首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
【目的】探讨施钾条件下,蚜虫取食诱导的水杨酸在促进马铃薯Solanum tuberosum抗虫性方面的作用机制,为提高作物抗虫性提供科学依据。【方法】施钾(外施硫酸钾6 g/株)、虫害(桃蚜Myzus persicae取食, 5头成虫/株)、施钾+虫害及外源水杨酸(浓度分别为15, 30和45 μmol/L,喷施量20 mL/株)条件下,测定马铃薯叶片中水杨酸和脯氨酸含量、苯丙氨酸解氨酶(PAL)活性及抗氧化酶[过氧化物酶(POD)、超氧化物歧化酶(SOD)、过氧化氢酶(CAT)]活性。【结果】结果表明:与未处理对照相比,施钾、虫害、施钾+虫害处理后马铃薯叶片中内源水杨酸含量分别增加了1.1,1.3和1.5倍,PAL活性分别增加了23.3%, 22.3%和35.0%。在施钾、虫害、施钾+虫害3个处理中,施钾+虫害处理的马铃薯叶片中内源水杨酸含量和PAL活性均为最高。用不同浓度外源水杨酸喷施马铃薯叶片,不论是否施钾,用浓度为15 μmol/L水杨酸喷施马铃薯植株后,其SOD活性均显著高于对照组。施钾后除喷施30 μmol/L水杨酸溶液外,喷施15和45 μmol/L水杨酸溶液的马铃薯植株POD活性均显著高于各自对照,活性分别为各自对照的1.7和1.8倍。施钾组中CAT活性在15和30 μmol/L水杨酸喷施后均显著高于对照,分别为对照的1.3和1.5倍。喷施15 μmol/L水杨酸后,马铃薯叶片中脯氨酸含量(1.2 OD/g pro)较对照(0.4 OD/g pro)显著升高。【结论】虫害、施钾+虫害处理均能提高马铃薯叶片中水杨酸含量和PAL活性。15 μmol/L外源水杨酸显著提高了施钾组中POD, SOD和CAT活性及脯氨酸含量,说明15 μmol/L是所用最适水杨酸浓度,该浓度下水杨酸与施钾具有正交互作用。结果提示虫害与施钾共同作用能增强水杨酸信号途径,从而提高植物的抗虫性。  相似文献   

2.
Spiders were the most important group of aphid natural enemies in an irrigated perennial grass pasture. The Lycosidae and Linyphiidae were the only families encountered. An exclusion experiment found predation by spiders to be an important factor in controlling aphid numbers. Together with high temperatures, they maintained aphid numbers at a lower than expected level.  相似文献   

3.
  • 1 Aphids, similar to all insects, are ectothermic and, consequently, are greatly affected by environmental conditions. The peach potato aphid Myzus persicae (Sulzer) has a global distribution, although it is not known whether populations display regional adaptations to distinct climatic zones along its distribution and vary in their ability to withstand and acclimate to temperature extremes. In the present study, lethal temperatures were measured in nine anholocyclic clones of M. persicae collected along a latitudinal cline of its European distribution from Sweden to Spain. The effects of collection origin and intra‐ and intergenerational acclimation on cold and heat tolerance, as determined by upper and lower lethal temperatures (ULT50 and LLT50, respectively), were investigated.
  • 2 Lethal temperatures of M. persicae were shown to be plastic and could be altered after acclimation over just one generation. Lower lethal temperatures were significantly depressed in eight of nine clones after acclimation for one generation at 10°C (range: ?13.3 to ?16.2°C) and raised after acclimation at 25°C (range: ?10.7 to ?11.6°C) compared with constant 20°C (range: ?11.9 to ?12.9°C). Upper lethal temperatures were less plastic, although significantly increased after one generation at 25°C (range: 41.8–42.4°C) and in five of nine clones after acclimation at 10°C. There was no evidence of intergenerational acclimation over three generations.
  • 3 Thermal tolerance ranges were expanded after acclimation at 10 and 25°C compared with constant 20°C, resulting in aphids reared at 10°C surviving over a temperature range that was approximately 2–6°C greater than those reared at 25°C.
  • 4 There was no clear relationship between lethal temperatures and latitude. Large scale mixing of clones may occur across Europe, thus limiting local adaption in thermal tolerance. Clonal type, as identified by microsatellite analysis, did show a relationship with thermal tolerance, notably with Type O clones being the most thermal tolerant. Clonal types may respond independently to climate change, affecting the relative proportions of clones within populations, with consequent implications for biodiversity and agriculture.
  相似文献   

4.
Potato virus Y is transmitted to potato in a nonpersistent manner by many aphid species, some of which do not colonize this crop. The behavior of bird cherry-oat aphid, Rhopalosiphum padi (L.) on potato, Solanum tuberosum L., a plant species that is not colonized by this aphid, was described and compared with that of the potato-colonizing green peach aphid, Myzuspersicae (Sulzer). A higher proportion of winged morph of R. padi than M. persicae left the plant, but aphids that stayed in contact with the plant took the same mean time to initiate the first probe and it lasted the same mean time compared with M. persicae. Electronic penetration graph technique was used to study the probing behavior of the aphids during Potato virus Y (family Potyviridae, genus Potyvirus, PVY) transmission tests. Transmission rate decreased from 29 to 8% when the acquisition time increased from 5 min of continuous probing to 1 h with M. persicae, but it remained low (2 and 1%) with R. padi. Most of the difference in transmission rate between acquisition time with M. persicae and between aphid species was related to the change in the time and behavior taking place between the last cell puncture of the acquisition phase to the first cell puncture of the inoculation phase. Results presented here clearly demonstrated the importance of host plant selection and probing behavior in the transmission of nonpersistent plant viruses. They also stress the need to consider the behavior of the aphid in the design of laboratory tests of virus vector efficacy.  相似文献   

5.
6.
We compiled data from the Swiss seed certification programme for the country‐wide incidence of viruses in seed potato crops for the years 1989–2012. Model selection techniques were used to regress year‐to‐year variation in the incidence of potato viruses – largely dominated by Potato virus Y (PVY) – in three susceptible varieties against the abundance of virus vectors (winged aphids), obtained in a suction trap, to identify the most important vector species. The ultimate aim of this study was to develop a decision‐support system capable of forecasting virus spread during the current season using trap data of aphid flights. The average virus incidence in the varieties Bintje, Sirtema and Charlotte varied considerably among years, ranging from 1.0% in 2009 to 13.6% in 1989 (N = 150–611 seed lots per year). A linear regression model including the cumulative sums (until mid‐June) of two aphid species (Brachycaudus helichrysi and Phorodon humuli) as predictor variables for virus disease was remarkably well supported by the data (R2 = 0.86). Similarly, using counts of B. helichrysi alone resulted in a good model fit (R2 = 0.81). Cross‐validation revealed high predictive accuracy of the model. Although prediction root mean squared errors (RMSE) calculated for different timings of forecasts were high for extremely early forecasts, they rapidly declined for forecasts conducted by the end of May (i.e. 2–4 weeks after potato emergence). Winter temperature (January–February) was positively correlated with the abundance of B. helichrysi in early summer as well as with post‐harvest virus incidence. Remarkably, the abundance of Myzus persicae, often considered the main vector of PVY, was not correlated with virus incidence. Taken together, our analysis suggests that the early migrating aphid B. helichrysi, rather than M. persicae, is the main vector of PVY in Switzerland, and that suction trap data are useful for the design of decision‐support systems aimed to optimise virus control in seed potato production.  相似文献   

7.
8.
In the field, caged potato plants of King Edward and Majestic cultivars infested with the potato aphid Macrosiphum euphorbiae developed top-roll symptoms, the proportion of affected plants increasing with the size and persistence of the aphid population. Yield of tubers from plots in which 90% of the plants had top-roll symptoms was 40% less than that from control plots; yield of saleable ware was even less. Foliage produced after the aphids had been killed was symptomless even when it arose from the axil of an affected leaf. Caged field plants treated with phorate granules to prevent aphid attack did not develop top-roll. Prolonged infestation of Pentland Crown, Majestic and King Edward plants by M. euphorbiae in a glasshouse induced rolling of upper leaves similar to top-roll of field plants. Experimental results suggest that rolling was directly attributable to heavy attack by M. euphorbiae, not to an aphid-transmitted pathogen.  相似文献   

9.
Two methods for estimation of the numbers of Erwinia carotovora on potato tubers were compared using 17 naturally infected stocks. The 'wash' method estimates the surface count, whereas the 'peel' method is based on a subcuticular count. A correlation of 0.79 was obtained. Comparisons between methods were also made using a bactericide, Myacide As, and on stocks during chitting. Erwinia carotovora counts were reduced in treated tubers with the 'wash' method, but not with the 'peel' method.  相似文献   

10.
Jasmonates such as jasmonic acid (JA) are plant‐signaling compounds that trigger induced resistance (IR) to a broad range of arthropod herbivores. JA‐dependent defenses are known to reduce the growth and survivorship of many chewing insects, but their impact on piercing–sucking insects such as aphids has not been extensively investigated. In this study, induced resistance was activated in tomato (Lycopersicon esculentum Mill) (Solanaceae) using a foliar application of synthetic JA, and control plants were treated with carrier solution. The life parameters of individual potato aphids and their progeny (Macrosiphum euphorbiae Thomas) (Hemiptera: Aphididae) were evaluated on the unsprayed leaves of plants in order to access the systemic effects of the foliar treatments. IR significantly reduced the longevity and net reproduction of adult aphids, as well as the percentage of juveniles to survive to maturity. These results indicate that JA application induces systemic defenses in tomato that have a direct negative impact on aphid survivorship. This study also examined aphid honeydew excretion, in order to evaluate the potential influence of induced resistance on aphid feeding behavior. The average honeydew production per aphid was comparable on plants with or without JA treatment, indicating that JA‐dependent defenses did not deter feeding. This suggests that the observed effects of JA on aphid survivorship were due to antibiotic rather than antixenotic factors. In addition to studying the effects of JA treatment on a tomato cultivar that is susceptible to aphids, this study also examined the effects of exogenous application of JA on tomato plants that carry the aphid resistance gene, Mi‐1.2. JA application did not significantly enhance or inhibit aphid control on resistant tomato. These findings expand our understanding of the effects of JA‐dependent defenses on piercing–sucking insects, and of the potential interactions between induced resistance and R‐gene mediated aphid resistance in tomato.  相似文献   

11.
Multiple components of the resistance of potatoes to potato leafroll virus   总被引:2,自引:0,他引:2  
In glasshouse experiments the ranking of potato genotypes for resistance to infection with potato leafroll virus (PLRV) using three concentrations of aphid-borne inoculum was the same as their field resistance ratings. In field-grown plants this resistance to infection increased in all genotypes as the plants aged but its rate of increase differed between genotypes. In tests on field-grown plants infected by aphid- or graft-inoculation, the proportion of virus-free progeny tubers increased the later the date of inoculation but was greater in resistant than in susceptible genotypes. This trend was most pronounced in the resistant clone G7445(1), in which the virus failed to move from the foliage to the tubers of some plants infected in glasshouse tests. The spread of PLRV will thus be minimised in crops of resistant compared with susceptible genotypes for three reasons: plants have greater resistance to infection, systemic spread of virus from their foliage to tubers is less likely and, as shown previously, the low concentration of virus particles in leaf tissue makes infected plants less potent sources of inoculum for aphids.  相似文献   

12.
Tubers produced from crosses between the wild potato, Solanum berthaultii Hawkes (Solanaceae), and the cultivated species Solanum tuberosum L. (Solanaceae) are resistant to potato tuber worm (PTW), Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae), infestation compared to those of the popular commercial North American cultivars Allegany, Atlantic, Chieftain, Katahdin, MaineChip, NorDonna, Norwis, Russet Norkotah, Snowden, and Yukon Gold. Given a choice between Atlantic and hybrid tubers, female PTW deposited ca. 50% fewer eggs on hybrid tubers than on those of Atlantic; larval survival and production of prepupae on hybrid tubers were reduced similarly. Time needed for neonates to penetrate eye buds was ca. 100 min greater on hybrid tubers compared to that on cv. Atlantic. Periderm of hybrid tubers is thicker than that of cv. Atlantic and may contribute to the delay in larval penetration of tubers and the success of initial establishment.  相似文献   

13.
The resistance of Solanum okadae Hawkes & Hjert. (PI 458367), Solanum oplocense Hawkes (PI 473368), and Solanum tarijense Hawkes (PI 414150) to the Colorado potato beetle, Leptinotarsa decemlineata (Say) (Chrysomelidae: Chrysomelini), was studied. In replicated field trials all three accessions showed a high level of resistance to the beetle. No significant genetic variability between genotypes of the same species was found. Results from host acceptance behavior experiments, suitability for larval development tests, foliage consumption tests, and adult survival and oviposition tests supported the hypothesis that the mode of resistance differs between the three wild Solanum species. Solanum okadae and S. oplocense affected host acceptance and consumption. Because the beetle reacted differently to these two species it was hypothesized that the antifeedant chemical(s) differed in nature or quantity. S. tarijense contrasted with the other two species by affecting mostly adult colonization and oviposition.  相似文献   

14.
Potato plants (Solanum tuberosum) cv. Desireé were transformed with the genes encoding the proteins bean chitinase (BCH), snowdrop lectin (GNA) and wheat -amylase inhibitor (WAI) under the control of the constitutive CaMV 35S promoter. Transgenic plants with detectable levels of foreign RNA were then selected for further characterisation with respect to protein expression levels by immunodot blot analysis using polyclonal antibodies raised against the respective protein. With the exception of WAI, plants expressing high levels of RNA, expressed correspondingly high levels of the foreign protein (1.5–2.0% of the total soluble protein). Although high levels of WAI mRNA were detected in some of the transformants, the protein could not be detected. On the bases of expression levels, two lines, designated PWG6#85 (transformed with the double construct WAI/GNA) and PBG6#47 (transformed with the double construct BCH/GNA), were selected for testing in aphid trials for enhanced levels of resistance.Both transgenic lines had a marked and significant effect on fecundity. The number of nymphs produced per female per day peaked at 4.1 and 4.2 for lines PBG6#47 and PWG6#85 respectively, compared to a value of 5.4 on control plants. Total nymphal production was also significantly lower on either of the transgenic lines compared to control plants (P<0.001) with the differences between the lines being only just significant (P=0.058). On line PBG6#47 there was a delay in nymphal production of 1.6 days, representing a delay of 15%, and on line PWG6#85 this was 3.2 days, representing a delay of ca. 30%. The intrinsic rates of increase (r m ) were also significantly lower on both of the transgenic lines in comparison to that on control plants (P<0.001), however the differences between the lines were not significant. The potential of using such genes as part of an over all strategy for the control of aphid populations is discussed.  相似文献   

15.
The control of potato cyst nematode (PCN) by less than approved amounts of nematicide combined with partially resistant potato clones was studied in a series of field experiments. On a site heavily infested with Globodera pallida only the most resistant clone (12380ac2) decreased the population density in untreated soil. With aldicarb at its full approved rate (3·36 kg ha-1) numbers of PCN were decreased under all the genotypes, including the non-resistant Maris Piper. Aldicarb at 1·68 kg ha-1significantly decreased populations on all clones except 12380ac2. Aldicarb at 0·84 kg ha-1still significantly decreased population densities and multiplication rates of G. pallida on two clones with intermediate resistance (12243acl and 11233ab22). At two G. rostochiensis sites with light infestations nematode multiplication rates were greater and the control given by aldicarb and partially resistant genotypes of potato was not as great as that at the site with G. pallida. Tuber yields were not increased by the application of aldicarb at the G. rostochiensis infested sites. However, at the site heavily infested with G. pallida the yield of the most intolerant genotype (12380ac2) was increased seven-fold by the full rate of aldicarb (3·36 kg ha-1) and four-fold by the quarter rate (0·84 kg ha-1)-Yield of the most tolerant genotype (12243acl) was unaffected by the application of aldicarb.  相似文献   

16.
In 2001-2003, the levels of infestation of thrips in cabbage monocrops and cabbage/white clover intercrops were compared. The flight activity of thrips was monitored using blue sticky traps and white water traps to obtain a better understanding of population dynamics of thrips. Plant samples were taken to record the number of thrips on cabbage. Over the years of observations, the highest number of thrips was collected in blue sticky traps on cabbage undersown with white clover. In the period from 15th June to 5th July 2001, the number of thrips collected in blue sticky traps in the monocropped cultivation and intercrops with white clover was on similar low levels. Next, the number suddenly increased to 372 thrips/trap in monocropped cultivation and 509 thrips/trap in the intercropped cultivation. During the period of the highest peak of thrips activity, which was on 17th July, there were 650 thrips/trap and nearly the same number was noticed for both types of cultivations. After this period, until the end of vegetation, the greater number of thrips was noticed for the traps placed in the intercrops. Additionally, in 2001 the thrips were collected in white water traps. Using this type of traps, 480 total thrips/trap were collected in the monocropped cultivation and 819/thrips/trap in the intercrops during the whole vegetation season. The percentage participation of Thrips tabaci Lind. caught in white water traps was 24.4% in the monocropped cultivation and 15.4% in the intercrops. In 2002, during the period from the middle of June to the third decade of July, significantly higher number of thrips was collected in blue sticky traps placed in the cabbage with white clover. The number of thrips collected during the period of the mass flights, which means in the first decade of July was over twice as many thrips in the traps placed in the intercropped cultivation (1316 thrips/trap) as in the monocropped cultivation (589 thrips/trap). In 2003, during the whole vegetation period, the number of thrips collected in blue sticky traps placed on the plots where cabbage was cultivated with white clover was evidently higher. In this year two peaks of the thrips flight activity were recorded: the first on 16th July and the second on 5th August. On both occassions, the number of thrips collected in blue sticky traps placed in the intercropped cultivations was about twice as high as in the monoculture cultivation. In 2001-2003, the thrips feeding on cabbage in the monocropped and intercropped cultivations were observed mainly in July and once again in August. The number of thrips on cabbage was low, only in 2002 this number was higher. In 2001, the number of thrips on cabbage in both types of cultivations was on similar level. The highest number of thrips was observed during the peak of thrips flight activity, which was in the middle of July. In years 2002-2003, despite the higher number of thrips collected in blue sticky traps placed in the intercropped cultivations, the number of pests collected from the cabbage undersown with white clover was lower than in the monocropped cultivation. In 2002, the period of the most intensive occurrence of thrips on cabbage was overlapping with the period of mass flight activity of thrips. During this period, a little higher number of thrips was noticed on cabbage in the intercropped cultivation (3.4 thrips/plant) than in the monocropped cultivation (3.2 thrips/plant). In 2003, the highest number of thrips on cabbage in both types of cultivations was noticed before the first significant peak of thrips flight activity. Whereas in the first decade of August, when the same high number of thrips collected in blue sticky traps was again noticed, no increase in the number of thrips feeding on cabbage was observed in both type of cultivations. Over all years of observations, despite the higher number of thrips collected in blue sticky traps in the intercropped cultivation, this number was always lower on the cabbage undersown with white clover. The most dominant species in both cultivations was Thrips tabaci Lind. Its percentage participation in the collected material was 83.1% in the monocropped cultivation and 76.6% in the intercropped cultivation.  相似文献   

17.
18.
Metopolophium festucae cerealium has at various times caused damage to both grass and cereal crops. Despite this, little work has been done on the relative susceptibility of different grass and cereal cultivars to this aphid. The present work showed that for the cultivars examined the most common ley pasture species (Lolium perenne and Lolium multiflorum) exhibited relatively low levels of antibiotic resistance to M. f. cerealium and that wheat is more susceptible than any of the grass species tested. This enigma, in view of the aphid's low pest status on wheat, is discussed. The resistance in the grasses was greater at the stem elongation stages than at the seedling stage but the ranking was consistent between growth stages. M. f. cerealium exhibited a preference for feeding on emerging and senescing leaves of 10-wk-old grass but on wheat it distributed itself evenly between all available green leaves.  相似文献   

19.
The Mi‐1.2 gene in tomato, Solanum lycopersicum L. (Solanaceae), confers resistance against several herbivores, including the potato aphid, Macrosiphum euphorbiae (Thomas) (Hemiptera: Sternorrhyncha: Aphididae) and the sweetpotato whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Sternorrhyncha: Aleyrodidae). Previous studies on the tissue localization of resistance have given varying results; whitefly resistance was attributed to factors localized in the mesophyll or epidermis, whereas aphid resistance was attributed to factors localized in the phloem. Our study utilizes the direct current electrical penetration graph (DC‐EPG) technique to compare aphid feeding behavior on resistant (Mi‐1.2+) and susceptible (Mi‐1.2?) tomato plants. This study also compares the impact of resistance on the feeding behavior of two aphid clones that vary in their virulence, or their ability to survive and reproduce on resistant plants. Previous work had shown that the avirulent WU11 clone is almost completely inhibited by resistance, whereas the semi‐virulent WU12 clone can colonize resistant hosts. Here, DC‐EPG analysis shows that both aphid clones take longer to initiate cell sampling and to establish a confirmed sieve element phase on resistant plants than on susceptible hosts, and have shorter ingestion periods on resistant plants. However, the magnitude of these deterrent effects is far less for the semi‐virulent clone than for the avirulent aphids. In particular, the WU12 clone is less sensitive to factors that limit sieve element ingestion, showing shorter non‐probe duration and rapidly establishing sustained phloem ingestion on resistant plants when compared to the WU11 clone. We conclude that, in addition to previously described factors in the phloem that inhibit ingestion, Mi‐mediated aphid resistance also involves factors (possibly in the mesophyll and/or epidermis) that delay initiation of phloem salivation, and that act in the intercellular spaces to deter the first cell sampling. Furthermore, the relative effectiveness of these components of resistance differs among insect populations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号