首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vasculitis is accepted to be the basis of Beh?et's disease (BD) which is a multisystem disease, and the arachidonic acid(AA) metabolites acting as balancing mediators in the organism are accepted to be responsible for the vasculitis. In this study, we examined the prostaglandin E2 (PGE2) and leukotriene C4 (LTC4) levels of the patients with BD before and after colchicine therapy. We found a statistical decrease in the PGE2 and LTC4 levels after colchicine therapy compared to the previous levels, concluding that colchicine inhibits the inflammation and the polymorphonuclear leukocyte (PML) chemotaxis by inhibiting the cyclooxygenase and lipoxygenase pathways.  相似文献   

2.
Summary The leukotriene, LTC4, exerts a stimulatory effect on chloride transport in the frog cornea. In the work described here, the mechanism of action of LTC4 to stimulate chloride transport was studied.In corneas pretreated with indomethacin, the effect of LTC4 was abolished, suggesting the involvement of cyclo-oxygenase products in the response. Incubation of corneas with LTC4 resulted in a significant stimulation in PGE2 synthesis, as determined by TLC-autoradiography and radioimmunoassay. In addition, LTC4 was found to stimulate cAMP synthesis in the cornea, and this stimulation was blocked with indomethacin. PGE2 was previously shown by us to be the dominant cyclo-oxygenase product formed in the frog cornea, and is capable of stimulating cAMP and chloride transport. We suggest that LTC4 stimulation of chloride transport is mediated via activation of the cyclooxygenase pathway, resulting in enhanced PGE2 synthesis. Elevated PGE2 levels induce cAMP synthesis, and ultimately, the stimulation of chloride transport. Further, the activation of cyclo-oxygenase was found to be dependent on phospholipase A2 activity. This was shown by the inhibition of the LTC4 effect in the presence of quinacrine. Similarly, inhibition of the LTC4 effect in the presence of trifluoperazine suggests that cyclo-oxygenase activation by LTC4 may be mediated via calmodulin. We have previously demonstrated that the frog cornea has the biosynthetic capacity to produce LTC4. Therefore LTC4 may function as an endogenous regulator of chloride transport in this tissue.  相似文献   

3.
In this study, the changes of arachidonic acid metabolites after an ischemia-reperfusion (I/R) period are investigated. The cyclooxygenase and lipoxygenase metabolites were found to be significantly increased after a 45 min period of ischemia followed by 5 min of reperfusion. Prostaglandin E2 (PGE2)- and leukotriene C4 (LTC4)-like activities did not change in the ischemic period, but they both increased after reperfusion. A cyclooxygenase inhibitor indomethacin and lipoxygenase inhibitor nordehydroguaretic acid (NDGA) decreased PGE2- and LTC4-like activities, respectively, while allopurinol and superoxide dismutase (SOD) decreased both activities.According to our results, it can be assumed that free oxygen radicals are responsible for the elevation of PGE2- and LTC4-like activities and both of these arachidonic acid metabolites and free oxygen radicals are the main necrotizing agents in ischemia-reperfusion induced damage.  相似文献   

4.
In order to examine the modulation of leukotriene (LT) release, the PAF-acether-mediated stimulation of these compounds in rat lung was studied. Release of LTC4, LTD4 and LTE4 in both perfused and chopped lung preparations was measured using HPLC and radioimmunoassay. Pre-incubation or pre-infusion of the tissue with indomethacin and PGE2 was conducted to investigate the effect of cyclooxygenase inhibitors and products on the lipoxygenase pathway. In addition, the effects of LT levels of pre-incubation with vasoactive intenstinal polypeptide (VIP) in chopped lung were observed.In perfused rat lung, indomethacin reduced the levels of LTC4 relative to LTD4 as measured in the first 2 min after stimulation of the lung by PAF-acether. Chopped lung preparations, incubated for 15 min. exhibited higher levels of LTC4 and LTD4 in indomethacin-treated samples, this increases being effectively reversed by PGE2.In the VIP pre-incubation experiments clear inhibition of peptido -leukotriene synthesis was observed, with no LTC4 and only low levels of LTD4 and LTE4 observed in VIP-incubated samples. In preliminary experiments using rabbit C5a des arg and PAF-acether on rabbit lung parenchyma strips to stimulaet LT release, disodium cromoglycate pre-incubation was observed to inhibit this release.Inhibition of the 5-lipoxygenase pathway of PGE2 is supported by these experiments. VIP appears to act as an inhibitor of LTC4 and LTD4 biosynthesis or release in this model. Too little is known that peptidergic actions to postulate a mechanism by which a neuroendocrine peptide exerts control of release of arachidonate metabolites; however, VIP is associated with muscarinic stimulation (1) and has been found in mast cells (2).  相似文献   

5.
In order to elucidate the relation between tissue eicosanoids and liver injury due to bile duct obstruction, we have examined the effects of iloprost, a stable analogue of prostaglandin I2 (PGI2), and UK 38485 (UK), an inhibitor of thromboxane synthetase, on prostaglandin E2 (PGE2) and leukotriene C4 (LTC4) in guinea pig liver. 56 male guinea pigs were divided into the following groups: (i) sham operations (SHAM), (ii) bile duct ligated (BDL) group, (iii) guinea pigs given UK (5 μg/kg body wt intraperitoneally 10 min, 8 h and 16 h after bile duct ligation), and (iv) guinea pigs treated with iloprost (ILO) (2 μg/kg body wt intraperitoneally 10 min, 8 h and 16 h after bile duct ligation). Liver damage was assessed by blind quantitation of liver cell necrosis. Bile duct ligation caused an increase in tissue PGE2-like activity and a decrease LTC4-like activity. But the most pronounced elevation of PGE2 was observed in ILO treated group. The LTC4-like activity level improved significantly in the UK-treated BDL group compared with the BDL only and ILO treated animals. Also, UK was found to be beneficial in preventing the liver cell necrosis due to cholestasis. It is concluded that the ratio of PGE2/LTC4 in liver is a valuable marker for cholestatic injury.  相似文献   

6.
Prostaglandin E2 (PGE2) and leukotriene C4 (LTC4) are the metabolites of arachidonic acid (AA) that increase in forebrain following global ischemia and reperfusion. These mediators are highly potent vasoconstrictors of cerebral arteries leading to enhanced vascular permeability that induces the formation of vasogenic edema. In this study, after developing and experimental animal model simulating the concept of ischemic penumbra in the rat, the levels of PGE2 and LTC4 produced in the forebrain were measured and the effects of these mediators in short duration and prolonged reperfusion were investigated and then correlated with nueropathological findings. We found statistically significant reduction both in PGE2 and LTC4-like activities after just 10 min ischemia (p<0.05, p<0.05). PGE2-like activity significantly increased in the 4th and 60th min of reperfusion (p<0.05, p<0.05). In the 15th min of reperfusion, PGE2 was found to be significantly reduced (p<0.005) that may be due to the formation of free oxygen radicals by activation of PG hydroperoxidase reaction that inhibits PGE2 production in the cylooxygenase pathway. LTs were not significantly increased in any reperfused group. Inhibition of the lipoxygenase pathway of AA metabolism may occur as a result of 15-HPETE (15-hydroperoxyeicosatetraenoic acid) production. Pathologically, edema and degeneration of brain tissue were seen beginning from the 4th min of reperfusion that reached a peak in the 60th min of reperfusion which is in accordance with biochemical changes in the damaged tissue. It is concluded that by preventing the formation of AA metabolites in the early hours of ischemia and reperfusion, it could be possible to increase blood flow in the ischemic penumbra that should limit the infarct area.  相似文献   

7.
The pharmacological profile of a novel dual inhibitor, tepoxalin and of its carboxylic acid metabolite on cyclooxygenase and lipoxygenase pathways was evaluated by in vitro incubation with synovial tissue. Tissue specimens obtained at surgery in rheumatoid arthitis (RA, n=10) or osteoarthritis (OA, n=11) patients were incubated. Tepoxalin (10−7, 10−6, 10−5 M) decreased eicosanoid release calculated in % of tyrode control for OA: LTC4 to 71−33%, 6-keto-PGF1a to 37−20%, PGE2 to 29−6%. For RA: LTC4 to 56−22%, 6-keto-PGFa to 43−22%, PGE2 to 57−32%. Similarly, its metabolite (10−7, 10−5 M) decreased release in OA: LTC4 to 99 and 60%, PGE2 to 42 and 20%, 6-keto-PGF1a to 54 and 25%. In RA: LTC4 to 81 and 45%, PGE2 to 61 and 30%, 6-keto-PGF1a to 46 and 18%. Significance (p<0.05) was achieved for all but 1 group (LTC4, metabolite at 10−7M vs tyrode).In summary a marked and dose dependent decrease of LT and PG release was obtained when incubating the dual inhibitor tepoxalin and its active carboxylic acid metabolite with synovial tissue at doses expected to be reached in the joint during therapy.  相似文献   

8.
Normal human epidermal melanocytes became swollen and more dendritic with an increase in the amount of tyrosinase and immunoreactive b-locus protein when they were cultured for 2 days with the following arachidonic acid metabolites: prostaglandin (PG) D2, leukotriene (LT) B4, LTC4, LTD4, LTE4, thromboxane (TX) B2 and 12-hydroxy eicosatetraenoic acid (12-HETE). The effect of LTC4 was particularly strong compared to that of PGE2, about which we have previously reported. On the other hand, PGE1, PGF and 6-ketoPGF did not show any significant stimulatory effect. These data suggest that arachidonate-derived chemical mediators, especially LTC4, may be responsible for the induction of post-inflammatory hyperpigmentation of the skin.  相似文献   

9.
Intraperitoneal injection of zymosan in mice induced rapid extravasation and accumulation of plasma proteins in the peritoneal cavity. Neutrophils began to appear in the peritoneal cavity after a lag period of approximately 3 hours. The injected mice exhibited a pain response (writhing) during the first 30 minutes after injection, but writhing ceased before protein or cell accumulation had reached maximum levels. The injection of zymosan induced synthesis of PGE2 (measured by RIA) which reached maximum levels of 30 minutes, then declined slowly. Peptido-leukotriene levels (detected by bioassay, RIA and HPLC) increased rapidly after injection, reached a peak within an hour of injection and declined to undetectable levels within 4 hours. The early peptido-LT was predominantly LTC4, while later, LTE4 was the major component. LTD4 levels remained low throughout and no LTB4 was detected at any time. Indomethacin treatment elevated levels of peptido-LTs, recued PGE2 levels and inhibited writhing. Phenidone reduced peptido-LT levels. Invitro studies demonstrated that zymosan stimulates LTC4 synthesis by peritoneal cells whereas LTE4, LTD4, LTB4 or monoHETES were not detectable (using HPLC methods). The source of enzymes responsible for the invivo metabolism of LTC4 to LTD4 and LTE4 could not be identified.  相似文献   

10.
Monosodium urate (MSU)-induced synovitis in the dog's stifle (knee joint) is similar to an acute gouty attack in man in which a loss of function of the joint correlates with massive influx of neutrophils and the release of an assortment of inflammatory mediators (e.g. histamine, bradykinin, lysosomal enzymes, complement and eicosanoids) into the synovial space. We found in the urate-induced inflammatory exudates 3 hr post MSU the following: 88 million leukocytes/ml (95% neutrophils) and eicosanoid concentrations of LTB4, LTC4, and PGE2 of < 0.1, 1.4 and 20 ng/ml, respectively. Isotonic saline injected knee joints at 3 hr contained 5 million leukocytes/ml (95% neutrophils) and concentrations of LTB4, LTC4, and PGE2 of < 0.1, 0.7 and 0.2 ng/ml, respectively. Intrasynovial injections of 1 μg LTB4, 10 μg PGE2 or the combination of LTB4 and PGE2 produced no reduction of paw pressure for up to 3 hr. Leukocyte concentrations measured at 3 hr in joints injected with these arachidonic acids metabolites were similar to saline controls. These results question the role of LTB4 as a chemotactic and inflammatory mediator in urate-induced synovitis in the dog but confirm the importance of PGE2 and possibly LTC4 in this model.  相似文献   

11.
Inhibitors of leukotrieens were utilized to investigate the role of leukoteines (LTs) in the induction of decidualization in the rat. Alzet osmotic minipumps, filled with either FPL 55712 (FPL, a specific antagonist of peptidoleukotrienes), nordihydroguaiaretic acid (NDGA, an inhibitor of LT synthesis) or in combination with leukotriene C4 (LTC4) and/or prostaglandin E2 (PGE2), were instilled at the ovarian end of uterine horns of day 5 pseudopregnant rats. Intraluminal infusion of FPL or DNGA, for 4 days, induced a dose dependent decrease in the uterine wet weights when compared to that induced by the infusion of their corresponding vehicles (1 μl/h). Furthermore, simultaneous infusion of LTC4 (10 ng/h) with different doses of FPL (1, 0.5, or 0.25 μg/h) produced an increase in uterine weights as compared to that produced by FPL alone. Maximum response, however, was noted when LTC4 (n0 ng/h) was infused with FPL at a rate of 0.5 μg/h. The infusion of LTC4 (10 ng/h) or PGE2 (1 μg/h) with NDGA, at 1 and 5 μg/h, could not overcome its inhibitory effect on decidualization. On the contrary, a combination of LTC4 (10 ng/h) and PGE2 (1 μg/h) was comparable to that induced by the infusion of the vehicle. To determine if the synthesis of PGs and LTs was inhibited by NDGA, one uterine horn was infused with NDGA (5 μg/h) and the other horn with the vehicle. The intrauterine infusion of NDGA for 24 h inhibited the release of PGE2, PGF, LTC4 and LTB4 as compared to those released by the vehicle-infused horns. These data suggest that both PGs and LTs are required for the induction and progression of decidualization.  相似文献   

12.
The effects of chemically-synthesised leukotrienes C4 and D4 (5(S) hydroxy-6(R)-δ-glutamylcysteinylglycinyl-7,9,11,14-eicosa-4tetraenoic acid, LTC4; 5(S) hydroxy-6(R)-cysteinylglycinyl-7,9,11,14-eicosatetraenoic acid, LTD4) on the microvasculature have been measured in guinea-pig skin using [125I]-albumin accumulation to measure plasma exudation and 133Xe clearance to measure blood flow changes. As previously shown using biosynthetic material, LTD4 caused vasoconstriction resulting in reduced blood flow. Similarly, LTC4 was found to have vasoconstrictor activity but was more potent and had a steeper dose-response curve than LTD4. There was no evidence of conversion of exogenous arachidonic acid to vaso-constrictor activity in the skin in vivo (in the absence of another stimulus): intradermally injected arachidonic acid produced vasodilatation, but induced little change in blood flow in animals pretreated with indomethacin. The vasodilator effect of arachidonic acid is presumed to be due to conversion to either PGE2 or PGI2. These results suggest that cyclo-oxygenase is normally active in the skin, whilst lipoxygenase requires activation in some way. As reported in a previous study, LTD4 induced plasma exudation when injected into the skin, but pronounced responses could only be induced by LTD4 mixed with a vasodilator prostaglandin such as PGE2. In contrast, LTC4 induced no exudation when tested alone and little when PGE2 was added. However, evidence was obtained that LTC4 has some permeability-increasing activity which is marked by its potent vasoconstrictor activity.  相似文献   

13.
We have measured by radioimmunoassay the production of leukotrienes (LTC4 and LTB4) and prostaglandins (PGE2 and PGF) in the rat uterus on Days 1 through 6 of pregnancy. The production is defined as the synthesis minus the degradation for a defined period. The production of LTC4 or LTB4 remained unaltered on days 1–3, but exhibited a marked increase on Day 4 showing a peak at noon. This was then followed by a sharp decline on Day-5 morning. A small but consistent peak in uterine LT production was also noticed on Day-5 noon prior to implantation and this was followed by a decline on Day-6 morning i.e. after initiation of implantation. The production profile of PGE2 and PGE showed a striking resemblance to that of LTs; one exception being that maximal PG production was noticed on Day-4 morning and preceded the peak production of LTs. These vasoactive arachidonate derivatives reached their peak production rates at around the time when a surge in estrogen level is noticed in the uterus on Day 4. Implantation is a local proinflammatory type of reaction that is associated with increased uterine vascular permeability. Vascular changes in inflammatory reactions are provoked by two kinds of chemical mediators: (1) vasodilators and (2) agents that increase vascular permeability. PGs (especially of the E series) are known as vasodilators, while LTs and histamine mediate increases in vascular permeability. Therefore, an interaction between LTs, PGs, and histamine could be important for uterine preparation for implantation and/or implantation .  相似文献   

14.
Synthetic leukotrienes (LT) C4 and D4 elicited concentration-dependent contractions of the guinea pig uterus between 10?8-10?6M, whereas LTE4 appeared 1000-fold weaker. The potencies of LTC4 and LTD4 were similar to that of acetylcholine and PGF but weaker than that of PGE2. The maximal contractions elicited by LTC4 and LTD4 were 66.0 ± 2.1% and 63.8 ± 4.6% that elicited by acetylcholine. FPL 55712 (10?5M) antagonized the uterine contractile activity of LTD4, while meclofenamic acid at 10?5M but not at 10?6M also antagonized the LTD4-induced contration. Radioimmunoassay of the uterine tissue bathing fluid following LTD4 indicated the variable presence of low concentrations of PGE2, PGF and TXB2. These results demonstrate the LTC4 and LTD4 possess significant uterine contractile activity, which may only partially be mediated indirectly via prostaglandin products.  相似文献   

15.
Several hypolipidemic drugs and environmental contaminants induce hepatic peroxisome proliferation and hepatic tumors when administered to rodents. These chemicals increase the expression of the peroxisomal β-oxidation pathway and the cytochrome P-450 4A family, which metabolize lipids, including eicosanoids and their precursor fatty acids. We previously found that the peroxisome proliferator ciprofibrate decreases the level of eicosanoids in the liver and in cultured hepatocytes. In this study, we examined the effect of prostaglandins E2 and F (PGE2 and PGF), leukotriene C4 (LTC4) and the peroxisome proliferator ciprofibrate on DNA synthesis in cultured hepatocytes. Primary rat hepatocytes were cultured on collagen gels in serum-free L-15 medium with varying concentrations of eicosanoids and ciprofibrate, and the absence or presence of growth factors. Ciprofibrate lowered hepatocyte eicosanoid concentrations; the addition of eicosanoids restored their levels. After a 48-h exposure with [3H]-thymidine, DNA synthesis was determined by measuring [3H]-thymidine incorporation into DNA. The addition of PGE2, PGF, and LTC4 to cultures along with ciprofibrate increased DNA synthesis, whereas treatment with ciprofibrate or eicosanoids alone resulted in a much smaller increase. The addition of epidermal growth factor (EGF) to the eicosanoid-ciprofibrate combination increased DNA synthesis more than EGF or the eicosanoid-ciprofibrate combination alone. The PGF-ciprofibrate combination also was comitogenic with transforming growth factor-α and hepatocyte growth factor. The addition of both ciprofibrate and prostaglandins also blocked the growth inhibitory effect of transforming growth factor-β on DNA synthesis induced by EGF. These results show that the eicosanoids PGE2, PGF, and LTC4 are comitogenic with the peroxisome proliferator ciprofibrate in cultured rat hepatocytes. © 1996 Wiley-Liss, Inc.  相似文献   

16.
The sensitivity of sheep myometrial tissue to prostaglandin F (PGF), PGE2, the thromboxane analog U-44069, and leukotrienes C4 (LTC4) and LTD4 was investigated in a superfusion system. Tissues were obtained from eight oophorectomized ewes, with or without pretreatment with estradiol-17β. After equilibration, spontaneous activity was abolished by adding indomethacin to the superfusion fluid. The dose needed to induce a contraction with a peak level of 50% of the median peak level of spontaneous contractions increased from PGE2 to PGF, U-44069, LTC4, and LTD4. The differences between the doses required were significant for all compounds, except between LTC4 and LTD4. Estradiol-17β pretreatment caused an increase in the required dose of PGF. The results of this study do not support the hypothesis that leukotrienes are involved in the regulation of myometrial activity.  相似文献   

17.
The decrease of PGE-stimulated cyclic AMP synthesis due to pretreatment of intact cells with PGE (hormone-specific desensitization) was shown to be a rapid process in macrophages. Desensitization was found to be extensive after 5-min treatment of macrophages with PGE2 and almost complete after 20 min. Furthermore, incubation of intact macrophages with colchicine caused a two- to sixfold increase in the rate of PGE1-stimulated cyclic AMP synthesis in intact macrophages. Colchicine alone did not alter cyclic AMP levels. The enhancing effect of colchicine is related to its ability to disrupt microtubules. Vinblastine, another microtubule-disrupting agent, caused similar enhancement of PGE-stimulated cyclic AMP synthesis; no enhancement was found when lumicolchicine was used. Hormonestimulated cyclic AMP synthesis by colchicine-treated macrophages was also measured after cell homogenization. The enhancement of hormone sensitivity by colchicine was found to be lost upon homogenization. These findings suggest that colchicine acts at the interior of the cell to reversibly affect adenylate cyclase.  相似文献   

18.
《Cellular immunology》1987,105(2):411-422
Macrophages, which produce the collagenolytic enzyme collagenase, are commonly found at sites of connective tissue destruction in chronic inflammatory lesions. Since tissue macrophages are derived from circulating peripheral blood monocytes, we used these less-differentiated, more readily available cells to examine the production and regulation of collagenase. Human monocytes, isolated in large quantities by counterflow centrifugal elutriation, were shown to produce substantial amounts of collagenase when stimulated by concanavalin A (Con A) and to a lesser extent with lipopolysaccharide, while unstimulated monocyte cultures produced negligible collagenase. Collagenase was detected in the culture media within the first 24 hr of culture after activation with peak production at 48 hr. Analysis of the intracellular regulation of collagenase revealed that synthesis of this enzyme required a prostaglandin (PGE2)-dependent step since indomethacin-inhibited enzyme synthesis was reversed by PGE2. Additionally, dibutyryladenosine cyclic monophosphate (dBcAMP) restored collagenase synthesis in indomethacinblocked cultures, indicating a PGE2-dependent generation of cAMP requirement for collagenase production similar to that demonstrated in experimental animals systems. In additional studies, anti-inflammatory drugs which are known to modulate connective tissue destruction were analyzed for their influence on monocyte-derived collagenase. Dexamethasone, colchicine or retinoic acid all inhibited collagenase synthesis by monocytes in a dose-dependent manner although the effect of these drugs on monocyte PGE2 synthesis differed. Dexamethasone inhibited PGE2 synthesis, which resulted in the suppression of collagenase. However, PGE2 production was unaffected by colchicine whereas retinoic acid caused a significant increase in PGE2 levels. Inhibition of collagenase synthesis by dexamethasone, but not colchicine or retinoic acid, could be reversed by PGE2 or phospholipase A2. These findings provide insight into the intracellular events regulating monocyte collagenase synthesis and also implicate monocytes as a target of anti-inflammatory agents which ameliorate connective tissue degradation associated with chronic inflammatory lesions.  相似文献   

19.
The multidrug resistance-related protein-1 (MRP1) is important for the management of oxidative stress in vascular cells in vivo. Substrates of MRP1 are, among others, glutathione and the leukotriene C4 (LTC4), an eicosanoid and mediator of inflammation. Angiotensin (Ang) II infusion results in MRP1?/? mice compared to wild-type mice in improved endothelial function and reduced reactive oxygen species (ROS) formation. However, the interaction between Ang II, LTC4 and MRP1 is not completely understood and has never been investigated in vitro. Ang II induced in vascular smooth muscle cells (VSMC) the release of LTC4 and the generation of ROS. Pharmacologic inhibition of MRP1 via MK 571 significantly reduced Ang II-induced ROS release (L012-luminescence) in VSMC. The release of ROS after Ang II stimulation is inhibited, to a comparable degree, by blockade of the Cys-LT1 receptor with montelukast. Incubation of VSMC with recombined LTC4 and Ang II caused enhanced rates of proliferation in VSMC. This effect can be rescued by either MRP1 or Cys-LT1 receptor inhibition. Accordingly, stimulation of VSMC with LTC4 reduces intracellular levels of glutathione, but does not affect apoptosis. LTC4 stimulation results in a significant activation of MRP1, but does not alter MRP1 expression. These findings indicate a connection between Ang II, MRP1 and LTC4. Both, MRP1 and LTC4, are potentially promising targets for atheroprotective therapy.  相似文献   

20.
Henoch-Schönlein Purpura (HSP) involve small vessel inflammation. Arachidonate biochemical pathways play an important role in the pathogenesis of vascular inflammation. The aim of this study was to investigate the change in the ratio of plasma arachidonic acid metabolites in the patients with HSP and evaluate the association between clinical activity and prostanoid activity in the acute phase of HSP. Plasma prostaglandin E2 (PGE2)-like activities were found to be 7.2 ± 0.8 ng/ml in control group (n=12) while it was 5.3 ± 0.6 ng/ml in the patients with HSP (n=12). Plasma leukotriene C4 (LTC4)-like activities were found to be 16.0 ± 1.1 ng/ml in control while it was 30.9 ± 4.3 ng/ml in the patients. The differences of LTC4-like activities and the ratios between the HSP patients and the controls were significant (p < 0.01, p < 0.001 respectively), but no significant difference was found in PGE2-like activities. Plasma LTC4-like activity and ratio were also significantly increased in the patients with high clinical score (p < 0.05, p < 0.02 respectively). These results suggested that not only cyclooxygenase products but also LTs may play an important role in vascular inflammation. Therefore ratio must be taken into consideration in the pathogenesis and the prognosis of HSP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号