our study demonstrates that βarrestin1 and βarrestin2 collaborate in embryonic development processes for epithelial pneumocyte differentiation and lung maturation.  相似文献   

18.
Protein tyrosine kinase activity was assayed in a variety of chicken tissues during embryonic development and in the adult. In some tissues protein tyrosine kinase activity decreased during embryonic development; however, in other tissues it remained high throughout development, it contrast to the level of protein tyrosine phosphorylation, which decreased during development. The highest levels of tyrosine kinase activity were detected in 17-d embryonic brain although only low levels of protein tyrosine phosphorylation were observed in this tissue. Several alternatives were examined in an effort to determine the mechanism responsible for the low levels of tyrosine phosphorylated proteins in most older embryonic and adult chicken tissues despite the presence of highly active tyrosine kinases. The results show that the regulation of protein tyrosine phosphorylation during embryonic development is complex and varies from tissue to tissue. Furthermore, the results suggest that protein tyrosine phosphatases play an important role in regulating the level of phosphotyrosine in proteins of many older embryonic and adult tissues.  相似文献   

19.
Baculovirus p35 protein protects cells from apoptotic cell death by inhibiting caspase activation. We have established transgenic mouse lines specifically expressing p35 in cardiomyocytes, and primary cardiomyocytes isolated from these mice exhibit resistance to staurosporine-induced apoptosis. In a previous study, we observed defects in heart formation associated with abdominal hemorrhage and cardiomyocyte cell death in caspase-8-deficent animals. In order to better understand the etiology of the cardiac defects and embryonic lethality in caspase-8-deficient mice, we crossed these mice with the p35 transgenic animals. Although the newly generated mice still died in utero and exhibited some cardiac defects, cardiomyocyte apoptosis was suppressed and ventricular trabeculation was restored. Thus, cardiomyocyte expression of p35 prevented cell death induced by staurosporine or caspase-8 deficiency. Additionally, our data suggest that caspase-8 plays multiple roles in cardiac development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号