首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glutathione peroxidase (glutathione:hydrogen peroxide oxidoreductase, EC 1.11.1.9) was purified from rat liver mitochondria. The enzyme was shown to be pure by polyacrylamide-gel electrophoresis and to contain multiple forms that differed in charge. Selenium was specifically associated with the enzyme. The enzyme was inhibited by iodoacetic acid and iodoacetamide in an unusual pattern of reduction by sulfhydryl compounds and pH dependency. The mitochondrial and cytoplasmic forms of the enzyme were compared, and an explanation of the inhibition patterns is offered.  相似文献   

2.
In the present study, the physiochemical properties of rat liver mitochondrial ribosomes were examined and compared with Escherichia coli ribosomes. The sedimentation and translational diffusion coefficients as well as the molecular weight and buoyant density of rat mitochondrial ribosomes were determined. Sedimentation coefficients were established using the time-derivative algorithm (Philo, J. S. (2000) Anal. Biochem. 279, 151-163). The sedimentation coefficients of the intact monosome, large subunit, and small subunit were 55, 39, and 28 S, respectively. Mitochondrial ribosomes had a particle composition of 75% protein and 25% RNA. The partial specific volume was 0.688 ml/g, as determined from the protein and RNA composition. The buoyant density of formaldehyde-fixed ribosomes in cesium chloride was 1.41 g/cm(3). The molecular masses of mitochondrial and E. coli ribosomes determined by static light-scattering experiments were 3.57 +/- 0.14 MDa and 2.49 +/- 0.06 MDa, respectively. The diffusion coefficient obtained from dynamic light-scattering measurements was 1.10 +/- 0.01 x 10(-7) cm(2) s(-1) for mitochondrial ribosomes and 1.72 +/- 0.03 x 10(-7) cm(2) s(-1) for the 70 S E. coli monosome. The hydration factor determined from these hydrodynamic parameters were 4.6 g of water/g of ribosome and 1.3 g/g for mitochondrial and E. coli ribosomes, respectively. A calculated hydration factor of 3.3 g/g for mitochondrial ribosomes was also obtained utilizing a calculated molecular mass and the Svedberg equation. These measurements of solvation suggest that ribosomes are highly hydrated structures. They are also in agreement with current models depicting ribosomes as porous structures containing numerous gaps and tunnels.  相似文献   

3.
The renewed interest in all-optical switching has led to more detailed experimental investigations of nonlinear optical properties of materials within wide wavelength ranges. The objectives of these studies are discussed here in the context of the availability of suitable computational data that might be compared with the results of the experimental research. It is concluded that the currently available data are insufficient and should be augmented to provide better guidance for experimental work.  相似文献   

4.
The oxidation of formaldehyde by rat liver mitochondria in the presence of 50 mM phosphate was enhanced 2-fold by exogenous NAD+. Absolute requirement of NAD+ for formaldehyde oxidation was demonstrated by depleting the mitochondria of their NAD+ content (4.6 nmol/mg of protein), followed by reincorporation of the NAD+ into the depleted mitochondria. Aldehyde (formaldehyde) dehydrogenase activity was completely abolished in the depleted mitochondria, but the enzyme activity was restored to control levels following reincorporation of the pyridine nucleotide. Phosphate stimulation of formaldehyde oxidation could not be explained fully by the phosphate-induced swelling which enhances membrane permeability to NAD+, since stimulation of the enzyme activity by increased phosphate concentrations was still observed in the absence of exogenous NAD+. The Km for formaldehyde oxidation by the mitochondria was found to be 0.38 nM, a value similar to that obtained with varying concentrations of NAD+; both Vmax values were very similar, giving a value of 70 to 80 nmol/min/mg of protein. The pH optimum for the mitochondrial enzyme was 8.0. Inhibition of the enzyme activity by anaerobiosis was apparently due to the inability of the respiratory chain to oxidize the generated NADH. The inhibition of mitochondrial formaldehyde oxidation by succinate was found to be due to a lowering of the NAD+ level in the mitochondria. Succinate also inhibited acetaldehyde oxidation by the mitochondria. Malonate, a competitive inhibitor of succinic dehydrogenase, blocked the inhibitory effect of succinate. The respiratory chain inhibitors, rotenone, and antimycin A plus succinate, strongly inhibited formaldehyde oxidation by apparently the same mechanism, although the crude enzyme preparation (freed from the membrane) was slightly sensitive to rotenone. The mitochondria were subfractionated, and 85% of the enzyme activity was found in the inner membrane fraction (mitoplast). Furthermore, separation into inner membrane and matrix components indicated a distribution of aldehyde dehydrogenase activity similar to malic dehydrogenase.  相似文献   

5.
Uracil-DNA glycosylase from rat liver mitochondria, an inner membrane protein, has been purified approximately 575,000-fold to apparent homogeneity. During purification two distinct activity peaks, designated form I and form II, were resolved by phosphocellulose chromatography. Form I constituted approximately 85% while form II was approximately 15% of the total activity; no interconversion between the forms was observed. The major form was purified as a basic protein with an isoelectric point of 10.3. This enzyme consists of a single polypeptide with an apparent Mr of 24,000 as determined by recovering glycosylase activity from a sodium dodecyl sulfate-polyacrylamide gel. A native Mr of 29,000 was determined by glycerol gradient sedimentation. The purified enzyme had no detectable exonuclease, apurinic/apyrimidinic endonuclease, DNA polymerase, or hydroxymethyluracil-DNA glycosylase activity. A 2-fold preference for single-stranded uracil-DNA over a duplex substrate was observed. The apparent Km for uracil residues in DNA was 1.1 microM, and the turnover number is about 1000 uracil residues released per minute. Both free uracil and apyrimidinic sites inhibited glycosylase activity with Ki values of approximately 600 microM and 1.2 microM, respectively. Other uracil analogues including 5-(hydroxymethyl)uracil, 5-fluorouracil, 5-aminouracil, 6-azauracil, and 2-thiouracil or analogues of apyrimidinic sites such as deoxyribose and deoxyribose 5'-phosphate did not inhibit activity. Both form I and form II had virtually identical kinetic properties, and the catalytic fingerprints (specificity for uracil residues located in a defined nucleotide sequence) obtained on a 152-nucleotide restriction fragment of M13mp2 uracil-DNA were almost identical. These properties differentiated the mitochondrial enzyme from that of the uracil-DNA glycosylase purified from nuclei of the same source.  相似文献   

6.
The concentration of metabolically active (i.e. 'free') oxaloacetate in the mitochondrial compartment of isolated liver cells was investigated by two independent approaches. On the basis of mitochondrial aspartate aminotransferase maintaining equilibrium and the direct measurements of mitochondrial aspartate, 2-oxoglutarate and glutamate, the concentration of free oxaloacetate was calculated to be 5 microM after incubation of hepatocytes in the presence of 1.5 mM-lactate and 0.05 mM-oleate. Gradually increasing oleate up to 0.5 mM decreased the free oxaloacetate to 2 microM. Very similar results were obtained when free oxaloacetate concentration was derived from the CO2 production of hepatocytes as a measure of citrate flux through the tricarboxylic acid cycle, and the kinetic data on citrate synthase in situ. The decrease in free oxaloacetate on increasing oleate concentration was associated with lowered rates of cycle-dependent CO2 output and O2 uptake, indicating a decrease in the disposal of acetyl-CoA into the tricarboxylic acid cycle. This decrease could explain 25-30% of the increase in ketone-body production occurring at elevated fatty acid supply. This work documents on a quantitative basis the role of free oxaloacetate in the regulation of ketogenesis.  相似文献   

7.
8.
P E Thorsness 《Mutation research》1992,275(3-6):237-241
The metabolic activities of mitochondria have been extensively characterized. However, there is much less known about the morphogenic changes of the mitochondrial compartment during growth, development and aging of the cell and the consequences of those structural changes on cellular metabolism. There is a growing body of evidence for interactions of mitochondria with cytoskeletal components and changes of mitochondrial structure during development and in response to changing environmental conditions. Segregation and recombination of mitochondrial genomes are also processes dependent upon the dynamic nature of the mitochondrial compartment. These regulatory and structural aspects of mitochondrial compartment dynamics will play an important role in the analysis of mitochondrial function and pathology.  相似文献   

9.
10.
The biosynthesis of pyridine dinucleotide transhydrogenase has been studied in isolated rat hepatocytes and in a rabbit reticulocyte-lysate translation system supplemented with either intact isolated rat liver mitochondria or the soluble matrix fraction from isolated mitochondria. In intact hepatocytes, the transhydrogenase precursor was short-lived in the cytosol and was efficiently imported into the membranous fraction. When the cell-free translation mixture was incubated with intact mitochondria, the transhydrogenase precursor was processed to the mature form, to an extent that depended on the amount of added mitochondria. Incubation of the translation mixture with the soluble mitochondria matrix fraction converted the precursor to a mature-sized protein with 75% efficiency, this being blocked by various proteinase inhibitors such as EDTA, 1,10-phenanthroline and leupeptin.  相似文献   

11.
1. 1. The 31P-NMR characteristics of intact rat liver mitochondria, mitoplasts and isolated inner mitochondrial membranes, as well as mitochondrial phosphatidylethanolamine and phosphatidylcholine, have been examined.
2. 2. Rat liver mitochondrial phosphatidylethanolamine hydrated in excess aqueous buffer undergoes a bilayer-to-hexagonal (HII) polymorphic phase transition as the temperature is increased through 10°C, and thus prefers the HII) arrangement at 37°C. Rat liver mitochondrial phosphatidylcholine, on the other hand, adopts the bilayer phase at 37°C.
3. 3. Total inner mitochondrial membrane lipids, dispersed in an excess of aqueous buffer, exhibit 31P-NMR spectra consistent with a bilayer arrangement for the majority of the endogeneous phospholipids; the remainder exhibit spectra consistent with structure allowing isotropic motional averaging. Addition of Ca2+ results in hexagonal (HII) phase formation for a portion of the phospholipids, as well as formation of ‘lipidic particles’ as detected by freeze-fracture techniques.
4. 4. Preparations of inner mitochondrial membrane at 4 and 37°C exhibit 31P-NMR spectra consistent with a bilayer arrangement of the large majority of the endogenous phospholipids which are detected. Approx. 10% of the signal intensity has characteristics indicating isotropic motional averaging processes. Addition of Ca2+ results in an increase in the size of this component, which can become the dominant spectral feature.
5. 5. Intact mitochondria, at 4°C, exhibit 31P-NMR spectra arising from both phospholipid and small water-soluble molecules (ADP, Pi, etc.). The phospholipid spectrum is characteristic of a bilayer arrangement. At 37°C the phospholipids again give spectra consistent with a bilayer; however, the labile nature of these systems is reflected by increased isotropic motion at longer (at least 30 min) incubation times.
6. 6. It is suggested that the uncoupling action of high Ca2+ concentrations on intact mitochondria may be related to a Ca2+-induced disruption of the integrity of the inner mitochondrial phospholipid bilayer. Further, the possibility that non-bilayer lipid structures such as inverted micelles occur in the inner mitochondrial membrane cannot be excluded.
Keywords: 31P-NMR; Inner mitochondrial membrane; Phosphatidylethanolamine; Ca2+; Hexagonal (HII) phase; Lipidic particle  相似文献   

12.
A simple and convenient method is described for the determination of the average sedimentation coefficients (S¯?values) of subcellular particles in a homogenous solution by velocity sedimentation in the preparative ultracentrifuge (swinging-bucket rotor). Theoretically the method is based on the distribution of intact organelles between sediment and supernatant and the convergence of their sedimentation at high centrifugal effects. The data have been treated according to the rate equation of parallel sedimentation in horizontal cylindrical tubes which has been converted to a linear function. By measuring activities of marker enzymes in the sediments, the theory has been confirmed experimentally in the determination of S¯?values and the distribution between supernatant and sediment of intact mitochondria, lysosomes and peroxisomes of rat liver homogenates. The effect of particle concentration on the S¯?values of mitochondria has been determined.  相似文献   

13.
Adenosine deaminase (ADA) was partially purified 486- and 994-fold from rat liver mitochondria and cytosol, respectively. Relative molecular mass of the enzymes from both fractions was 34,000. Km for adenosine and 2'-deoxy-adenosine were 3.08 x 10(-5) M and 3.03 x 10(-5) M for mitochondrial ADA and 3.12 x 10(-5) M and 2.87 x 10(-5) M for cytosolic ADA. The enzyme from both subcellular fractions had the maximum activity at pH 7.5-8.0, and pI 5.2 and 4.2 for mitochondrial and cytosolic enzyme, respectively. The enzyme was inhibited by erythro-9-(2-hydroxy-3-nonyl)adenine and 2'-deoxycoformycin with Ki 4.4 x 10(-7) M and 3.2 x 10(-7) M for mitochondrial ADA and 4.9 x 10(-7) M 2.8 x 10(-7) M for cytosolic ADA. Among the natural nucleoside and deoxynucleotide derivatives tested, deoxy-GTP and UTP inhibited only cytosolic adenosine deaminase by 60% and 40%, respectively.  相似文献   

14.
We described previously the existence of a soluble ATPase activity in rat liver mitochondria [1]. The purification and catalytic properties have been described [2]. In a continuation of these experiments, we have studied the immunologic and structural properties of one molecular form of this enzyme: ATPase I.We have prepared the antiserum anti-ATPase I and demonstrated the purity of our enzyme preparation by immunodiffusion and immunoelectrophoresis. An immunohistochemical method also confirmed the localization of ATPase I in the soluble fraction of mitochondria.The molecular weight of ATPase I was measured by G 100 Sephadex gel filtration and was found to be 18,400; electrophoresis on polyacrylamide gels gave a value of 18,600. The pHi of ATPase I was found to be 7,2.Amino acid analysis showed high amounts of aspartic acid, glutamic acid, serine and glycine. The molecular weight calculated from the total amino acid residues was found to be 17,000.Alanine is the NH2 terminal amino acid.The peptide maps obtained after degrading ATPase I with cyanogen bromide or trypsin are in accordance with the methionine, lysine and arginine residues we found in the ATPase I molecule.ATPase I does not appear to be a glycoprotein.  相似文献   

15.
Hepatic carnitine palmitoyltransferase-I (CPT-IL) isolated from mitochondrial outer membranes obtained in the presence of protein phosphatase inhibitors is readily recognized by phosphoamino acid antibodies. Mass spectrometric analysis of CPT-IL tryptic digests revealed the presence of three phosphopeptides including one with a protein kinase CKII (CKII) consensus site. Incubation of dephosphorylated outer membranes with protein kinases and [gamma-32P]ATP resulted in radiolabeling of CPT-I only by CKII. Using mass spectrometry, only one region of phosphorylation was detected in CPT-I isolated from CKII-treated mitochondria. The sequence of the peptide and position of phosphorylated amino acids have been determined unequivocally as FpSSPETDpSHRFGK (residues 740-752). Furthermore, incubation of dephosphorylated outer membranes with CKII and unlabeled ATP led to increased catalytic activity and rendered malonyl-CoA inhibition of CPT-I from competitive to uncompetitive. These observations identify a new mechanism for regulation of hepatic CPT-I by phosphorylation.  相似文献   

16.
Mass isotopomer analysis: theoretical and practical considerations.   总被引:8,自引:0,他引:8  
A theory of mass isotopomer analysis based on the well-known principle of isotope dilution mass spectrometry is reviewed. An algorithm for the determination of isotope incorporation into a metabolic substrate from a labeled precursor using mass isotopomer analysis is presented. The steps include the determination of the contribution of the derivatization reagent to the observed spectrum of the derivatized substrate and the correction of contribution from 13C natural abundance using multiple linear regression analysis. Examples of the application of this theory to determine the spectrum of the trimethylsilyl derivative of the 'pure unlabeled' or mononuclidic cholesterol, and the calculation of mass isotopomer distribution in cholesterol due to tracer incorporation using this 'pure unlabeled' spectrum, are also provided.  相似文献   

17.
18.
There are two 3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35) in rat liver, one in mitochondria (type I enzyme), and another in peroxisomes (type II enzyme). In a series of the studies on the properties and the physiological roles of fatty acid oxidation systems in both organelles, the two enzymes were purified and compared for their properties. The final preparations obtained were judged to be homogeneous based on the results of sodium dodecyl sulfate-polyacrylamide gel electrophoresis and sedimentation velocity analysis. Type I enzyme was composed of two identical subunits of molecular weight of 32,000, whereas type II enzyme was a monomeric enzyme having a molecular weight of 70,000–77,000. These subunit structures were confirmed by the results of fluorescence studies. Both enzymes were different in amino acid compositions, especially in the contents of tryptophan and half-cystine. Antibodies against them formed single precipitin lines for the corresponding enzymes, but not for the others when subjected to an Ouchterlony double-diffusion test. The Km values of type II enzyme for various substrates were lower than those of type I enzyme except those for acetoacetyl-CoA. As for 3-hydroxyacyl-CoA substrates, both enzymes had lower Km's for longer-chain substrates. The V for the substrates of C4C10 were similar for each enzyme, though the value of type II enzyme for C10 substrate was rather lower. The results of fluorescence studies suggested that their dissociation constants for NADH were lower and those for NAD+ were higher at lower pH. Both enzymes were specific to l-form of 3-hydroxyacyl-CoA substrate. The optimal pH of the forward reaction of type I and type II enzymes was 9.6 and 9.8, and of the reverse reaction, 4.5 and 6.2, respectively. From these results they were concluded to be completely different enzymes.  相似文献   

19.
The ladder-type polyheterofluorenes were investigated theoretically by using density functional theory (DFT) to reveal their optical and electronic properties for applications in organic optoelectronic devices. The incorporation of heteroatoms (B, Si, Ge, N, P, O, and S) into the ladder-type highly fused polyfluorene backbone can influence and modify the optoelectronic properties significantly. The functionalization on the heteroatoms allows for facile derivation and incorporation of substitutes to further tune the properties. Small geometry variations between the ground, anionic/cationic, the first excited singlet and triplet states were observed due to the very rigid ladder-type coplanar backbone. Ladder-type polycarbazole was predicted to have the highest HOMO and LUMO energy levels, polyphosphafluorene oxide have the lowest HOMO energy level, polyborafluorene have the lowest LUMO energy level and bandgap, and polysulfafluorene has the highest bandgap and triplet energy. The ladder-type carbazole and borafluorene show the highest hole and electron injection abilities respectively; while sulfafluorene has the highest electron transfer rate. Most ladder-type heterofluorenes show bipolar charge transport character suggested by the reorganization energy. All of them have significantly short effective conjugation length in comparison with linear conjugated polymers. Their absorption and emission spectra were also simulated and discussed. The diversified electronic and optical properties of the ladder-type polyheterofluorenes with the different incorporated heteroatom and the substituent on it indicate their broad potential applications in organoelectronics.  相似文献   

20.
The mitochondrial cytochrome spectrum of the poky strain of Neurospora crassa and its variation during the life cycle have been analyzed. Two factors are taken into account in addition to those usually considered; absorption in the near-ultraviolet Soret region and the physical nature of the electronic transitions which give rise to the absorption bands. From this extended analysis, a hypothesis based on the chemical nature of the axial environment of the heme groups has been constructed to account for spectroscopic observations. A model has been developed that provides a biochemical mechanism by which a genetic defect in mitochondrial DNA can lead to structural defects in the axial environment of the hemes and thus to an altered cytochrome spectrum. Previously reported absences or deficiencies of cytochromes based on visible absorption spectroscopy may in some cases indicate the absence or deficiency of only the particular polypeptide subunits of a complex which are synthesized within the mitochondria. This interpretation is consistent with the various manifestations of the poky phenotype which have been observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号