首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The assembly of gap junction channels was studied using mammalian cells expressing connexin (Cx) 26, 32 and 43 in which the carboxyl terminus was fused to green, yellow or cyan fluorescent proteins (GFP, YFP, CFP). Intracellular targeting of Cx32-CFP and 43-GFP to gap junctions was disrupted by brefeldin A treatment and resulted in a severe loss of gap junctional intercellular communication reflected by low intercellular dye transfer. Cells expressing Cx43-GFP exposed to nocodazole showed normal targeting to gap junctions and dye transfer. Cx32 and 43 thus appear to be transported and assembled into gap junctions via the classical secretory pathway. In contrast, we found that assembly of Cx26-GFP into functional gap junctions was relatively unaffected by treatment of cells with brefeldin A, but was extremely sensitive to nocodazole treatment. Coexpression of Cx26-YFP and Cx32-CFP indicated a different intracellular distribution that was accentuated in the presence of brefeldin A, with the gap junctions in these cells constructed predominantly of Cx26-YFP. A site specific mutation in the first transmembrane domain that distinguished Cx32 from Cx26 (Cx32128L) resulted in the adoption of the trafficking properties of Cx26 as well as its unusual post-translational membrane integration characteristics. The results indicate that multiple intracellular connexin trafficking routes exist and provide a further mechanism for regulating the connexin composition of gap junctions and thus specificity in intercellular signalling.  相似文献   

2.
The assembly of gap junction channels was studied using mammalian cells expressing connexin (Cx) 26, 32 and 43 in which the carboxyl terminus was fused to green, yellow or cyan fluorescent proteins (GFP, YFP, CFP). Intracellular targeting of Cx32-CFP and 43-GFP to gap junctions was disrupted by brefeldin A treatment and resulted in a severe loss of gap junctional intercellular communication reflected by low intercellular dye transfer. Cells expressing Cx43-GFP exposed to nocodazole showed normal targeting to gap junctions and dye transfer. Cx32 and 43 thus appear to be transported and assembled into gap junctions via the classical secretory pathway. In contrast, we found that assembly of Cx26-GFP into functional gap junctions was relatively unaffected by treatment of cells with brefeldin A, but was extremely sensitive to nocodazole treatment. Coexpression of Cx26-YFP and Cx32-CFP indicated a different intracellular distribution that was accentuated in the presence of brefeldin A, with the gap junctions in these cells constructed predominantly of Cx26-YFP. A site specific mutation in the first transmembrane domain that distinguished Cx32 from Cx26 (Cx32128L) resulted in the adoption of the trafficking properties of Cx26 as well as its unusual post-translational membrane integration characteristics. The results indicate that multiple intracellular connexin trafficking routes exist and provide a further mechanism for regulating the connexin composition of gap junctions and thus specificity in intercellular signalling.  相似文献   

3.
Trafficking pathways underlying the assembly of connexins into gap junctions were examined using living COS-7 cells expressing a range of connexin-aequorin (Cx-Aeq) chimeras. By measuring the chemiluminescence of the aequorin fusion partner, the translocation of oligomerized connexins from intracellular stores to the plasma membrane was shown to occur at different rates that depended on the connexin isoform. Treatment of COS-7 cells expressing Cx32-Aeq and Cx43-Aeq with brefeldin A inhibited the movement of these chimera to the plasma membrane by 84 +/- 4 and 88 +/- 4%, respectively. Nocodazole treatment of the cells expressing Cx32-Aeq and Cx43-Aeq produced 29 +/- 16 and 4 +/- 7% inhibition, respectively. In contrast, the transport of Cx26 to the plasma membrane, studied using a construct (Cx26/43T-Aeq) in which the short cytoplasmic carboxyl-terminal tail of Cx26 was replaced with the extended carboxyl terminus of Cx43, was inhibited 89 +/- 5% by nocodazole and was minimally affected by exposure of cells to brefeldin A (17 +/-11%). The transfer of Lucifer yellow across gap junctions between cells expressing wild-type Cx32, Cx43, and the corresponding Cx32-Aeq and Cx43-Aeq chimeras was reduced by nocodazole treatment and abolished by brefeldin A treatment. However, the extent of dye coupling between cells expressing wild-type Cx26 or the Cx26/43T-Aeq chimeras was not significantly affected by brefeldin A treatment, but after nocodazole treatment, transfer of dye to neighboring cells was greatly reduced. These contrasting effects of brefeldin A and nocodazole on the trafficking properties and intercellular dye transfer are interpreted to suggest that two pathways contribute to the routing of connexins to the gap junction.  相似文献   

4.
Cytoskeletal elements may be important in connexin transport to the cell surface, cell surface gap junction plaque formation and/or gap junction internalization. In this study, fluorescence recovery after photobleaching was used to examine the role of microfilaments and microtubules in the recruitment and coalescence of green fluorescent protein-tagged Cx43 (Cx43-GFP) or yellow fluorescent tagged-Cx26 (Cx26-YFP) into gap junctions in NRK cells. In untreated cells, both Cx26-YFP and Cx43-GFP were recruited into gap junctions within photobleached areas of cell-cell contact within 2 hrs. However, disruption of microfilaments with cytochalasin B inhibited the recruitment and assembly of both Cx26-YFP and Cx43-GFP into gap junctions within photobleached areas. Surprisingly, disruption of microtubules with nocodazole inhibited the recruitment of Cx43-GFP into gap junctions but had limited effect on the transport and clustering of Cx26-YFP into gap junctions within the photobleached regions of cell-cell contact. These results suggest that the recruitment of Cx43-GFP and Cx26-YFP to the cell surface or their lateral clustering into gap junctions plaques is dependent in part on the presence of intact actin microfilaments while Cx43-GFP was more dependent on intact microtubules than Cx26-YFP.  相似文献   

5.
Cytoskeletal elements may be important in connexin transport to the cell surface, cell surface gap junction plaque formation and/or gap junction internalization. In this study, fluorescence recovery after photobleaching was used to examine the role of microfilaments and microtubules in the recruitment and coalescence of green fluorescent protein-tagged Cx43 (Cx43-GFP) or yellow fluorescent tagged-Cx26 (Cx26-YFP) into gap junctions in NRK cells. In untreated cells, both Cx26-YFP and Cx43-GFP were recruited into gap junctions within photobleached areas of cell-cell contact within 2 hrs. However, disruption of microfilaments with cytochalasin B inhibited the recruitment and assembly of both Cx26-YFP and Cx43-GFP into gap junctions within photobleached areas. Surprisingly, disruption of microtubules with nocodazole inhibited the recruitment of Cx43-GFP into gap junctions but had limited effect on the transport and clustering of Cx26-YFP into gapjunctions within the photobleached regions of cell-cell contact. These results suggest that the recruitment of Cx43-GFP and Cx26-YFP to the cell surface or their lateral clustering into gap junctions plaques is dependent in part on the presence of intact actin microfilaments while Cx43-GFP was more dependent on intact microtubules than Cx26-YFP.  相似文献   

6.
Cytoskeletal elements may be important in connexin transport to the cell surface, cell surface gap junction plaque formation and/or gap junction internalization. In this study, fluorescence recovery after photobleaching was used to examine the role of microfilaments and microtubules in the recruitment and coalescence of green fluorescent protein-tagged Cx43 (Cx43-GFP) or yellow fluorescent tagged-Cx26 (Cx26-YFP) into gap junctions in NRK cells. In untreated cells, both Cx26-YFP and Cx43-GFP were recruited into gap junctions within photobleached areas of cell-cell contact within 2 hrs. However, disruption of microfilaments with cytochalasin B inhibited the recruitment and assembly of both Cx26-YFP and Cx43-GFP into gap junctions within photobleached areas. Surprisingly, disruption of microtubules with nocodazole inhibited the recruitment of Cx43-GFP into gap junctions but had limited effect on the transport and clustering of Cx26-YFP into gapjunctions within the photobleached regions of cell-cell contact. These results suggest that the recruitment of Cx43-GFP and Cx26-YFP to the cell surface or their lateral clustering into gap junctions plaques is dependent in part on the presence of intact actin microfilaments while Cx43-GFP was more dependent on intact microtubules than Cx26-YFP.  相似文献   

7.
Synthetic peptides homologous to the Gap 26 and Gap 27 domains of the first and second extracellular loops of the major vascular connexins (Cx37, Cx40, and Cx43) have been used to investigate the role of gap junctions in endothelium-derived hyperpolarizing factor (EDHF)-type relaxations of the rat hepatic artery. These peptides were designated 37,40Gap 26, 43Gap 26, 37,43Gap 27, and 40Gap 27, according to connexin specificity. When administered at 600 microM, none of the peptides individually affected maximal EDHF-type relaxations to ACh. By contrast, at 300 microM each, paired peptide combinations targeting more than one connexin subtype attenuated relaxation by up to 50%, and responses were abolished by the triple peptide combination 43Gap 26 + 40Gap 27 + 37,43Gap 27. In parallel experiments with A7r5 cells expressing Cx40 and Cx43, neither 43Gap 26 nor 40Gap 27 affected intercellular diffusion of Lucifer yellow individually but, in combination, significantly attenuated dye transfer. The findings confirm that functional cell-cell coupling may depend on more than one connexin subtype and demonstrate that direct intercellular communication via gap junctions constructed from Cx37, Cx40, and Cx43 underpins EDHF-type responses in the rat hepatic artery.  相似文献   

8.
Mutations in the genes that encode Connexin 26 (GJB2) and Connexin 30 (GJB6) are the most common known cause of hereditary nonsyndromic sensorineural deafness. Cx26 and Cx30 share a similar protein structure, as well as the same expression distribution pattern in the cochlea. Cx26 has different intracellular trafficking properties compared to those of Cx43 and Cx32, whose trafficking manner is consistent with the classical membrane protein secretory pathway. Until now, however, the trafficking patterns of Cx30 have not been studied. By means of an immunofluorescence staining approach, we found that the targeting of Cx30 to gap junctions in transfected HeLa cells is not affected by brefeldin A, suggesting a Golgi-independent feature, similar to Cx26. Nocodazole had a minimal effect on assembly and distribution of Cx30 gap junctions. Cytochalasin B-induced actin filament depolymerization, however, affected both the pattern and the distribution of Cx30 gap junctions. Co-localization with and/or interaction between Cx30 and microtubules and cortical actin filaments, but not with the tight/adherens junction protein ZO-1, was confirmed by immunofluorescence and/or immunoprecipitation methods. The results suggest that the cytoskeleton, and especially actin filaments, are important components in the processes of assembly, trafficking and stabilization of Cx30 gap junctions.  相似文献   

9.
To examine the trafficking, assembly, and turnover of connexin43 (Cx43) in living cells, we used an enhanced red-shifted mutant of green fluorescent protein (GFP) to construct a Cx43-GFP chimera. When cDNA encoding Cx43-GFP was transfected into communication-competent normal rat kidney cells, Cx43-negative Madin-Darby canine kidney (MDCK) cells, or communication-deficient Neuro2A or HeLa cells, the fusion protein of predicted length was expressed, transported, and assembled into gap junctions that exhibited the classical pentalaminar profile. Dye transfer studies showed that Cx43-GFP formed functional gap junction channels when transfected into otherwise communication-deficient HeLa or Neuro2A cells. Live imaging of Cx43-GFP in MDCK cells revealed that many gap junction plaques remained relatively immobile, whereas others coalesced laterally within the plasma membrane. Time-lapse imaging of live MDCK cells also revealed that Cx43-GFP was transported via highly mobile transport intermediates that could be divided into two size classes of <0.5 microm and 0.5-1.5 microm. In some cases, the larger intracellular Cx43-GFP transport intermediates were observed to form from the internalization of gap junctions, whereas the smaller transport intermediates may represent other routes of trafficking to or from the plasma membrane. The localization of Cx43-GFP in two transport compartments suggests that the dynamic formation and turnover of connexins may involve at least two distinct pathways.  相似文献   

10.
We have identified cells expressing Cx26, Cx30, Cx32, Cx36 and Cx43 in gap junctions of rat central nervous system (CNS) using confocal light microscopic immunocytochemistry and freeze-fracture replica immunogold labeling (FRIL). Confocal microscopy was used to assess general distributions of connexins, whereas the 100-fold higher resolution of FRIL allowed co-localization of several different connexins within individual ultrastructurally-defined gap junction plaques in ultrastructurally and immunologically identified cell types. In >4000 labeled gap junctions found in >370 FRIL replicas of gray matter in adult rats, Cx26, Cx30 and Cx43 were found only in astrocyte gap junctions; Cx32 was only in oligodendrocytes, and Cx36 was only in neurons. Moreover, Cx26, Cx30 and Cx43 were co-localized in most astrocyte gap junctions. Oligodendrocytes shared intercellular gap junctions only with astrocytes, and these heterologous junctions had Cx32 on the oligodendrocyte side and Cx26, Cx30 and Cx43 on the astrocyte side. In 4 and 18 day postnatal rat spinal cord, neuronal gap junctions contained Cx36, whereas Cx26 was present in leptomenigeal gap junctions. Thus, in adult rat CNS, neurons and glia express different connexins, with "permissive" connexin pairing combinations apparently defining separate pathways for neuronal vs. glial gap junctional communication.  相似文献   

11.
We have identified cells expressing Cx26, Cx30, Cx32, Cx36 and Cx43 in gap junctions of rat central nervous system (CNS) using confocal light microscopic immunocytochemistry and freeze-fracture replica immunogold labeling (FRIL). Confocal microscopy was used to assess general distributions of connexins, whereas the 100-fold higher resolution of FRIL allowed co-localization of several different connexins within individual ultrastructurally-defined gap junction plaques in ultrastructurally and immunologically identified cell types. In >4000 labeled gap junctions found in >370 FRIL replicas of gray matter in adult rats, Cx26, Cx30 and Cx43 were found only in astrocyte gap junctions; Cx32 was only in oligodendrocytes, and Cx36 was only in neurons. Moreover, Cx26, Cx30 and Cx43 were co-localized in most astrocyte gap junctions. Oligodendrocytes shared intercellular gap junctions only with astrocytes, and these heterologous junctions had Cx32 on the oligodendrocyte side and Cx26, Cx30 and Cx43 on the astrocyte side. In 4 and 18 day postnatal rat spinal cord, neuronal gap junctions contained Cx36, whereas Cx26 was present in leptomenigeal gap junctions. Thus, in adult rat CNS, neurons and glia express different connexins, with “permissive” connexin pairing combinations apparently defining separate pathways for neuronal vs. glial gap junctional communication.  相似文献   

12.
We examined the subcellular localization and function of several Cx26 mutants that exhibit both sensorineural deafness and various skin disease phenotypes. To facilitate these aims, all Cx26 mutants were tagged at the carboxyl-terminal with green fluorescent protein (GFP), which has previously been shown not to affect Cx26 transport, assembly or function. In this article we focus on two point mutations (R75W and DeltaE42) that occur in the first extracellular loop region of Cx26, a region hypothesized to be critical for correct hemichannel docking between contacting cells. In gap junctional intercellular communication (GJIC)-deficient HeLa cells, both R75W-GFP and DeltaE42-GFP were transported to the cell surface and assembled into gap junction-like structures. Neither R75W-GFP nor DeltaE42-GFP formed gap junctions that were permeable to Lucifer Yellow suggesting they are loss-of-function mutations. We also examined the phenotype of these two mutations in a rat epidermal keratinocyte (REK) cell line that is capable of undergoing differentiation. Using antibodies against several members of the connexin family reportedly expressed by epidermal keratinocytes, we found these cells endogenously expressed Cx43 and Cx26 but not Cx30, Cx32, or Cx37. When expressed in REK cells, similar to in HeLa cells, R75W-GFP and DeltaE42-GFP were assembled at the cell surface into structures that resembled gap junctions. Future experiments will examine the effect of the Cx26 mutants on the function and differentiation of these epidermal keratinocytes.  相似文献   

13.
The direct calmodulin (CaM) role in chemical gating was tested with CaM mutants, expressed in oocytes, and CaM-connexin labeling methods. CaMCC, a CaM mutant with greater Ca-sensitivity obtained by replacing the N-terminal EF hand pair with a duplication of the C-terminal pair, drastically increased the chemical gating sensitivity of Cx32 channels and decreased their Vj sensitivity. This only occurred when CaMCC was expressed before Cx32, suggesting that CaMCC, and by extension CaM, interacts with Cx32 before junction formation. Direct CaM-Cx interaction at junctional and cytoplasmic spots was demonstrated by confocal immunofluorescence microscopy in HeLa cells transfected with Cx32 and in cryosectioned mouse liver. This was confirmed in HeLa cells coexpressing Cx32-GFP (green) and CaM-RFP (red) or Cx32-CFP (cyan) and CaM-YFP (yellow) fusion proteins. Significantly, these cells did not form gap junctions. In contrast, HeLa cells expressing only one of the two fusion proteins (Cx32-GFP, Cx32-CFP, CaM-RFP or CaM-YFP) revealed both junctional and non-junctional fluorescent spots. In these cells, CaM-Cx32 colocalization was demonstrated by secondary immunofluorescent labeling of Cx32 in cells expressing CaM-YFP or CaM in cells expressing Cx32-GFP. CaM-Cx colocalization was further demonstrated at rat liver gap junctions by Freeze-fracture Replica Immunogold Labeling (FRIL).  相似文献   

14.
We examined the subcellular localization and function of several Cx26 mutants that exhibit both sensorineural deafness and various skin disease phenotypes. To facilitate these aims, all Cx26 mutants were tagged at the carboxyl-terminal with green fluorescent protein (GFP), which has previously been shown not to affect Cx26 transport, assembly or function. In this article we focus on two point mutations (R75W and ΔE42) that occur in the first extracellular loop region of Cx26, a region hypothesized to be critical for correct hemichannel docking between contacting cells. In gap junctional intercellular communication (GJIC)-deficient HeLa cells, both R75W-GFP and ΔE42-GFP were transported to the cell surface and assembled into gap junction-like structures. Neither R75W-GFP nor ΔE42-GFP formed gap junctions that were permeable to Lucifer Yellow suggesting they are loss-of-function mutations. We also examined the phenotype of these two mutations in a rat epidermal keratinocyte (REK) cell line that is capable of undergoing differentiation. Using antibodies against several members of the connexin family reportedly expressed by epidermal keratinocytes, we found these cells endogenously expressed Cx43 and Cx26 but not Cx30, Cx32, or Cx37. When expressed in REK cells, similar to in HeLa cells, R75W-GFP and ΔE42-GFP were assembled at the cell surface into structures that resembled gap junctions. Future experiments will examine the effect of the Cx26 mutants on the function and differentiation of these epidermal keratinocytes.  相似文献   

15.
The direct calmodulin (CaM) role in chemical gating was tested with CaM mutants, expressed in oocytes, and CaM-connexin labeling methods. CaMCC, a CaM mutant with greater Ca-sensitivity obtained by replacing the N-terminal EF hand pair with a duplication of the C-terminal pair, drastically increased the chemical gating sensitivity of Cx32 channels and decreased their Vj sensitivity. This only occurred when CaMCC was expressed before Cx32, suggesting that CaMCC, and by extension CaM, interacts with Cx32 before junction formation. Direct CaM-Cx interaction at junctional and cytoplasmic spots was demonstrated by confocal immunofluorescence microscopy in HeLa cells transfected with Cx32 and in cryosectioned mouse liver. This was confirmed in HeLa cells coexpressing Cx32-GFP (green) and CaM-RFP (red) or Cx32-CFP (cyan) and CaM-YFP (yellow) fusion proteins. Significantly, these cells did not form gap junctions. In contrast, HeLa cells expressing only one of the two fusion proteins (Cx32-GFP, Cx32-CFP, CaM-RFP or CaM-YFP) revealed both junctional and non-junctional fluorescent spots. In these cells, CaM-Cx32 colocalization was demonstrated by secondary immunofluorescent labeling of Cx32 in cells expressing CaM-YFP or CaM in cells expressing Cx32-GFP. CaM-Cx colocalization was further demonstrated at rat liver gap junctions by Freeze-fracture Replica Immunogold Labeling (FRIL).  相似文献   

16.
Gap junction channels composed of connexins connect cells, allowing intercellular communication. Their cellular assembly involves a unique quality-control pathway. Some connexins [including connexin43 (Cx43) and Cx46] oligomerize in the trans-Golgi network following export of stabilized monomers from the endoplasmic reticulum (ER). In contrast, other connexins (e.g., Cx32) oligomerize early in the secretory pathway. Amino acids near the cytoplasmic aspect of the third transmembrane domain have previously been shown to determine this difference in assembly sites. Here, we characterized the oligomerization of two connexins expressed prominently in the vasculature, Cx37 and Cx40, using constructs containing a C-terminal dilysine-based ER retention/retrieval signal (HKKSL) or treatment with brefeldin A to block ER vesicle trafficking. Both methods led to intracellular retention of connexins, since the cells lacked gap junction plaques. Retention of Cx40 in the ER prevented it from oligomerizing, comparable to Cx43. By contrast, ER-retained Cx37 was partially oligomerized. Replacement of two amino acids near the third transmembrane domain of Cx43 (L152 and R153) with the corresponding amino acids from Cx37 (M152 and G153) resulted in early oligomerization in the ER. Thus, residues that allow Cx37 to oligomerize early in the secretory pathway could restrict its interactions with coexpressed Cx40 or Cx43 by favoring homomeric oligomerization, providing a structural basis for cells to produce gap junction channels with different connexin composition.  相似文献   

17.
The assembly of gap junction intercellular communication channels was studied by analysis of the molecular basis of the dysfunction of connexin 32 mutations associated with the X-linked form of Charcot-Marie-Tooth disease in which peripheral nervous transmission is impaired. A cell-free translation system showed that six recombinant connexin 32 mutated proteins-four point mutations at the cytoplasmic amino terminus, one at the membrane aspect of the cytoplasmic carboxyl terminus, and a deletion in the intracellular loop-were inserted into microsomal membranes and oligomerised into connexon hemichannels with varying efficiencies. The functionality of the connexons was determined by the ability of HeLa cells expressing the respective connexin cDNAs to transfer Lucifer yellow. The intracellular trafficking properties of the mutated connexins were determined by immunocytochemistry. The results show a relationship between intracellular interruption of connexin trafficking, the efficiency of intercellular communication, and the severity of the disease phenotype. Intracellular retention was explained either by deficiencies in the ability of connexins to oligomerise or by mutational changes at two targeting motifs. The results point to dominance of two specific targeting motifs: one at the amino terminus and one at the membrane aspect of the cytoplasmically located carboxyl tail. An intracellular loop deletion of six amino acids, associated with a mild phenotype, showed partial oligomerisation and low intercellular dye transfer compared with wild-type connexin 32. The results show that modifications in trafficking and assembly of gap junction channels emerge as a major feature of Charcot-Marie-Tooth X-linked disease.  相似文献   

18.
Direct cell-to-cell transfer of ions and small signaling molecules via gap junctions plays a key role in vessel wall homeostasis. Vascular endothelial gap junctional channels are formed by the connexin (Cx) proteins Cx37, Cx40, and Cx43. The mechanisms regulating connexin expression and assembly into functional channels have not been fully identified. We investigated the dynamic regulation of endothelial gap junctional intercellular communication (GJIC) by fluid flow and the participation of each vascular connexin in functional human endothelial gap junctions in vitro. Human aortic endothelial cells (HAEC) were exposed for 5, 16, and 24 h to physiological flows in a parallel-plate flow chamber. Connexin protein expression and localization were evaluated by immunocytochemistry, and functional GJIC was evaluated by dye injection. Connexin-mimetic peptide inhibitors were used to assess the specific connexin composition of functional channels. HAEC monolayers in culture exhibited baseline functional communication at a striking low level despite abundant expression of Cx43 and Cx40 localized at cell-to-cell appositions. Upon exposure to flow, GJIC by dye spread demonstrated a significant time-dependent increase from baseline levels, reaching 7.5-fold in 24 h. Inhibition studies revealed that this response was mediated primarily by Cx40, with lesser contributions of the other two vascular connexins assembled into functional homotypic and/or heterotypic channels. This is the first study to demonstrate that flow simultaneously and differentially regulates expression of the Cx37, Cx40, and Cx43 proteins and their involvement in the augmentation of intercellular communication by dye transfer in human endothelial cells in vitro.  相似文献   

19.
The pattern of gap junctional coupling between cells is thought to be important for the proper function of many types of tissues. At present, little is known about the molecular mechanisms that control the size and distribution of gap junctions. We addressed this issue by expressing connexin43 (Cx43) constructs in HeLa cells, a connexin-deficient cell line. HeLa cells expressing exogenously introduced wild-type Cx43 formed small, punctate gap junctions. By contrast, cells expressing Cx43-GFP formed large, sheet-like gap junctions. These results suggest that the GFP tag, which is fused to the carboxyl terminus of Cx43, alters gap junction size by masking the carboxyl terminal amino acids of Cx43 that comprise a zonula occludins-1 (ZO-1) binding site. We are currently testing this hypothesis using deletion and dominant-negative constructs that directly target the interaction between Cx43 and ZO-1.  相似文献   

20.
The pattern of gap junctional coupling between cells is thought to be important for the proper function of many types of tissues. At present, little is known about the molecular mechanisms that control the size and distribution of gap junctions. We addressed this issue by expressing connexin43 (Cx43) constructs in HeLa cells, a connexin-deficient cell line. HeLa cells expressing exogenously introduced wild-type Cx43 formed small, punctate gap junctions. By contrast, cells expressing Cx43-GFP formed large, sheet-like gap junctions. These results suggest that the GFP tag, which is fused to the carboxyl terminus of Cx43, alters gap junction size by masking the carboxyl terminal amino acids of Cx43 that comprise a zonula occludins-1 (ZO-1) binding site. We are currently testing this hypothesis using deletion and dominant-negative constructs that directly target the interaction between Cx43 and ZO-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号