首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous time series analysis on vendace population dynamics in Lake Pyhäjärvi, 1971–1990, revealed a 2-year cycle in year-class strength, implying powerful density-dependent regulation. Here we have extended this analysis by using multiple regression models to test whether the recruitment series is influenced by density-independent factors. We chose population size with a lag of 1 year as the density-dependent factor; the density-independent factors were the summer water temperature with a lag of 2 years (temperature sum for June, July and August, indicating the year-class strength of predators) and the temperature-derived length of the larval period of vendace. For the years 1972–1990 the coefficient of determination ( r 2) of this regression model was 0·77. We suggest that the basic mechanism producing a persistent 2-year cycle of vendace in Lake Pyhäjärvi is the asymmetrical food competition between age groups. The abundance of predators in the lake and the warming of the water after the hatching of larvae in spring together determine the final year-class strength of vendace.  相似文献   

2.
The aquatic quillwort, Isoëtes echinospora, survived the strong water acidification during 1960s–1990s in Plešné Lake (Bohemian Forest, Central Europe), but failed to reproduce. We studied the relationships between a recent population recovery and an improvement of lake water quality. We used correlation analysis to evaluate lagged seasonal effects of lake water quality on population dynamics during the past decade, and factor analysis to determine the independent factors responsible for population recovery. We also provided a water-quality-based reconstruction of population growth from the beginning of the lake recovery two decades ago, using a partial least squares regression (PLSR) model of population growth. We identified three independent controlling factors: nutrients (nitrate, phosphorus, calcium, potassium, magnesium), stressors (pH, ionic aluminium) and temperature. Of these, nutrient availability did not limit the quillwort growth, but annual mean pH and winter mean concentrations of toxic ionic aluminium influenced population growth through negative effects on sporeling establishment until the age of one year, while cumulative temperature in spring and summer controlled the later plant growth. Thus, water quality in the acidified Plešné Lake mainly controls recruitment success rather than adult survival of Isoëtes echinospora. This study provides the first in situ evidence that the recruitment success, namely the annual increment in the adult quillwort population, indicates the degree of recovery from acidification, however further extensive investigation is required to more accurately quantify, and therefore understand, the relationships between recruitment, water quality and other factors.  相似文献   

3.
Sediment bacterial community and their relation with environmental factors were investigated in the five different trophic status lake regions sediment, Meiliang Bay, Wuli Lake, Gonghu Bay, Western Lake Taihu and Xukou Bay in a large, shallow, eutrophic freshwater lake (Lake Taihu, China). Water and surface sediment samples were collected at 35 sampling sites in January 2014 (winter) and July 2015 (summer). The physicochemical characterization showed that there were obvious changes in the trophic status and eutrophic index of five lake regions, which was mainly due to the difference of organic matter source. Based on the analysis of aquatic environmental characteristics, the organic nitrogen or nitrate nitrogen was the main storing form in the overlying water of five lake regions. In addition, nitrate nitrogen in pore water was lower than in overlying water, while ammonia nitrogen in pore water was higher than in overlying water. According to the DGGE profiles, temporal and spatial variations of bacterial community were apparent. Bacterial diversity was higher in summer than in winter and increased with the decrease in the lake region trophic status. The dendrogram of the bacterial community similarities revealed that samples were almost all grouped into two defined clusters (summer and winter), which indicated that season rather than region was the dominant factor. Canonical correspondence analysis demonstrated that ammonia nitrogen and nitrate–nitrite nitrogen in the sediment and pore water, organic matter and temperature significantly influenced the sediment bacterial community in the five lake regions.  相似文献   

4.
The seston of the small, shallow, and tropical lake Monte Alegre was tested for quantity and quality for cladocerans by growth bioassays, which were carried out in spring (Daphnia gessneri and Moina micrura), summer (D. gessneri, M. micrura, Ceriodaphnia cornuta, and Simocephalus mixtus), and winter (D. gessneri and D. ambigua). Cohorts of newborns originating from ovigerous females collected in the lake or from laboratory cultures were submitted, at a room temperature of 23 degrees C to the following treatments: (1) the chlorophytes Ankistrodesmus falcatus and/or Scenedesmus spinosus; (2) lake seston; and (3) lake seston + chlorophytes. Growth rate, clutch size, and fecundity were evaluated. Seston alone was not the best food for promoting cladoceran growth. There were seasonal differences in food quantity and quality with spring and summer seston being better for growth than that of the winter. Adding chlorophytes to the seston increased clutch size and fecundity for most species in summer and winter, but not in spring. Energy limitation seems to be the most important factor influencing cladoceran growth in summer and especially in winter.  相似文献   

5.
Perch Perca fluviatilis recruitment (based on the catch per unit effort, CPUE, of 2 or 3 year male perch) varied greatly from 1941 to 1995 in Windermere, U.K., with year class strengths strongly synchronous between the two basins of this temperate, mesotrophic lake. Statistically significant modified Ricker (Saila‐Lorda) stock‐recruitment curves could be fitted to data from three of four sampling sites, while the presence of widespread disease and late summer water temperature were also important explanatory variables. Multiple‐regression analyses revealed no influences of pike Esox lucius recruitment, zooplankton abundance, or the climatic influences ( i.e . North Atlantic Oscillation and displacement of the summer position of the Gulf Stream) on perch recruitment over and above associated influences from temperature. Fitted models realistically explained up to c . 60% of the observed variation in perch recruitment.  相似文献   

6.
Effects of thermal stratification and mixing on reservoir water quality   总被引:10,自引:0,他引:10  
Şebnem Elçi 《Limnology》2008,9(2):135-142
In this study, the effect of thermal stratification on water quality in a reservoir has been investigated by field observations and statistical analysis. During the summer period, when stratification is evident, field observations indicate that the observed dissolved oxygen concentrations drop well below the standard limit of 5 mg l−1 at the thermocline, leading to the development of anoxia. The reasons for variations in the dissolved oxygen concentrations were investigated. Variations of air temperature and other meteorological factors and lateral flows from side arms of the lake were found to be responsible for the increase of dissolved oxygen concentrations. It was also observed that turbidity peaked mostly in the thermocline region, closely related to the location of the maximum density gradient and thus low turbulence stabilizing the sediments in the vertical water column. Relatively cold sediment-laden water flowing into the lake after rain events also resulted in increased turbidity at the bottom of the lake. Nondimensional analysis widely used in the literature was used to identify the strength of the stratification, but this analysis alone was found insufficient to describe the evolution of dissolved oxygen and turbidity in the water column. Thus correlation of these parameters was investigated by multivariate analysis. Fall (partial mixing), summer (no mixing), and winter (well mixed) models describe the correlation structures between the independent variables (meteorological parameters) and the dependent variables (water-quality parameters). Statistical analysis results indicate that air temperature, one day lagged wind speed, and low humidity affected variation of water-quality parameters.  相似文献   

7.
The need for cold, well-oxygenated waters significantly reduces the habitat available for lake trout (Salvelinus namaycush) during stratification of small temperate lakes. We examined the spatial and pelagic distribution of lake trout over two consecutive summers and winters and tested whether winter increased habitat availability and access to littoral regions in a boreal shield lake in which pelagic prey fish are absent. In winter, lake trout had a narrowly defined pelagic distribution that was skewed to the upper 3 m of the water column and spatially situated in the central region of the lake. Individual core areas of use (50% Kernel utilization distributions) in winter were much reduced (75%) and spatially non-overlapping compared to summer areas, but activity levels were similar between seasons. Winter habitat selection is in contrast to observations from the stratified season, when lake trout were consistently located in much deeper waters (>6 m) and widely distributed throughout the lake. Winter distribution of lake trout appeared to be strongly influenced by ambient light levels; snow depth and day length accounted for up to 69% of the variation in daily median fish depth. More restricted habitat use during winter than summer was in contrast to our original prediction and illustrates that a different suite of factors influence lake trout distribution between these seasons.  相似文献   

8.
Lake-level fluctuations are common in the North American Great Plains region, where large-scale climate systems (El Niño, the Pacific Decadal Oscillation) and periodic droughts cause substantial hydrologic variability in both summer and winter. To date, most such research has focused on the effects of summer droughts on prairie lake ecosystems; therefore, we studied the impact of water-level decline during winter on ecosystem structure and function. Specifically, we hypothesized that lower lake levels during winter would increase anoxia, freezing and scouring of benthos, fish kills, herbivory by zooplankton, and nutrient release from sediments. In addition, we tested the hypothesis that winter droughts may initiate a switch between alternative stable states (turbid, clear). Physical, chemical, and biological variables were monitored from 1996 to 2001 in both Wascana Lake, which experienced a 50% decline in lake level, and Buffalo Pound Lake, where water levels were constant. A combination of before-after-control-impact (BACI) and multivariate analyses showed that drawdown resulted in elevated NH4-N concentrations following reinundation; otherwise there were few detectable effects on lake water chemistry (PO4-P, NO3-N, total dissolved nitrogen, total dissolved carbon) or pelagic food web structure (phytoplankton, zooplankton), and the experimental lake remained in a macrophyte-rich state. There was, however, a 2.5-fold increase in macrophyte abundance and a shift from a community dominated by Ceratophyllum demersum before drawdown to one composed of Potamogeton pectinatus after manipulation. Overall, the lack of substantial dewatering effects suggests that lakes of the northern Great Plains may be resilient to severe winter conditions, possibly because of the recruitment of fish from regional metapopulations during summer. Further, our results indicate that lower water levels during winter likely promote the buffer mechanisms that reinforce a macrophyte-rich, clear-water state in shallow prairie lakes.  相似文献   

9.
We tested whether increased phosphorus and nitrogen concentrations would affect a lake trout (Salvelinus namaycush) population in a small oligotrophic lake with a benthically dominated food web. From 1990 to 1994, nitrogen and phosphorus were added to Lake N1 (4.4 ha) at the arctic Long-Term Ecological Research site in Alaska. We used mark/recapture methods to determine the lake trout population size, size structure, recruitment, and individual growth from 1987 to 1999. Data were also collected on water chemistry and food availability. Fertilization resulted in increased pelagic primary productivity, chlorophyll a, turbidity, snail density, and hypoxia in summer and winter. Lake trout density was not affected by the manipulation however growth and average size increased. Recruitment was high initially, but declined throughout the fertilization. These results suggest that lake trout were affected through increased food availability and changes to the physical characteristics of the lake. During fertilization, hypoxia near the sediments may have killed over-wintering embryos and decreased habitat availability. Although lake trout responded strongly to increased nutrients, loss of recruitment might jeopardize lake trout persistence if arctic lakes undergo eutrophication.  相似文献   

10.
Yoshida  T. 《Hydrobiologia》1982,91(1):571-578
The nutrient concentrations of lake water are strongly influenced by both the combination of inflowing nutrients and those released from sediment in the lake. The former may be related to the nutrient concentration of the lake in winter, and the latter to the peak concentration in summer. This paper considers the problem of how the summer peak may be generated, using actual data from two lakes in Japan. By using a mathematical simulation it can be shown that the summer peak may be generated largely from nutrient materials released from sediment. Using this approach, release rates have been calculated for two lakes. The approach makes a prediction of water improvement due to sediment removal.  相似文献   

11.
Ceratophyllum demersum L. remained physiologically active beneath ice of a southeastern Michigan lake. The effect of seasonally low photosynthetic photon flux density (PPFD) and cold but nonfreezing temperature on whole-plant physiology was studied. Net photosynthesis was measured at six temperatures and 12 PPFDs. Net photosynthesis, soluble protein concentration, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) protein concentration, and Rubisco activity of winter plants were 32, 31, 33, and 70% lower, respectively, than those of plants collected in the summer. Optimum temperatures for net photosynthesis of winter and summer plants were 5 and 30[deg]C, respectively. Dark respiration of winter plants was up to 313% greater than that of summer plants. Reduced Rubisco activity and increased dark respiration interacted to reduce net photosynthesis. Interaction of reduced net photosynthesis and increased dark respiration increased CO2 and light compensation points and the light saturation point of winter plants. Growth of C. demersum was limited by the ambient phosphorus concentration of lake water during summer. Apical stem segments of winter-collected plants had 54 and 35% more phosphorus and nitrogen, respectively, than summer-collected plants. Physiologically active perennation beneath ice enabled C. demersum to accumulate phosphorus during the winter when it was most abundant. Partial uncoupling of phosphorus acquisition from utilization may reduce phosphorus limitation upon growth during the summer when phosphorus concentration is seasonally the lowest.  相似文献   

12.
The concentration of dissolved oxygen in waters 0.5–0.6 m above the bottom of Lake Hibara, a dimictic lake, was zero in early spring of 1994 and 1997. The concentrations in early spring of 1992, 1993, 1995, 1996, and 1998 ranged from 3.75 to 10.1 mg l−1. The depth profiles of water temperature suggest that water had not circulated prior to the sample collections of 1994 and 1997, but it had done so in the cases of the other years, suggesting that winter conditions were well preserved in the former years. On the other hand, the dissolved oxygen in the same strata decreased severely in summer. However, more or less titratable amounts of dissolved oxygen still remained (0.01–0.73 mg l−1) at the final stages of summer stratification from 1992 to 1998. These facts show that a completely anoxic condition is not formed in this lake in summer but is sometimes formed in winter. It is interesting to note that in spite of unfavorable winter conditions for oxygen consumption, i.e., shorter duration and lower water temperature, oxygen is exhausted. These facts suggest that ventilation to the depths is much greater in summer than in winter. Received: March 5, 1999 / Accepted: October 18, 1999  相似文献   

13.
利用高效反相液相色谱法检测了夏冬两季受有机氯污染的典型湖泊--鸭儿湖严家湖区鲢肝中的视黄醇,软脂酸视黄酯及α-生育酚的含量。结果表明,两种营养素在鱼体内的代谢转换明显受环境温度的影响,夏季外界温度较高,肝脏内维生素主要以其生理活性形式存在,表现出视黄醇及α-生育酚含量较高;而冬季外界温度较低,肝脏内维生素主要以其储存形式存在,表现出软脂酸视黄酯含量高。鱼肝中视黄化合物的浓度随氧化塘中污染物浓度的增加而呈现出有规律下降的显著剂量/效应关系,表现在有机氯污染水域中鲢肝中的视黄化合物可作为一种生物标志物指示其污染毒性。  相似文献   

14.
The southeast coast of Australia is a global hotspot for increasing ocean temperatures due to climate change. The temperate incursion of the East Australian Current (EAC) is increasing, affording increased connectivity with the Great Barrier Reef. The survival of tropically sourced juveniles over the winter is a significant stumbling block to poleward range shifts of marine organisms in this region. Here we examine the dependence of overwintering on winter severity and prewinter recruitment for eight species of juvenile coral reef fishes which are carried into temperate SE Australia (30–37 °S) by the EAC during the austral summer. The probability of persistence was most strongly influenced by average winter temperature and there was no effect of recruitment strength. Long‐term (138 years) data indicate that winter water temperatures throughout this region are increasing at a rate above the global average and predictions indicate a further warming of >2 °C by the end of the century. Rising ocean temperatures are resulting in a higher frequency of winter temperatures above survival thresholds. Current warming trajectories predict 100% of winters will be survivable by at least five of the study species as far south as Sydney (34 °S) by 2080. The implications for range expansions of these and other species of coral reef fish are discussed.  相似文献   

15.
Large-scale climatic signatures in lakes across Europe: a meta-analysis   总被引:3,自引:0,他引:3  
Recent studies have highlighted the impact of the winter North Atlantic Oscillation (NAO) on water temperature, ice conditions, and spring plankton phenology in specific lakes and regions in Europe. Here, we use meta-analysis techniques to test whether 18 lakes in northern, western, and central Europe respond coherently to winter climate forcing, and to assess the persistence of the winter climate signal in physical, chemical, and biological variables during the year. A meta-analysis approach was chosen because we wished to emphasize the overall coherence pattern rather than individual lake responses. A particular strength of our approach is that time-series from each of the 18 lakes were subjected to the same robust statistical analysis covering the same 23-year period. Although the strongest overall coherence in response to the winter NAO was exhibited by lake water temperatures, a strong, coherent response was also exhibited by concentrations of soluble reactive phosphorus and soluble reactive silicate, most likely as a result of the coherent response exhibited by the spring phytoplankton bloom. Lake nitrate concentrations showed significant coherence in winter. With the exception of the cyanobacterial biomass in summer, phytoplankton biomass in all seasons was unrelated to the winter NAO. A strong coherence in the abundance of daphnids during spring can most likely be attributed to coherence in daphnid phenology. A strong coherence in the summer abundance of the cyclopoid copepods may have been related to a coherent change in their emergence from resting stages. We discuss the complex nature of the potential mechanisms that drive the observed changes.  相似文献   

16.
Seasonal variations in the horizontal and depth distributions of Neomysis mercedis and longfin smelt (Spirinchus thaleichthys) were examined using night-time mid-water trawl and Bongo net samples collected in Lake Washington from July 1989 to February 1992. Mysid density varied spatially, seasonally and yearly. For example, during summer, and fall (odd years), mysid abundance was highest in the northern, and lowest in the southern sections of the lake, except in December 1991 when they were uniformly distributed. In fall (November 1990), mysid density was highest in the central basin of the lake. Furthermore, in winter of even years, highest mysid density occurred in the southern region of the lake, but in the central region in winter (February) of odd year. Longfin smelt horizontal distribution also varied seasonally. For example, density of the 1988 YC smelt (1+) was highest in the northern area of Lake Washington in summer but highest in the southern area in fall. During winter, distribution seemed random. The abundance of the 1990 YC smelt (YoY) was also highest in the northern section of the lake in summer, but highest in the southern section in fall; density remained high in the southern section in winter. But, by late spring when they were more than one year old, the distribution had changed such that highest abundance occurred in the northern and mid-section of the lake. By winter when they were about two years old and about to begin spawning, density had become highest again in the southern section. These suggest extensive movement of mysids and smelt from one area to another, perhaps driven by wind-induced water currents in the lake. Depth distribution patterns of mysids and smelt are discussed. Smelt were captured mainly in the shallow strata (8 m) of the lake during all seasons except during winter when they predominated at 50 m. Mysids were also mainly caught in the shallow strata of the lake during all seasons, although a significant proportion occurred at greater depths (> 30 m). The abundance of both species was positively correlated in spring and summer but negatively correlated in fall. A poor correlation was observed in winter. Negative correlation in fall was primarily due to the occurrence of mysids and smelt in different areas of the lake whereas poor correlation in winter was particularly due to their occurrence at different depths. Because of considerable overlap in the distribution of both species in the lake, mysids face a high risk of predation by smelt. This piece of information is consistent with the hypothesis that smelt control mysid abundance in Lake Washington. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.

The decrease in tensile strength of chemically untreated cotton threads that had been exposed at different levels in lake water and lake sediment was investigated. The quotient of the tensile strength before and after exposure was taken as a measure of the potential cellulolytic activity. Two oligotrophic Swedish lakes showed a very weak cellulolytic activity. In the eutrophicated Lake Trummen the activity was high in the summer specially at the sediment-water interface, but low in the winter. During the restoration of this lake by suctiondredging the nutrient-rich sediment up on land, an easily measureable activity could also be detected in the water. The cellulose degradation was also studied in some rivers and streams and in the water of three sewage treatment plants.

  相似文献   

18.
Nutrient availability, in particular of phosphorus (P), is a key factor for the structure and functioning of shallow lakes, and not least the sediment plays an important role by acting as both a nutrient source and sink. We used 21 years of monthly mass balance and lake water data from six shallow (mean depth = 1.2–2.7 m) and fast flushed (mean hydraulic retention time = 0.6–2.6 months) eutrophic Danish lakes (mean summer P concentrations ranging from 0.09 to 0.61 mg/l) to investigate long-term trends in yearly and seasonal patterns of P retention. To one of the lakes, the external P input was reduced by 70% in the early 1990s, whereas none of the other lakes have experienced major changes in external P loading for more than 20 years. All lakes showed a distinct seasonal pattern with high P concentrations and typically negative P retention during summer (up to ?300% of the external loading from May to August). During winter, P retention was overall positive (up to 50% of the external loading from December to April). Internal P loading from the sediment delayed lake recovery by approximately 10 years in the lake with the most recently reduced external loading, but in all the lakes net release of P from the sediment occurred during summer. P release in the six lakes has not abated during the past decade, indicating that the sediment of eutrophic and turbid shallow lakes remains a net source of P during summer. The seasonal variations in P retention became more pronounced with increasing P levels, and retention decreased with increasing temperature, but increased if clear water conditions were established.  相似文献   

19.
Measures of annual breeding success are an important component of species monitoring programmes. It has been suggested that effective monitoring of breeding productivity for arctic breeding waders may be achieved from an analysis of annual variation in the proportion of juveniles in winter flocks. Here, we attempt to generate a recruitment index for Dunlin Calidris alpina caught during the winter in north Wales. This index revealed significant annual variation and we show that this is strongly correlated with summer temperature (but not rainfall) on the breeding grounds. Years with high recruitment were also correlated with increases in the national winter population estimate. In years of intermediate summer temperature, the recruitment index was highest and we discuss the possible implications this has for Dunlin under scenarios of future climate change. We were unable to generate a significant index for Common Redshank Tringa totanus and discuss possible reasons for this.  相似文献   

20.
Whereas many studies have addressed the mechanisms driving partial migration, few have focused on the consequences of partial migration on trophic dynamics, and integrated studies combining the two approaches are virtually nonexistent. Here we show that temperature affects seasonal partial migration of cyprinid fish from lakes to predation refuges in streams during winter and that this migration in combination with temperature affects the characteristics and phenology of lower trophic levels in the lake ecosystem. Specifically, our six‐year study showed that the proportion of fish migrating was positively related to lake temperature during the pre‐migration growth period, i.e. during summer. Migration from the lake occurred later when autumn water temperatures were high, and timing of return migration to the lake occurred earlier at higher spring water temperatures. Moreover, the winter mean size of zooplankton in the lake increased with the proportion of fish being away from the lake, likely as a consequence of decreased predation pressure. Peak biomass of phytoplankton in spring occurred earlier at higher spring water temperatures and with less fish being away from the lake. Accordingly, peak zooplankton biomass occurred earlier at higher spring water temperature, but relatively later if less fish were away from the lake. Hence, the time between phyto‐ and zooplankton peaks depended only on the amount of fish being away from the lake, and not on temperature. The intensity of fish migration thereby had a major effect on plankton spring dynamics. These results significantly contribute to our understanding of the interplay between partial migration and trophic dynamics, and suggest that ongoing climate change may significantly affect such dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号