首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The chronology and dynamics of the female germ cell development, of the mitotic activity of oogonia, and of the chromosome rearrangements at prophase I of meiosis have been quantitatively estimated in 30 cow embryos and foetuses at the age of 1.5 to 9 months. The sexual differentiation of the gonads was shown in a 1.5 month old embryo. The oocytes at the stages of preleptotene chromosome condensation and decondensation occurred in the 1.5 month old embryos and their maximum number was observed in the 2-5 month old foetuses. The leptotene oocytes were found in the 2-2.5 month old foetuses. The transition to zygotene and pachytene was also recorded in the 2-2.5 month old foetuses but their maximum number was observed in the 4-6 month old foetuses; their number was reduced to single oocytes thereafter. The first diplotene oocytes appeared in the 3 month old foetuses but the active transition of the oocytes to diplotene was observed after four months of development. The formation of a layer of follicle cells takes place around the diplotene oocytes. The vast majority of degenerating germ cells are the oocytes in zygotene-pachytene and in diplotene. The population of germ cells is formed by the mitotic division of oogonia in the cow foetuses, mainly at the age of 1.5 to 4 months of development.  相似文献   

2.
Aromatase inhibitors administered before sexual differentiation of the gonads can induce sex reversal in female chickens. To analyze the process of sex reversal, we have followed for several months the changes induced by Fadrozole, a nonsteroidal aromatase inhibitor, in gonadal aromatase activity and in morphology and structure of the female genital system. Fadrozole was injected into eggs on day four of incubation, and its effects were examined during the embryonic development and for eight months after hatching. In control females, aromatase activity in the right and the left gonad was high in the middle third of embryonic development, and then decreased up to hatching. After hatching, aromatase activity increased in the left ovary, in particular during folliculogenesis, whereas in the right regressing gonad, it continued to decrease to reach testicular levels at one month. In treated females, masculinization of the genital system was characterized by the maintenance of the right gonad and its differentiation into a testis, and by the differentiation of the left gonad into an ovotestis or a testis; however, in all individuals, the left Müllerian duct and the posterior part of the right Müllerian duct were maintained. In testes and ovotestes, aromatase activity was lower than in gonads of control females (except in the right gonad as of one month after hatching) but remained higher than in testes of control and treated males. Moreover, in ovotestes, aromatase activity was higher in parts displaying follicles than in parts devoid of follicles. The main structural changes in the gonads during sex reversal were partial (in ovotestes) or complete (in testes) degeneration of the cortex in the left gonad, and formation of an albuginea and differentiation of testicular cords/tubes in the two gonads. Testicular cords/tubes transdifferentiated from ovarian medullary cords and lacunae whose epithelium thickened and became Sertolian. Transdifferentiation occurred all along embryonic and postnatal development; thus, new testicular cords/tubes were continuously formed while others degenerated. The sex reversed gonads were also characterized by an abundant fibrous interstitial tissue and abnormal medullary condensations of lymphoid-like cells; in the persisting testicular cords/tubes, spermatogenesis was delayed and impaired. Related to aromatase activity, persistence of too high levels of estrogens can explain the presence of oviducts, gonadal abnormalities and infertility in sex reversed females.  相似文献   

3.
4.
Heat shock protein 60 (HSP60), a member of the chaperonin family, has an essential role in mediating correct folding of nuclear encoded proteins imported to mitochondria. We have investigated immunocytochemical expression of HSP60 in developing fetal, newborn, postnatal, and pubertal testis and ovary, and in the adult ovary of the rat. In the fetal gonads, HSP60 was expressed in the germ cells organized into sex cords and in the developing Leydig cells of the testis. In the pubertal testis, Leydig cells were strongly, spermatogonia and premeiotic spermatocytes moderately labeled, spermatids unlabeled. In the postnatal ovary, oocytes at all stages of folliculogenesis were positive for HSP60. In the pubertal ovary, glandular theca cells, and in the mature ovary, also the cells of the corpora lutea exhibited intense cytoplasmic labeling. At the electron microscopic level, immunogold particles were localized in the mitochondrial matrix, and in the Western blot analysis the antibody detected one single band of 60 kDa. Anti-HSP60 labeling in male and female sex steroid producing cells and their progenitors seems to be coordinated with the functional differentiation of these endocrine cells of the gonad. In the oocytes, a key element required for proper folding of imported mitochondrial proteins seems to be constitutively expressed throughout folliculogenesis. However, the data suggest that in the male germ cells mitochondrial chaperonin HSP60 is either not needed during the haploid phase of spermatogenesis or its level becomes extensively reduced and therefore undetectable by the methods used in the study.  相似文献   

5.
6.
Among the most defining events of an individual's life, is the development of a human embryo into male or a female. The phenotypic sex of an individual depends on the type of gonad that develops in the embryo, a process which itself is determined by the genetic setting of the individual. The development of the gonads is different from any other organ, as they possess the potential to differentiate into two functionally distinct organs, testes, or ovaries. Sex development can be divided into two distinctive processes, “sex determination,” which is the commitment of the undifferentiated gonad into either a testis or an ovary, a process that is genetically programmed in a critically timed manner and “sex differentiation,” which takes place through hormones produced by the gonads, once the developmental sex determination decision has been made. Disruption of any of the genes involved in either the testicular or ovarian development pathway could lead to disorders of sex development. In this review, we provide an insight into the factors important for sex determination, their antagonistic actions and whenever possible, references on the “prismatic” clinical cases are given. Birth Defects Research (Part C) 108:365–379, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

7.
American alligator (Alligator mississippiensis) ovary development is incomplete at hatching. During the months following hatching, the cortical processes of oogenesis started in ovo continues and folliculogenesis is initiated. Additionally, the medullary region of the gonad undergoes dramatic restructuring. We describe alligator ovarian histology at hatching, 1 week, 1 month, and 3 months of age in order to characterize the timing of morphological development and compare these findings to chicken ovary development. At hatching, the ovarian cortex presents a germinal epithelium containing oogonia and a few primary oocytes irregularly scattered between somatic epithelial cells. The hatchling medulla shows fragmentation indicative of the formation of lacunae. By 1 week of age, oocytes form growing nests and show increased interactions with somatic cells, indicative of the initiation of folliculogenesis. Medullary lacunae increase in diameter and contain secretory material in their lumen. At 1 month, nest sizes and lacunar diameters continue to enlarge. Pachytene oocytes surrounded by somatic cells are more frequent. Trabeculae composed of dense irregular connective tissue divide cortical nests. Three months after hatching oocytes in meiotic stages of prophase I up to diplotene are present. The ovary displays many enlarged follicles with oocytes in diplotene arrest, thecal layers, lampbrush chromosomes, and complete layers of follicular cells. The medulla is an elaborated complex of vascularized lacunae underlying the cortex and often containing discrete lymphoid aggregates. While the general morphology of the alligator ovary is similar to that of the chicken ovary, the progression of oogenesis and folliculogenesis around hatching is notably slower in alligators. Diplotene oocytes are observed at hatching in chickens, but not until 3 months in alligators. Folliculogenesis is completed at 3 weeks in chickens whereas it is still progressing at 3 months in alligators.  相似文献   

8.
9.
The establishment and sexual differentiation of the gonads of horse embryos were studied using high-resolution techniques. The most dramatic observation is the early cytodifferentiation of the somatic cells into steroidogenic cells which takes place before sexual differentiation of the gonads. A unique morphogenetic pattern is established during this process: the seminiferous cords of the testis are completely segregated from the steroidogenic tissue by a basal lamina, while in the medulla of the ovary, steroidogenic cells differentiate inside the epithelial cords which contain germ cells. This early difference in the topographical distribution of steroidogenic cells favours the hypothesis that the interactions between somatic and germ cells vary with the genetic sex. The possibility of finding qualitative differences in steroidogenesis before and during sexual differentiation of the gonad suggests the horse gonad as a good model for the study of the role of the steroid hormones in the sexual differentiation of the mammalian gonad.  相似文献   

10.
The aim of this study was to present data about ovary organization and oogenesis in two small groups of clitellate annelids, i.e. in representatives of Acanthobdellida (Acanthobdella peledina) and Branchiobdellida (Branchiobdella pentodonta and Branchiobdella parasitica), and to compare them to ovaries known from true leeches and oligochaetous clitellates. In A. peledina, the ovaries have the form of elongated cords, termed ovary cords, and are enveloped by coelomic sacs, the so-called ovisacs. The ovisacs are paired and each one contains only one ovary cord. The morphology and structure of the ovary cords depend on the maturity level of the animal. In young specimens the ovary cords are short and contain mainly oogonial cells and germ cells entering meiosis. Oogonia divide mitotically without full cytokineses, and as a result germ-line cysts are formed. As the animals grow, the cords become more elongated and the germ cells within the cords differentiate into nurse cells and oocytes. Oocytes gather cell organelles and, finally, detach from the ovary cord and float freely in the ovisac lumen.In both examined branchiobdellidans the ovaries are also paired. They are short and conical and are not enclosed within ovisacs. The narrow end of each ovary is connected to the intersegmental septum via a ligament, whereas the outermost (broad) end of the ovary extends freely into the coelom. The ovaries are polarized. Their narrow ends contain oogonia, whereas nurse cells and growing oocytes, gradually projecting from the ovary, can be found in their middle and outermost parts. Early vitellogenic oocytes detach from the ovary and float freely in the coelom.In all of the species studied, the ovaries are made up of germ-line cysts associated with somatic (follicular) cells. The architecture of a germ-line cyst is exactly the same as in other clitellate annelids that have been studied to date. Each germ cell in a cyst has one stable cytoplasmic bridge connecting it with a central anuclear cytoplasmic mass, a cytophore. The fate of germ cells constituting cysts is diverse. The majority of the cells withdraw from meiosis and become nurse cells; only a few continue meiosis, grow and become oocytes. The meroistic mode of oogenesis is suggested. We suggest also that the formation of germ-line cysts and ovary meroism should be regarded as basal conditions for all Clitellata. The occurrence of ovisacs enveloping the ovaries in A. peledina and Hirudinida is regarded as a synapomorphy of both groups, whereas ovaries found in B. pentodonta and B. parasitica have no ovisacs and resemble ovaries described in Oligochaeta sensu stricto.  相似文献   

11.
Embryonic testes grafted in the extraembryonic coelom of 3-day-old genetically female chick embryos may induce total and definitive reversal of gonadal sex differentiation. In this experimental condition, the left gonad becomes a testis instead of an ovary. This makes it possible to compare testicular and ovarian morphogenesis in animals having the same genetic sex and to discount what is due to differences in the genetic determination between male and female. The morphogenesis of such testes is marked by a disappearance of the cortical germinal epithelium. The medullary sex cords keep a narrow lumen instead of becoming large lacunae. The germ cells remain few in the sex cords and do not become meiotic. Furthermore, interstitial cell development is known to be very slow. As a consequence the gross size of the gonad is much smaller than that of an ovary. All these morphogenetic phenomena are unlike those observed during normal ovarian differentiation and evidence an inhibiting influence of the grafted testes. Since inhibition and masculinization are concomitant, inhibition appears to be the mechanism responsible for gonadal sex reversal. The extraembryonic situation of the grafted testes and their relation with the embryo only via the blood stream demonstrates the role of a secreted substance or substances still to be exactly identified. Previous data suggest that this could be the anti-Müllerian-hormone (AMH). Furthermore, previous and present results show that testis differentiation can be actively induced in a bird. This does not agree with the hypothesis that the gonads of the homogametic sex, i.e., the testes in birds, do not need any inducer in order to differentiate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
13.
Germ line control of female sex determination in zebrafish   总被引:2,自引:0,他引:2  
A major transition during development of the gonad is commitment from an undifferentiated “bi-potential” state to ovary or testis fate. In mammals, the oogonia of the developing ovary are known to be important for folliculogenesis. An additional role in promoting ovary fate or female sex determination has been suggested, however it remains unclear how the germ line might regulate this process. Here we show that the germ line is required for the ovary versus testis fate choice in zebrafish. When the germ line is absent, the gonad adopts testis fate. These germ line deficient testes have normal somatic structures indicating that the germ line influences fate determination of surrounding somatic tissues. In germ line deficient animals the expression of the ovary specific gene cyp19a1a fails to be maintained whereas the testis genes sox9a and amh remain expressed. Furthermore, we observed decreased levels of the ovary specific genes cyp19a1a and foxL2 in germ line deficient animals prior to morphological sex differentiation of the gonad. We propose that the germ line has a common role in female sex determination in fish and mammals. Additionally, we show that testis specification is sufficient for masculinization of the fish pointing to a direct role of hormone signaling from the gonad in directing sex differentiation of non-gonadal tissues.  相似文献   

14.
Fetal mouse testes and ovaries with their urogenital connections were cultured singly or in pairs on Nuclepore filters. When a testis in which the sex was not yet morphologically detectable was cultured together with older ovaries containing germ cells which were progressing through the meiotic prophase, the male germ cells were triggered to enter meiosis. When older fetal testes in which the testicular cords have developed were cultured together with ovaries of the same age with germ cells in meiosis, the oocytes were prevented from reaching diplotene stage. It was concluded that the fetal male and female gonads secrete diffusable substances which influence germ cell differentiation. The male gonad secretes a "meiosis-preventing substance" (MPS) which can arrest the female germ cells within the meiotic prophase. The female gonad secretes a "meiosis-inducing substance" (MIS) which can trigger the nondifferentiated male germ cells to enter meiosis.  相似文献   

15.
The rat embryo (13 and 15 days of development) gonad germs of both sex, as well as isolated primary germ cells (PGC) have been transplanted into testes of mature animals of the same strain and investigated for 1.5 years. The isolated PGC are not able for further development and subjected to reduction. The gonad germs form analogues of the gonads with formation of definitive gonadal cells in 30 days. Further, degeneration of mature gonadal cells takes place. For realization of PGC ++cyto-differential processes and their stage-to-stage transformation into mature gametes certain interactions are necessary with concrete surrounding tissues that are at a strictly synchronized (with germ cells) stages of development.  相似文献   

16.
We investigated ovary and testis development of Alligator mississippiensis during the first 5 months posthatch. To better describe follicle assembly and seminiferous cord development, we used histochemical techniques to detect carbohydrate‐rich extracellular matrix components in 1‐week, 1‐month, 3‐month, and 5‐month‐old gonads. We found profound morphological changes in both ovary and testis. During this time, oogenesis progressed up to diplotene arrest and meiotic germ cells increasingly interacted with follicular cells. Concomitant with follicles becoming invested with full complements of granulosa cells, a periodic acid Schiff's (PAS)‐positive basement membrane formed. As follicles enlarged and thecal layers were observed, basement membranes and thecal compartments gained periodic acid‐methionine silver (PAMS)‐reactive fibers. The ovarian medulla increased first PAS‐ and then PAMS reactivity as it fragmented into wide lacunae lined with low cuboidal to squamous epithelia. During this same period, testicular germ cells found along the tubule margins were observed progressing from spermatogonia to round spermatids located within the center of tubules. Accompanying this meiotic development, interstitial Leydig cell clusters become more visible and testicular capsules thickened. During the observed testis development, the thickening tunica albuginea and widening interstitial tissues showed increasing PAS‐ and PAMS reactivity. We observed putative intersex structures in both ovary and testis. On the coelomic aspect of testes were cell clusters with germ cell morphology and at the posterior end of ovaries, we observed “medullary rests” resembling immature testis cords. We hypothesize laboratory conditions accelerated gonad maturation due to optimum conditions, including nutrients and temperature. Laboratory alligators grew more rapidly and with increased body conditions compared with previous measured, field‐caught animals. Additionally, we predict the morphological maturation observed in these gonads is concomitant with increased endocrine activities. J. Morphol. 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
Regulatory effect of surfagon—a synthetic analog of gonadotropin-releasing hormone—on the gonad state of rainbow trout (Kamchatka steelhead Parasalmo mykiss (=Oncorhynchus mykiss)) juveniles is investigated. The juveniles were 2.5 months old and were exposed to brief (4 days) heat stress (19–20°C). The increase of water temperature was followed by anomalies of gonads after 1 month (destruction of sex cells and hypertrophy of connective tissue). In females, the increased water temperature activates sex redetermination: in ovaries, cysts containing destroyed spermatogonia are found. In 1.5 months, the exogenous application of surfagon was followed by acceleration of spermatogenesis in gonads of experimental fish (2.5 months old) and by a slight decrease of fraction of anomalies in structure of their testes compared with the gonads of fish not exposed to surfagon. Exposure of rainbow trout to surfagon prior to sex differentiation is more efficient than after it is completed.  相似文献   

18.
Gonad development and sex differentiation from embryos to 594‐day‐old individuals were investigated in farmed Acipenser naccarii using light and transmission electron microscopy. The migrating primordial germ cells first appear along the dorsal wall of the body cavity in embryos 1.5 days before hatching. The gonadal ridge, containing a few primary primordial germ cells (PGC‐1) surrounded by enveloping cells, appears in 16‐day‐old larvae. At 60 days, the undifferentiated gonad is lamellar and PGC‐1 multiply, producing PGC‐2. In 105‐day‐old juveniles, a distinct germinal area with advanced PGC‐2 appears on the lateral side near the mesogonium and the first blood vessels are visible. At 180 days, putative ovaries with a notched gonadal epithelium and putative testes with a smooth one appear, together with adipose tissue on the distal side. In 210‐day‐old juveniles, active proliferation of germ cells begins in the putative ovaries, whereas putative testes still contain only a few germ cells. The onset of meiosis and reorganization of stromal tissue occurs in ovaries of 292‐day‐old individuals. Ovaries with developed lamellae enclosing early oocyte clusters and follicles with perinucleolar oocytes occur at 594 days. Meiotic stages are never found, even in anastomozing tubular testes of 594‐day‐old individuals. Steroid producing cells are detected in the undifferentiated gonad and in the differentiated ones of both sexes. Anatomical differentiation of the gonad precedes cytological differentiation and female differentiation largely precedes that of the male. Gonad development and differentiation are also associated with structural changes of connective tissue, viz. collagen‐rich areas are massive in developing testes and reduced in ovaries. J. Morphol., 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

19.
Ovarian follicular granulosa cells surround and nurture oocytes, and produce sex steroid hormones. It is believed that during development the ovarian surface epithelial cells penetrate into the ovary and develop into granulosa cells when associating with oogonia to form follicles. Using bovine fetal ovaries (n = 80) we identified a novel cell type, termed GREL for Gonadal Ridge Epithelial-Like. Using 26 markers for GREL and other cells and extracellular matrix we conducted immunohistochemistry and electron microscopy and chronologically tracked all somatic cell types during development. Before 70 days of gestation the gonadal ridge/ovarian primordium is formed by proliferation of GREL cells at the surface epithelium of the mesonephros. Primordial germ cells (PGCs) migrate into the ovarian primordium. After 70 days, stroma from the underlying mesonephros begins to penetrate the primordium, partitioning the developing ovary into irregularly-shaped ovigerous cords composed of GREL cells and PGCs/oogonia. Importantly we identified that the cords are always separated from the stroma by a basal lamina. Around 130 days of gestation the stroma expands laterally below the outermost layers of GREL cells forming a sub-epithelial basal lamina and establishing an epithelial-stromal interface. It is at this stage that a mature surface epithelium develops from the GREL cells on the surface of the ovary primordium. Expansion of the stroma continues to partition the ovigerous cords into smaller groups of cells eventually forming follicles containing an oogonium/oocyte surrounded by GREL cells, which become granulosa cells, all enclosed by a basal lamina. Thus in contrast to the prevailing theory, the ovarian surface epithelial cells do not penetrate into the ovary to form the granulosa cells of follicles, instead ovarian surface epithelial cells and granulosa cells have a common precursor, the GREL cell.  相似文献   

20.
The development and differentiation of the gonads of embryonic alligators incubated at 30 °C (100% female producing) and 33 °C (100% male producing) was investigated histologically. The stage of development of the gonad and differentiation into an ovary or a testis occurred at essentially the same time at both temperatures. This contrasts with the overall development of the embryos which was slower at the lower temperature. A few days prior to differentiation, gonads grew more quickly at 33 °C than they did at 30 °C. However, once differentiated into a presumptive testis, gonads reduced in volume so that at hatching presumptive testes were smaller than presumptive ovaries. It is hypothesized that synchrony/asynchrony of development of the gonad and the rest of the embryo may account for temperature-dependent sex determination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号