共查询到20条相似文献,搜索用时 15 毫秒
1.
《Enzyme and microbial technology》1986,8(5):289-292
Whey permeate was obtained by ultrafiltration of cottage cheese whey and supplemented with yeast extract. The lactose in the permeate was converted into lactic acid by Lactobacillus bulgaricus in a high-performance membrane bioreactor configured in the cell recycle mode. At a cell concentration of 10 g l−1, optimum productivity of lactic acid was 35 g l−1 h−1. Increasing the cell concentration to 30 g l−1 enabled the use of a dilution rate of 1 h−1 with complete substrate utilization. At 60 g l−1, productivity was over 80 g l−1 h−1 with complete substrte utilization; this is vastly superior to conventional batch fermentations. 相似文献
2.
A diauxic fermentation was observed during batch fermentation of enzyme-hydrolyzed whey permeate to ethanol by Saccharomyces cerevisiae. Glucose was consumed before and much faster than galactose. In the continuous membrane recycle bioreactor (MRB), sugar utilization was a function of dilution rate and concentration of sugars. At a cell concentration of 160 kg/m3, optimum productivity was 31 kg/(m3 · h) at ethanol concentration of 65 kg/m3. Low levels of acetate (0.05–0.1 M) reduced cell growth during continuous fermentation, but also reduced galactose utilization. 相似文献
3.
In this study, the influence of various parameters such as determination methods and step height and length of incremental flux on critical flux values were investigated. Experiments were carried out on a pilot-scale membrane bioreactor (MBR) treated municipal wastewater. Three of the five critical flux determination methods, such as flux linearity, 90% permeability and flux cycling conducted in this study, indicated a decline in critical flux values as the step height of incremental flux increased. However, the hysteresis method and the two-third (2/3) flux limitation method showed an increase and independence of critical flux to the step height of incremental flux, respectively. On the other hand, the step length of incremental flux had no obvious effect on critical flux values evaluated by all critical flux determination methods. Like critical flux, sustainable flux has negative relationship with the increase of step height but no influence of step length was found in this study. 相似文献
4.
Lactic acid from cheese whey permeate. Productivity and economics of a continuous membrane bioreactor 总被引:7,自引:0,他引:7
The economics of incorporating membrane modules in several steps in the conversion of whey permeate to lactic acid was studied. Membrane recycle fermenters operating at a cell concentration of 40 g l–1 resulted in a productivity of 22.5 g l–1h–1 with a lactate concentration of 89 g l–1 and a yield of 0.89. The membrane units (reverse osmosis for preconcentrating whey permeate, hollow-fiber ultrafiltration for clarification and for cell recycling) contribute about 28% of the total fixed capital costs and less than 5% of the operating cost. The two largest costs are whey transportation and yeast extract, contributing about 35% and 38% to the total product cost of US $ 0.98/kg 85% lactate. Without these two costs, unpurified lactate could be produced for $ 0.27/kg. 相似文献
5.
Separation of lactic acid-producing bacteria from fermentation broth using a ceramic microfiltration membrane with constant permeate flow 总被引:5,自引:0,他引:5
The influence of several operating parameters on the critical flux in the separation of lactic acid-producing bacteria from fermentation broth was studied using a ceramic microfiltration membrane equipped with a permeate pump. The operating parameters studied were crossflow velocity over the membrane, bacterial cell concentration, protein concentration, and pH. The influence of the isoelectric point (IEP) of the membrane was also investigated. In the interval studied (5.3-10.8 m/s), the crossflow velocity had a marked effect on the critical flux. When the crossflow velocity was increased the critical flux also increased. The bacterial cells were retained by the membrane and the concentration of bacterial cells did not affect the critical flux in the interval studied (1.1-3.1 g/L). The critical flux decreased when the protein concentration was increased. It was found that the protein was adsorbed on the membrane surface and protein retention occurred even though the conditions were such that no filter cake was present on the membrane surface. When the pH of the medium was lowered from 6 to 5 (and then further to 4) the critical flux decreased from 76 L/m(2)h to zero at both pH 5 and pH 4. This was found to be due to the fact that the lowering in pH had affected the physiology of the bacterial cells so that the bacteria tended to adhere to the membrane and to each other. The critical flux, for wheat flour hydrolysate without particles, was much lower (28 L/m(2)h) when using a membrane with an IEP of 5.5 than the critical flux of a membrane with an IEP at pH 7 (96 L/m(2)h). This was found to be due to an increased affinity of the bacteria for the membrane with the lower IEP. 相似文献
6.
A continuous bioreactor where cells were recycled using a cross-flow microfiltration (CFM) membrane plant was investigated for the production of solvents (ABE fermentation) from whey permeate using Clostridium acetobutylicum P262. A tubular CFM membrane plant capable of being backflushed was used.The continuous fermentations were characterized by cyclic solventogenic and acidogenic behaviour, and ultimately degenerated to an acidogenic state. Steady-state solvent production was obtained for only short periods. This degeneration is attributed to the complex morphological behaviour of this strain of organism on this substrate.It is postulated that to achieve steady-state solvent production over extended periods of time, it is necessary to maintain a balance among the various morphological cell forms, i.e. acid-producing vegetative cells, solvent-producing clostridial cells, and inert forms, e.g. spores. 相似文献
7.
Much attention has been paid to membrane bioreactors, especially to the newly developed charged membrane bioreactor (CMBR) for recycling the native form of the coenzyme NAD(P)H. Charged membranes with anionic groups effectively retained the free nicotinamide coenzyme due to the electrostatic repulsion between membrane and coenzyme. The capability of the CMBR was demonstrated by the continuous production of sorbitol using a multi-enzyme system of NADPH-dependent aldose reductase and glucose dehydrogenase. Several important features of the CMBR were elucidated by a theoretical model of coenzyme turnover. 相似文献
8.
Comparison between a moving bed membrane bioreactor and a conventional membrane bioreactor on membrane fouling 总被引:1,自引:0,他引:1
A membrane bioreactor filled with carriers instead of activated sludge named a moving bed membrane bioreactor (MBMBR) was investigated to minimize the effect of suspended solids on membrane fouling. The MBMBR and a conventional membrane bioreactor (CMBR) were operated in parallel for about two months. Unexpectedly, the rate of membrane fouling in MBMBR was about three times of that in CMBR. MBMBR showed a higher cake layer resistance than CMBR due to plenty of filamentous bacteria inhabited in suspended solids in MBMBR. Protein and polysaccharide contents of soluble EPS in MBMBR were obviously larger than those in CMBR. It could be speculated that the overgrowth of filamentous bacteria in MBMBR resulted in severe cake layer and induced a large quantity of EPS, which deteriorated the membrane fouling. 相似文献
9.
Continuous propionate production from whey permeate using a novel fibrous bed bioreactor 总被引:5,自引:0,他引:5
Continuous production of propionate from whey lactose by Propionibacterium acidipropionici immobilized in a novel fibrous bed bioreactor was studied. In conventional batch propionic acid fermentation, whey permeate without nutrient supplementation was unable to support cell growth and failed to give satisfactory fermentation results for over 7 days. However, with the fibrous bed bioreactor, a high fermentation rate and high conversion were obtained with plain whey permeate and de-lactose whey permeate. About 2% (wt/vol) propionic acid was obtained from a 4.2% lactose feed at a retention time of 35 to 45 h. The propionic acid yield was approximately 46% (wt/vol) from lactose. The optimal pH for fementation was 6.5, and lower fermentation rates and yields were obtained at lower pH values. The optimal temperature was 30 degrees C, but the temperature effect was not dramatic in the range of 25 to 35 degrees C. Addition of yeast extract and trypticase to whey permeate hastened reactor startup and increased the fermentation rate and product yields, but the addition was not required for long-term reactor performance. The improved fermentation results with the immobilized cell bioreactor can be attributed to the high cell density, approximately 50 g/L, attained in the bioreactor, Cells were immobilized by loose attachement to fiber surfaces and entrapment in the void spaces within the fibrous matrix, thus allowing constant renewal of cells. Consequently, this bioreactor was able to operate continuously for 6 months without encountering any clogging, degeneration, or contamination problems. Compared to conventional batch fermentors, the new bioreactor offers many advantages for industrial fermentation, including a more than 10-fold increase in productivity, acceptance of low-nutrient feedstocks such as whey permeate, and resistance to contamination. (c) 1994 John Wiley & Sons, Inc. 相似文献
10.
Nakajima M Watanabe A Jimbo N Nishizawa K Nakao S 《Biotechnology and bioengineering》1989,33(7):856-861
A forced-flow enzyme membrane reactor system for sucrose inversion was investigated using three ceramic membranes having different pore sizes. Invertase was immobilized chemically to the inner surface of a ceramic membrane activated by a silane-glutaraldehyde technique. With the cross-flow filtration of sucrose solution, the reaction rate was a function of the permeate flux, easily controlled by pressure. Using 0.5 mum support pore size of membrane, the volumetric productivity obtained was 10 times higher than that in a reported immobilized enzyme column reactor, with a short residence time of 5 s and 100% conversion of the sucrose inversion. 相似文献
11.
Mustacchi R Knowles CJ Li H Dalrymple I Sunderland G Skibar W Jackman SA 《Biotechnology and bioengineering》2005,89(1):18-23
The simultaneous enhancement of biotransformation coupled to product recovery, purification and concentration is presented. The nitrilase of Rhodococcus rhodochrous LL100-21 catalyses the single-step hydrolytic biotransformation of benzonitrile to benzoic acid and ammonia. When a direct electric current is applied across a bioreactor containing the bacterium and benzonitrile, the charged product (benzoic acid) can be removed in situ across an anion exchange membrane and recovered in a separate compartment. Over the course of a 24-hour biotransformation, benzonitrile was converted to benzoic acid which was completely removed from the bioreactor chamber and concentrated 3-fold in a separate chamber. The rate of production of benzoic acid increased by 42% when the current was applied (0.044 mmol/min/g dry cell weight in the presence of current as compared to 0.03 mmol/min/g dry cell weight in its absence). The enhanced reaction rate was achieved irrespective of product separation and therefore appears to be a direct effect upon the bacterial cells. This process has potential for enhanced productivity from biotransformations through a simultaneous increase in metabolic activity and in situ product recovery. 相似文献
12.
Attaway H Gooding CH Schmidt MG 《Journal of industrial microbiology & biotechnology》2001,26(5):316-325
The biotreatment of complex mixtures of volatile organic compounds (VOCs) such as benzene, toluene, ethylbenzene, and xylene
isomers (BTEX) has been investigated by many workers. However, the majority of the work has dealt with the treatment of aqueous
or soil phase contamination. The biological treatment of gas and vapor phase sources of VOC wastes has recently received attention
with increased usage of biofilters and bioscrubbers. Although these systems are relatively inexpensive, performance problems
associated with biomass plugging, gas channeling, and support media acidification have limited their adoption. In this report
we describe the development and evaluation of an alternative biotreatment system that allows rapid diffusion of both BTEX
and oxygen through a silicone membrane to an active biofilm. The bioreactor system has a rapid liquid recycle, which facilitates
nutrient medium mixing over the biofilm and allows for removal of sloughing cell mass. The system removed BTEX at rates up
to 30 μg h−1 cm−2 of membrane area. BTEX removal efficiencies ranged from 75% to 99% depending on the BTEX concentration and vapor flowrate.
Consequently, the system can be used for continuous removal and destruction of BTEX and other potential target VOCs in vapor
phase streams. Journal of Industrial Microbiology & Biotechnology (2001) 26, 316–325.
Received 14 August 2000/ Accepted in revised form 28 February 2001 相似文献
13.
A membrane bioreactor filled with carriers instead of activated sludge named a moving bed membrane bioreactor (MBMBR) was investigated for simultaneously removing organic carbon and nitrogen in wastewater. Its performance was compared with a conventional membrane bioreactor (CMBR) at various influent COD/TN ratios of 8.9–22.1. The operational parameters were optimized to increase the treatment efficiency. COD removal efficiency averaged at 95.6% and 96.2%, respectively, for MBMBR and CMBR during the 4 months experimental period. The MBMBR system demonstrated good performance on nitrogen removal at different COD/TN ratios. When COD/TN was 8.9 and the total nitrogen (TN) load was 7.58 mg/l h, the TN and ammonium nitrogen removal efficiencies of the MBMBR were maintained over 70.0% and 80.0%, respectively, and the removed total nitrogen (TN) load reached to 5.31 mg/l h. Multifunctional microbial reactions in the carrier, such as simultaneous nitrification and denitrification (SND), play important roles in nitrogen removal. In comparison, the CMBR did not perform so well. Its TN removal was not stable, and the removed total nitrogen (TN) load was only 1.02 mg/l h at COD/TN ratio 8.9. The specific oxygen utilization rate (SOUR) showed that the biofilm has a better microbial activity than an activated sludge. Nevertheless, the membrane fouling behavior was more severe in the MBMBR than in the CMBR due to a thick and dense cake layer formed on the membrane surface, which was speculated to be caused by the filamentous bacteria in the MBMBR. 相似文献
14.
Chunyan Chen Sihua Long Airong Li Guoqing Xiao Linyuan Wang Zeyi Xiao 《Preparative biochemistry & biotechnology》2017,47(3):254-260
Since both ethanol and butanol fermentations are urgently developed processes with the biofuel-demand increasing, performance comparison of aerobic ethanol fermentation and anerobic butanol fermentation in a continuous and closed-circulating fermentation (CCCF) system was necessary to achieve their fermentation characteristics and further optimize the fermentation process. Fermentation and pervaporation parameters including the average cell concentration, glucose consumption rate, cumulated production concentration, product flux, and separation factor of ethanol fermentation were 11.45?g/L, 3.70?g/L/h, 655.83?g/L, 378.5?g/m2/h, and 4.83, respectively, the corresponding parameters of butanol fermentation were 2.19?g/L, 0.61?g/L/h, 28.03?g/L, 58.56?g/m2/h, and 10.62, respectively. Profiles of fermentation and pervaporation parameters indicated that the intensity and efficiency of ethanol fermentation was higher than butanol fermentation, but the stability of butanol fermentation was superior to ethanol fermentation. Although the two fermentation processes had different features, the performance indicated the application prospect of both ethanol and butanol production by the CCCF system. 相似文献
15.
The fermentation kinetics of methane production from whey permeate in a packed bed immobilized cell bioreactor at mesophilic temperatures and pHs around neutral was studied. Propionate and acetate were the only two major organic intermediates found in the methanogenic fermentation of lactose. Based on this finding, a three-step reaction mechanism was proposed: lactose was first degraded to propionate, acetate, CO(2), and H(2) by fermentative bacteria; propionate was then converted to acetate by propionate-degrading bacteria; and finally, CH(4) and CO(2) were produced from acetate, H(2), and CO(2) by methanogenic bacteria. The second reaction step was found to be the rate-limiting step in the overall methanogenic fermentation of lactose. Monod-type mathematical equations were used to model these three step reactions. The kinetic constants in the models were sequentially determined by fitting the mathematical equations with the experimental data on acetate, propionate, and lactose concentrations. A mixed-culture fermentation model was also developed. This model simulates the methanogenic fermentation of whey permeate very well. 相似文献
16.
The major operational problem associated with membrane bioreactors (MBR) is membrane fouling, for which extracellular polymeric substances (EPS) are primarily responsible. In this work both the soluble and bound EPS (i.e. SMP and EPS) produced in an MBR system operating under sludge retention times (SRT) of 10, 15, 20 and 33 days were fractionized by means of membranes having variable molecular weight cutoffs (300 kDa, 100 kDa, 10 kDa & 1 kDa). The results show that increasing the SRT leads to a reduction of SMP and EPS and that these reductions are more pronounced for the SRTs in the range 10–20 days. This reduction is more significant for carbohydrates than for proteins. The decrease of SMP and EPS with increasing SRT from 10 to 20 days led to a significant decrease of the level of fouling. The further increase of SRT to 33 days did not significantly impact on the level of fouling as the SMP and EPS concentrations did not change much. 相似文献
17.
Biological hydrogen production using a membrane bioreactor 总被引:6,自引:0,他引:6
A cross-flow membrane was coupled to a chemostat to create an anaerobic membrane bioreactor (MBR) for biological hydrogen production. The reactor was fed glucose (10,000 mg/L) and inoculated with a soil inoculum heat-treated to kill non-spore-forming methanogens. Hydrogen gas was consistently produced at a concentration of 57-60% in the headspace under all conditions. When operated in chemostat mode (no flow through the membrane) at a hydraulic retention time (HRT) of 3.3 h, 90% of the glucose was removed, producing 2200 mg/L of cells and 500 mL/h of biogas. When operated in MBR mode, the solids retention time (SRT) was increased to SRT = 12 h producing a solids concentration in the reactor of 5800 mg/L. This SRT increased the overall glucose utilization (98%), the biogas production rate (640 mL/h), and the conversion efficiency of glucose-to-hydrogen from 22% (no MBR) to 25% (based on a maximum of 4 mol-H(2)/mol-glucose). When the SRT was increased from 5 h to 48 h, glucose utilization (99%) and biomass concentrations (8,800 +/- 600 mg/L) both increased. However, the biogas production decreased (310 +/- 40 mL/h) and the glucose-to-hydrogen conversion efficiency decreased from 37 +/- 4% to 18 +/- 3%. Sustained permeate flows through the membrane were in the range of 57 to 60 L/m(2) h for three different membrane pore sizes (0.3, 0.5, and 0.8 microm). Most (93.7% to 99.3%) of the membrane resistance was due to internal fouling and the reversible cake resistance, and not the membrane itself. Regular backpulsing was essential for maintaining permeate flux through the membrane. Analysis of DNA sequences using ribosomal intergenic spacer analysis indicated bacteria were most closely related to members of Clostridiaceae and Flexibacteraceae, including Clostridium acidisoli CAC237756 (97%), Linmingia china AF481148 (97%), and Cytophaga sp. MDA2507 AF238333 (99%). No PCR amplification of 16s rRNA genes was obtained when archaea-specific primers were used. 相似文献
18.
I. A. Belushkina R. J. Manolov E. D. Vorobiev A. M. Bezborodov 《Folia microbiologica》1991,36(1):75-80
The possibility of the immobilization of A. clavatus in a membrane bioreactor which contains the nuclear membrane is investigated. The immobilization of cells in this bioreactor permits to increase the time of the productive functioning of the cells and avoids the procedure of a biomass separation from the cultural liquid. 相似文献
19.
Summary
Erwinia chrysanthemi cells were used to study the possibility of producing bacterial enzymes in a bioreactor coupled with a membrane filtration unit. Continuous fermentations with total cell recycle failed to give good production of pectate lyase (PL). Enzymatic, mechanical and physico-chemical damages were involved in this phenomenon. With a sequential recycle mode, we obtained productivity of 1.5 units·h–1·1–1 with a high PL concentration. Protease accumulation occurred when the bioreactor was coupled to a filtration unit. Moreover we have observed no loss of activity due to high shear stress caused by pumping.
Offprint requests to: P. Boyaval 相似文献
20.
W. Zhang B. G. Park Y. K. Chang H. N. Chang X. J. Yu Q. Yuan 《Bioprocess and biosystems engineering》1998,18(4):317-322
Filtration of ethanol fermentation medium and broth by using symmetric and asymmetric ceramic membranes has been studied in an internal filter bioreactor. Factors studied included membrane structure and pore size, medium sterilization, and concentrations of glucose, yeast extract in the medium, yeast cell and protein in broth. The aim was to determine the main factors responsible for the decline in filtration performance during ethanol fermentation by Saccharomyces cerevisiae. Flux index (Fi) of a new concept has been developed to evaluate the degree of flux decline during the membrane fouling process. Fi was defined as the ratio of the membrane flux at certain filtration time (t?=?t) to the initial (t?=??0) flux of pure water, not the initial (t?=?+0) flux of the test fluid. Flux with sterilized medium was approximately two-fold higher than that with unsterilized medium although the reason could not be explained clearly. Glucose, interaction between glucose and yeast extract, yeast cells, and proteins in fermentation broth were found to play an important part in membrane fouling. Fi of the symmetric membrane decreased to a less extent than that of the asymmetric membrane with increasing glucose concentration. But, the result with various yeast cell concentrations turned out to be contrary. Fouling was more serious for asymmetric membrane during the filtration of fermentation supernatant. This was thought to be due to different fouling mechanisms for the two types of membrane. 相似文献