首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) is a membrane-bound glycoprotein localized in the endoplasmic reticulum. This enzyme has a key role in regulating local tissue glucocorticoid concentration, acting in vivo predominantly as an oxidoreductase. Previous attempts to purify the native enzyme have yielded a protein without reductase activity. To facilitate detailed studies on its structure and regulation, we have developed a method to purify the full-length human and rat 11β-HSD1 with retention of their natural oxidoreductase activities. This procedure involved recombinant expression of these histidine-tagged enzymes in the yeast Pichia pastoris; large-scale culturing in a fermentor; and single-step purification by metal affinity chromatography. Both enzymes were 90–95% pure and exhibited dehydrogenase and reductase activities with KM values in agreement with those reported in the literature.  相似文献   

2.
A soluble yellow CO dehydrogenase from CO-autotrophically grown cells of Pseudomonas carboxydohydrogena was purified 35-fold in seven steps to better than 95% homogeneity with a yield of 30%. The final specific activity was 180 μmol of acceptor reduced per min per mg of protein as determined by an assay based on the CO-dependent reduction of thionin. Methyl viologen, nicotinamide adenine dinucleotide (phosphate), flavin mononucleotide, and flavin adenine dinucleotide were not reduced by the enzyme, but methylene blue, thionin, and toluylene blue were reduced. The molecular weight of native enzyme was determined to be 4 × 105. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate revealed at least three nonidentical subunits of molecular weights 14,000 (α), 28,000 (β), and 85,000 (γ). The ratio of densities of each subunit after electrophoresis was about 1:2:6 (α/β/γ), suggesting an α3β3γ3 structure for the enzyme. The purified enzyme was free of formate dehydrogenase and nicotinamide adenine dinucleotide-specific hydrogenase activities, but contained particulate hydrogenase-like activity with thionin as electron acceptor. Known metalchelating agents tested had no effect on CO dehydrogenase activity. No divalent cations tested stimulated enzyme activity. The native enzyme does not contain Ni since cells assimilated little 63Ni during growth, and the specific 63Ni content of the enzyme declined during purification. The isoelectric point of the native enzyme was found to be 4.5 to 4.7. The Km for CO was found to be 63 μM. The spectrum of the enzyme and its protein-free extract revealed that it contains bound flavin. The cofactor was flavin adenine dinucleotide based on enzyme digestion and thin-layer chromatography. One mole of native enzyme contains at least 3 mol of noncovalently bound flavin adenine dinucleotide.  相似文献   

3.
A novel short-chain dehydrogenases/reductases superfamily (SDRs) reductase (PsCR) from Pichia stipitis that produced ethyl (S)-4-chloro-3-hydroxybutanoate with greater than 99% enantiomeric excess, was purified to homogeneity using fractional ammonium sulfate precipitation followed by DEAE-Sepharose chromatography. The enzyme purified from recombinant Escherichia coli had a molecular mass of about 35 kDa on SDS–PAGE and only required NADPH as an electron donor. The Km value of PsCR for ethyl 4-chloro-3-oxobutanoate was 4.9 mg/mL and the corresponding Vmax was 337 μmol/mg protein/min. The catalytic efficiency value was the highest ever reported for reductases from yeasts. Moreover, PsCR exhibited a medium-range substrate spectrum toward various keto and aldehyde compounds, i.e., ethyl-3-oxobutanoate with a chlorine substitution at the 2 or 4-position, or α,β-diketones. In addition, the activity of the enzyme was strongly inhibited by SDS and β-mercaptoethanol, but not by ethylene diamine tetra acetic acid.  相似文献   

4.
Thermoanaerobacter ethanolicus (ATCC 31550) has primary and secondary alcohol dehydrogenases. The two enzymes were purified to homogeneity as judged from sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration. The apparent Mrs of the primary and secondary alcohol dehydrogenases are 184,000 and 172,000, respectively. Both enzymes have high thermostability. They are tetrameric with apparently identical subunits and contain from 3.2 to 5.5 atoms of Zn per subunit. The two dehydrogenases are NADP dependent and reversibly convert ethanol and 1-propanol to the respective aldehydes. The Vm values with ethanol as a substrate are 45.6 μmol/min per mg for the primary alcohol dehydrogenase and 13 μmol/min per mg for the secondary alcohol dehydrogenase at pH 8.9 and 60°C. The primary enzyme oxidizes primary alcohols, including up to heptanol, at rates similar to that of ethanol. It is inactive with secondary alcohols. The secondary enzyme is inactive with 1-pentanol or longer chain alcohols. Its best substrate is 2-propanol, which is oxidized 15 times faster than ethanol. The secondary alcohol dehydrogenase is formed early during the growth cycle. It is stimulated by pyruvate and has a low Km for acetaldehyde (44.8 mM) in comparison to that of the primary alcohol dehydrogenase (210 mM). The latter enzyme is formed late in the growth cycle. It is postulated that the secondary alcohol dehydrogenase is largely responsible for the formation of ethanol in fermentations of carbohydrates by T. ethanolicus.  相似文献   

5.
Mitochondrially-bound dihydroorotate dehydrogenase (EC 1.3.99.11) catalyzes the fourth sequential step in the de novo synthesis of uridine monophosphate. The enzyme has been identified as or surmised to be the pharmacological target for isoxazol, triazine, cinchoninic acid and (naphtho)quinone derivatives, which exerted antiproliferative, immunosuppressive, and antiparasitic effects. Despite this broad spectrum of biological and clinical relevance, there have been no comparative studies on drug-dihydroorotate dehydrogenase interactions. Here, we describe a study of the inhibition of the purified recombinant human and rat dihydroorotate dehydrogenase by ten compounds. 1,4-Naphthoquinone, 5,8-hydroxy-naphthoquinone and the natural compounds juglon, plumbagin and polyporic acid (quinone derivative) were found to function as alternative electron acceptors with 10-30% of control enzyme activity. The human and rat enzyme activity was decreased by 50% by the natural compound lawsone ( > 500 and 49 microM, respectively) and by the derivatives dichloroally-lawsone (67 and 10 nM), lapachol (618 and 61 nM) and atovaquone (15 microM and 698 nM). With respect to the quinone co-substrate of the dihydroorotate dehydrogenase, atovaquone (Kic = 2.7 microM) and dichloroally-lawsone (Kic = 9.8 nM) were shown to be competitive inhibitors of human dihydroorotate dehydrogenase. Atovaquone (Kic = 60 nM) was also acompetitive inhibitor of the rat enzyme. Dichloroally]-lawsone was found to be a time-dependent inhibitor of the rat enzyme, with the lowest inhibition constant (Ki* = 0.77 nM) determined so far for mammalian dihydroorotate dehydrogenases. Another inhibitor, brequinar was previously reported to be a slow-binding inhibitor of the human dihydroorotate dehydrogenase [W. Knecht, M. Loffler, Species-related inhibition of human and rat dihyroorotate dehydrogenase by immunosuppressive isoxazol and cinchoninic acid derivatives, Biochem. Pharmacol. 56 (1998) 1259-1264]. The slow binding features of this potent inhibitor (Ki* = 1.8 nM) with the human enzyme, were verified and seen to be one of the reasons for the narrow therapeutic window (efficacy versus toxicity) reported from clinical trials on its antiproliferative and immunosuppressive action. With respect to the substrate dihydroorotate, atovaquone was an uncompetitive inhibitor of human dihydroorotate dehydrogenase (Kiu = 11.6 microM) and a non-competitive inhibitor of the rat enzyme (Kiu = 905/ Kic = 1,012 nM). 1.5 mM polyporic acid, a natural quinone from fungi, influenced the activity of the human enzyme only slightly; the activity of the rat enzyme was decreased by 30%.  相似文献   

6.
The catalytic subunit of cAMP-dependent protein kinase from rat adipose tissue was purified to apparent homogeneity by making use of the differential binding of the holoenzyme and the free catalytic subunit to CM-Sephadex and by gel chromatography. Stability and yield was improved by inclusion of nonionic detergent in all steps after dissociation of the holoenzyme. Isoelectric focusing separated enzyme species with pI values of 7.8 and 8.6–8.8. The amino acid composition was similar to the enzyme purified from other tissues. Enzyme activity was markedly unstable in dilute solutions (<5 μg/ml). Additions of nonionic detergent, glycerol, bovine serum albumin and, especially, histones stabilized the enzyme. With protamine, the catalytic subunit had an apparent Km of 60 μM and Vmax of 20 μmol·min−1·mg−1, corresponding values with mixed histones were 12 μM and 1.2 μmol·min−1·mg−1. With both protein substrates the apparent Km for ATP was 11 μM. Concentrations of Mg2+ above 10 mM were inhibitory. Histone phosphorylation was inhibited by NaCl (50% at 0.5 M NaCl) while protamine phosphorylation was stimulated (4-fold at 1 M NaCl). Inorganic phosphate inhibited both substrates (histones: 50% at 0.3 M, and protamine: 50% at 0.5 M). pH optimum was around pH 9 with both substrates. The catalytic subunit contained 2.0 (range of three determinations, 1.7–2.3) mol phosphate/mol protein. It was autophosphorylated and incorporated 32Pi from [γ-32P]ATP in a time-dependent process, reaching saturation when approx. 0.1 mol phosphate/mol catalytic subunit was incorporated.  相似文献   

7.
Oxidative deamination of putrescine, the precursor of polyamines, gives rise to γ-aminobutyraldehyde (ABAL). In this study an aldehyde dehydrogenase, active on ABAL, has been purified to electrophoretic homogeneity from rat liver cytoplasm and its kinetic behaviour investigated. The enzyme is a dimer with a subunit molecular weight of 51,000. It is NAD+-dependent, active only in the presence of sulphhydryl compounds and has a pH optimum in the range 7.3–8.4. Temperatures higher than 28°C promote slow activation and the process is favoured by the presence of at least one substrate. Km for aliphatic aldehydes decreases from 110 μM for ABAL and acetaldehyde to 2–3 μM for capronaldehyde. The highest relative V-values have been observed with ABAL (100) and isobutyraldehyde (64), and the lowest with acetaldehyde (14). Affinity for NAD+ is affected by the aldehyde present at the active site: Km for NAD+ is 70 μM with ABAL, 200 μM with isobutyraldehyde and capronaldehyde, and>800 μM with acetaldehyde. The kinetic behaviour at 37°C is quite complex; according to enzymatic models, NAD+ activates the enzyme (Kact 500 μM) while NADH competes for the regulatory site (Kin 70 μM). In the presence of high NAD+ concentrations (4 mM), ABAL promotes further activation by binding to a low-affinity regulatory site (Kact 10 mM). The data show that the enzyme is probably an E3 aldehyde dehydrogenase, and suggest that it can effectively metabolize aldehydes arising from biogenic amines.  相似文献   

8.
A K-12 strain of Escherichia coli that overproduces methylenetetrahydrofolate reductase (MetF) has been constructed, and the enzyme has been purified to apparent homogeneity. A plasmid specifying MetF with six histidine residues added to the C terminus has been used to purify histidine-tagged MetF to homogeneity in a single step by affinity chromatography on nickel-agarose, yielding a preparation with specific activity comparable to that of the unmodified enzyme. The native protein comprises four identical 33-kDa subunits, each of which contains a molecule of noncovalently bound flavin adenine dinucleotide (FAD). No additional cofactors or metals have been detected. The purified enzyme catalyzes the reduction of methylenetetrahydrofolate to methyltetrahydrofolate, using NADH as the reductant. Kinetic parameters have been determined at 15°C and pH 7.2 in a stopped-flow spectrophotometer; the Km for NADH is 13 μM, the Km for CH2-H4folate is 0.8 μM, and the turnover number under Vmax conditions estimated for the reaction is 1,800 mol of NADH oxidized min−1 (mol of enzyme-bound FAD)−1. NADPH also serves as a reductant, but exhibits a much higher Km. MetF also catalyzes the oxidation of methyltetrahydrofolate to methylenetetrahydrofolate in the presence of menadione, which serves as an electron acceptor. The properties of MetF from E. coli differ from those of the ferredoxin-dependent methylenetetrahydrofolate reductase isolated from the homoacetogen Clostridium formicoaceticum and more closely resemble those of the NADH-dependent enzyme from Peptostreptococcus productus and the NADPH-dependent enzymes from eukaryotes.  相似文献   

9.
Mammalian dihydroorotate dehydrogenase, the fourth enzyme of pyrimidine de novo synthesis is an integral protein of the inner mitochondrial membrane that faces the intermembrane space and is functionally connected to the respiratory chain via ubiquinone. Here, we describe the first cloning and analyzing of the complete cDNA of mouse dihydroorotate dehydrogenase. Based on our recent functional expression of the full-length rat and human dihydroorotate dehydrogenase, here we expressed N-terminal-truncated C-terminal-histidine-tagged constructs of the mouse, rat and human enzymes in Escherichia coli. These proteins were devoid of the N-terminal bipartite sequence consisting of the mitochondrial targeting sequence and adjacent hydrophobic domain necessary for import and proper location and fixation of the enzyme in the inner mitochondrial membrane. By employing metal-chelate affinity chromatography under native conditions, the enzymes were purified without detergents to a specific activity of more than 100 micromol x min(-1) x mg(-1) at pH optimum of 8.0--8.1. Flavin analyses by UV-visible spectrometry of the native enzymes gave fairly stoichiometric ratios of 0.6--1.2 mol flavin per mol protein. The kinetic constants of the truncated rat enzyme (K(m) = 11 microM dihydroorotate; K(m) = 7 microM ubiquinone) and human enzyme (K(m) = 10 microM dihydroorotate; K(m) = 14 microM ubiquinone) were very close to those recently reported for the full-size enzymes. The constants for the mouse enzyme, K(m) = 26 microM dihydroorotate and K(m) = 62 microM ubiquinone, were slightly elevated in comparison to those of the other species. The three truncated enzymes were tested for their efficacy with five inhibitors of topical clinical relevance against autoimmune disorders and tumors. Whereas the presence of the N-terminus of dihydroorotate dehydrogenase was essentially irrelevant for the efficacy of the malononitrilamides A77-1726, MNA715 and MNA279 with the rat and human enzyme, the N-termini were found to be important for the efficacy of the dianisidine derivative redoxal. Moreover, the complete N-terminal part of the human enzyme seemed to be of crucial importance for the 'slow-binding' features of the cinchoninic acid derivative brequinar, which was suggested to be one of the reasons for the narrow therapeutic window reported from clinical trials on its anti-proliferative and immunosuppressive action.  相似文献   

10.
Folate metabolism is necessary for the biosyntheses of purine nucleotides and thymidylate and for the synthesis of S-adenosylmethionine, a cofactor required for cellular methylation reactions and a precursor of spermidine and spermine syntheses. Disruption of folate metabolism is associated with several pathologies and developmental anomalies including cancer and neural tube defects. The enzyme 5,10-methenyltetrahydrofolate synthetase (MTHFS, EC 6.3.3.2) catalyzes the ATP-dependent conversion of 5-formyltetrahydrofolate to 5,10-methenyltetrahydrofolate, and has been shown to affect intracellular folate concentrations by accelerating folate degradation. Mammalian MTHFS proteins described to date are not stable and no recombinant mammalian MTHFS protein has been successfully expressed in Escherichia coli. The three-dimensional structure of MTHFS has not been solved. The cDNA coding for Mus musculus MTHFS was isolated and expressed in E. coli with a hexa-histidine tag. Milligram quantities of recombinant mouse MTHFS were purified using metal affinity chromatography and the protein was stabilized with Tween 20. Mouse MTHFS has a molecular mass of 23 kDa and is 84% identical in amino acid sequence to the human enzyme. Activity assays confirmed the functionality of the recombinant protein, with Km=5 μM for (6S)-5-formyltetrahydrofolate and Km=769 μM for Mg–ATP. This is the first example of a mammalian form of MTHFS expressed in E. coli that yielded sufficient quantities of stable purified protein to allow for detailed characterization of its three-dimensional structure and kinetic properties.  相似文献   

11.
An N-terminally modified form of the Arabidopsis NADPH–cytochrome P450 ATR2 (ATR2mod) was expressed from the tactac promoter in Escherichia coli to obtain high yields of the enzyme. The N-terminal modification eliminates the predicted chloroplast transit peptide of ATR2 allowing for more efficient expression. ATR2mod was purified from membrane extracts using a 2′,5′-ADP–agarose affinity column. The specific activity of the purified ATR2mod for cytochrome c reduction was 9.4 μmol min−1 mg−1 and the Km for cytochrome c reduction was 15 ± 2 μM. The purified NADPH–cytochrome P450 reductase was able to support function of CYP79B2.  相似文献   

12.
3β-Hydroxysteroid dehydrogenase (3β-HSD)/Δ5→4-isomerase activity in steroidogenic tissues is required for the synthesis of biologically active steroids. Previously, by use of dehydroepiandrosterone (3β-hydroxy-5-androsten-17-one, DHEA) as substrate, it was established that in addition to steroidogenic tissues 3β-HSD/Δ5→4-isomerase activity also is expressed in extraglandular tissues of the human fetus. In the present study, we attempted to determine whether the C-5,C-6-double bond of DHEA serves to influence 3β-HSD activity. For this purpose, we compared the efficiencies of a 3β-hydroxy-5-ene steroid (DHEA) and a 3β-hydroxy-5α-reduced steroid (5α-androstane-3β,17β-diol, 5α-A-diol) as substrates for the enzyme. The apparent Michaelis constant (Km) for 5α-A-diol in midtrimester placenta, fetal liver, and fetal skin tissues was at least one order of magnitude higher than that for DHEA, viz the apparent Km of placental 3β-HSD for 5α-A-diol was in the range of 18 to 40 μmol/l (n = 3) vs 0.45 to 4 μmol/l for DHEA (n = 3); for the liver enzyme, 17 μmol/l for 5α-A-diol and 0.60 μmol/l for DHEA, and for the skin enzyme 14 and 0.18 μmol/l, respectively. Moreover, in 13 human fetal tissues evaluated the maximal velocities obtained with 5α-A-diol as substrate were higher than those obtained with DHEA. A similar finding in regard to Kms and rates of product formation was obtained by use of purified placental 3β-HSD with DHEA, pregnenolone, and 3β-hydroxy-5α-androstan-17-one (epiandrosterone) as substrates: the Km of 3β-HSD for DHEA was 2.8 μmol/l, for pregnenolone 1.9 μmol/l, and for epiandrosterone 25 μmol/l. The specific activity of the purified enzyme with pregnenolone as substrate was 27 nmol/mg protein·min and, with epiandrosterone, 127 nmol/mg protein·min. With placental homogenate as the source of 3β-HSD, DHEA at a constant level of 5 μmol/l behaved as a competitive inhibitor when the radiolabeled substrate, [3H]5α-A-diol, was present in concentrations of 20 to 60 μmol/l, but a lower substrate concentrations the inhibition was of the mixed type; similar results were obtained with [3H]DHEA as the substrate at variable concentrations in the presence of a fixed concentration of 5α-A-diol (40 μmol/l). These findings are indicative that both steroids bind to a common site on the enzyme, however, the binding affinity for these steroids appear to differ markedly as suggested by the respective Kms. Studies of inactivation of purified placental 3β-HSD/Δ5→4-isomerase by an irreversible inhibitor, viz 5,10-secoestr-4-yne-3,10,17-trione, were suggestive that the placental protein adopts different conformations depending on whether the steroidal substrate has a 5α-configuration, e.g. epiandrosterone, or a C-5,C-6-double bond e.g. DHEA or pregnenolone. The lower rates of product formation obtained with placenta and fetal tissues by use of 3β-hydroxy-5-ene steroids as substrates when compared with those obtained with 3β-hydroxy-5α-reduced steroids may be explained by a combination of factors, including: (i) inhibition of 3β-HSD activity by end products of metabolism of 3β-hydroxy-5-ene steroids, e.g. 4-androstene-3,17-dione formed with DHEA as substrate; (ii) higher binding affinity of the enzyme for 3β-hydroxy-5-ene steroids—and possibly for their 3-oxo-5-ene metabolites; (iii) lack of a requirement for the isomerization step with 5α-reduced steroids as substrates, and (iv) the possible presence in fetal tissues of an enzyme with 3β-HSD activity only (i.e. no Δ5→4-isomerase).  相似文献   

13.
A sensitive gas chromatographic–mass spectrometric method is described for reliably measuring endogenous uracil in 100 μl of human plasma. Validation of this assay over a wide concentration range, 0.025 μM to 250 μM (0.0028 μg/ml to 28 μg/ml), allowed for the determination of plasma uracil in patients treated with agents such as eniluracil, an inhibitor of the pyrimidine catabolic enzyme, dihydropyrimidine dehydrogenase. Calibration standards were prepared in human plasma using the stable isotope, [15N2]uracil, to avoid interference from endogenous uracil and 10 μM 5-chlorouracil was added as the internal standard.  相似文献   

14.
An alternative and fast method for the purification of an exo-β- -galactofuranosidase has been developed using a 4-aminophenyl 1-thio-β- -galactofuranoside affinity chromatography system and specific elution with 10 mM -galactono-1,4-lactone in a salt gradient. A concentrated culture medium from Penicillium fellutanum was chromatographed on DEAE–Sepharose CL 6B followed by chromatography on the affinity column, yielding two separate peaks of enzyme activity when elution was performed with 10 mM -galactono-1,4-lactone in a 100–500 mM NaCl salt gradient. Both peaks behaved as a single 70 kDa protein, as detected by SDS-PAGE. Antibodies elicited against a mixture of the single bands excised from the gel were capable of immunoprecipitating 0.2 units out of 0.26 total units of the enzyme from a crude extract. The glycoprotein nature of the exo-β- -galactofuranosidase was ascertained through binding to Concanavalin A–Sepharose as well as by specific reaction with Schiff reagent in Western blots. The purified enzyme has an optimum acidic pH (between 3 and 6), and Km and Vmax values of 0.311 mM and 17 μmol h−1 μg−1 respectively, when 4-nitrophenyl β- -galactofuranoside was employed as the substrate.  相似文献   

15.
Proenzyme dipeptidyl peptidase I (DPP I) of Schistosoma japonicum was expressed in a baculovirus expression system utilizing Trichoplusia ni BTI-5B1-4 (High Five) strain host insect cells. The recombinant enzyme was purified from cell culture supernatants by affinity chromatography on nickel–nitriloacetic acid resin, exploiting a polyhistidine tag fused to the COOH-terminus of the recombinant protease. The purified recombinant enzyme resolved in reducing SDS–PAGE gels as three forms, of 55, 39, and 38 kDa, all of which were reactive with antiserum raised against bacterially expressed S. japonicum DPP I. NH2-terminal sequence analysis of the 55-kDa polypeptide revealed that it corresponded to residues −180 to −175, NH2-SRXKXK, of the proregion peptide of S. japonicum DPP I. The 39- and 38-kDa polypeptides shared the NH2-terminal sequence, LDXNQLY, corresponding to residues −73 to −67 of the proregion peptide and thus were generated by removal of 126 residues from the NH2-terminus of the proenzyme. Following activation for 24 h at pH 7.0, 37°C under reducing conditions, the recombinant enzyme exhibited exopeptidase activity against synthetic peptidyl substrates diagnostic of DPP I. Specificity constants (kcat/Km) for the recombinant protease for the substrates H-Gly-Arg-NHMec and H-Gly-Phe-NHMec were found to be 14.4 and 10.7 mM1 s−1, respectively, at pH 7.0. Approximately 1 mg of affinity-purified schistosome DPP I was obtained per liter of insect cell culture supernatant, representing 2 × 109 High Five cells.  相似文献   

16.
A method for the simultaneous determination of the three selective serotonin reuptake inhibitors (SSRIs) citalopram, fluoxetine, paroxetine and their metabolites in whole blood and plasma was developed. Sample clean-up and separation were achieved using a solid-phase extraction method with C8 non-endcapped columns followed by reversed-phase high-performance liquid chromatography with fluorescence and ultraviolet detection. The robustness of the solid-phase extraction method was tested for citalopram, fluoxetine, paroxetine, Cl-citalopram and the internal standard, protriptyline, using a fractional factorial design with nine factors at two levels. The fractional factorial design showed two significant effects for paroxetine in whole blood. The robustness testing for citalopram, fluoxetine, Cl-citalopram and the internal standard revealed no significant main effects in whole blood and plasma. The optimization and the robustness of the high-performance liquid chromatographic separation were investigated with regard to pH and relative amount of acetonitrile in the mobile phase by a central composite design circumscribed. No alteration in the elution order and no significant change in resolution for a deviation of ±1% acetonitrile and ±0.3 pH units from the specified conditions were observed. The method was validated for the concentration range 0.050–5.0 μmol/l with fluorescence detection and 0.12–5.0 μmol/l with ultraviolet detection. The limits of quantitation were 0.025 μmol/l for citalopram and paroxetine, 0.050 μmol/l for desmethyl citalopram, di-desmethyl citalopram and citalopram-N-oxide, 0.12 μmol/l for the paroxetine metabolites by fluorescence detection, and 0.10 μmol/l for fluoxetine and norfluoxetine by ultraviolet detection. Relative standard deviations for the within-day and between-day precision were in the ranges 1.4–10.6% and 3.1–20.3%, respectively. Recoveries were in the 63–114% range for citalopram, fluoxetine and paroxetine, and in the 38–95% range for the metabolites. The method has been used for the analysis of whole blood and plasma samples from SSRI-exposed patients and forensic cases.  相似文献   

17.
18.
Soluble guanylate cyclase (sGC) has been purified from 100 L cell culture infected by baculovirus using the newer and highly effective titerless infected-cells preservation and scale-up (TIPS) method. Successive passage of the enzyme through DEAE, Ni2+-NTA, and POROS Q columns obtained approximately 100 mg of protein. The sGC obtained by this procedure was already about 90% pure and suitable for various studies which include high throughput screening (HTS) and hit follow-up. However, in order to obtain enzyme of greater homogeneity and purity for crystallographic and high precision spectroscopic and kinetic studies of sGC with select stimulators, the sGC solution after the POROS Q step was further purified by GTP-agarose affinity chromatography. This additional step led to the generation of 26 mg of enzyme that was about 99% pure. This highly pure and active enzyme exhibited a Mr = 144,933 by static light scattering supportive of a dimeric structure. It migrated as a two-band protein, each of equal intensity, on SDS–PAGE corresponding to the α (Mr 77,000) and β (Mr 70,000) sGC subunits. It showed an A430/A280 = 1.01, indicating one heme per heterodimer, and a maximum of the Soret band at 430 nm indicative of a penta-coordinated ferrous heme with a histidine as the axial ligand. The Soret band shifted to 398 nm in the presence of an NO donor as expected for the formation of a penta-coordinated nitrosyl-heme complex. Non-stimulated sGC had kcat/Km = 1.7 × 10−3 s−1 μM−1 that increased to 5.8 × 10−1 s−1 μM−1 upon stimulation with an NO donor which represents a 340-fold increase due to stimulation. The novel combination of using the TIPS method for co-expression of a heterodimeric heme-containing enzyme, along with the application of a reproducible ligand affinity purification method, has enabled us to obtain recombinant human sGC of both the quality and quantity needed to study structure–function relationships.  相似文献   

19.
4-trans-(N,N-Dimethylamino)cinnamaldehyde (DACA) is a chromophoric substrate of aldehyde dehydrogenase (EC 1.2.1.3) whose fate can be followed during catalysis. During this investigation we found that DACA also fluoresces and that this fluorescence is enhanced and blue-shifted upon binding to aldehyde dehydrogenase. Binding of DACA to aldehyde dehydrogenase also occurs in the absence of coenzyme. Benzaldehyde (a substrate), acetophenone (a substrate-competitive inhibitor), and the substrate-competitive affinity reagent bromoaceto-phenone interfere with DACA binding. Thus, DACA binds to the active site and can be employed for titration of active aldehyde dehydrogenase. Both E1 and E2 isozymes, which are homotetramers, bind DACA with dissociation constants of 1–4 M with a stoichiometry of 2 mol DACA/mol enzyme. The stoichiometry of enzyme–acyl intermediate was also found to be 2 mol DACA/mol enzyme for both E1 and E2 isozymes. Thus, both enzymes appear to have only two substrate-binding sites which participate in catalysis. The level of enzyme–acyl intermediate remained constant at different pH values, showing that enhancement of velocity with pH was not due to altered DACA–enzyme levels. When the reaction velocity was increased even further by using 150 M Mg2+ the intermediate level was decreased, suggesting that both increased pH and Mg2+ promote decomposition of the DACA–enzyme intermediate. Titration with DACA permits study of aldehyde substrate catalysis before central complex interconversion.  相似文献   

20.
The possible role of PGs in hyoscine-resistant nerve mediated responses of the rat urinary bladder was investigated. Responses to electrical stimulation were inhibited by cinchocaine (30 μmol/l) but were only partially inhibited by a high concentration of hyoscine (25 μmol/l) or by the choline uptake inhibitors, hemicholinium-3 (500 μmol/l) and troxypyrrolidinium (500 μmol/l). Indomethacin (50 μmol/l) produced partial blockade (30%) of responses to electrical stimulation without markedly affecting responses to acetylcholine and the degree of blockade was of a similar order in the presence of hyoscine or troxypyrrolidinium. PGE2 (0.028 – 2.8 μmol/l) or F2α (0.029 – 2.9 μmol/l) produced a slowly developing increase in tone and spontaneous activity. Responses to electrical stimulation were at most only slightly increased in the presence of either PG. However, the PGs always increased the responses to electrical stimulation after indomethacin, indomethacin plus hyoscine or indomethacin plus troxypyrrolidinium. Responses to acetylcholine in the presence of indomethacin were not increased by PGE2. It is concluded that PGE2 and F do not function as transmitters responsible for resistance to anti-muscarinic drugs in the bladder but may exert a modulating effect on nervous transmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号