首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Assembly of the SNARE complex is an essential step for membrane fusion and neurotransmitter release in neurons. The plasma membrane SNAREs syntaxin 1A and SNAP-25 (t-SNAREs) and the delivery-vesicle SNARE VAMP2 (or v-SNARE) contain the "SNARE regions" that essentially mediate SNARE pairing. Using site-directed spin labeling and EPR distance measurement we show that two identical copies of the SNARE region from syntaxin 1A intertwine as a coiled coil near the "ionic layer" region. The structure of the t-SNARE complex appears to be virtually identical to that of the ternary SNARE complex, except that VAMP2 is substituted to the second copy of syntaxin 1A. Furthermore, it appears that the coiled coil structure is maintained up to residue 259 of syntaxin 1A, identical to that of the ternary complex. These results are somewhat contradictory to the previous reports, suggesting that the t-SNARE complex has the disordered midsection (Xiao, W. Z., Poirier, M. A., Bennett, M. K., and Shin, Y. K. (2001) Nat. Struc. Biol. 8, 308-311) and the uncoiled C-terminal region (Margittai, M., Fasshauer, D., Pabst, S., Jahn, R., and Langen, R. (2001) J. Biol. Chem. 276, 13169-13177). The newly refined structure of the t-SNARE complex provides a basis for the better understanding of the SNARE assembly process. It also provides possible structural-functional clues to the membrane fusion in the v-SNARE deleted fusion models.  相似文献   

2.
p130(cas) (Crk-associated substrate) is a docking protein that is involved in assembly of focal adhesions and concomitant cellular signaling. It plays a role in physiological regulation of cell adhesion, migration, survival, and proliferation, as well as in oncogenic transformation. The molecule consists of multiple protein-protein interaction motifs, including a serine-rich region that is positioned between Crk and Src-binding sites. This study reports the first structure of a functional domain of Cas. The solution structure of the serine-rich region has been determined by NMR spectroscopy, demonstrating that this is a stable domain that folds as a four-helix bundle, a protein-interaction motif. The serine-rich region bears strong structural similarity to four-helix bundles found in other adhesion components like focal adhesion kinase, alpha-catenin, or vinculin. Potential sites for phosphorylation and interaction with the 14-3-3 family of cellular regulators are identified in the domain and characterized by site-directed mutagenesis and binding assays. Mapping the degree of amino acid conservation onto the molecular surface reveals a patch of invariant residues near the C terminus of the bundle, which may represent a previously unidentified site for protein interaction.  相似文献   

3.
Electrostatic stabilization in four-helix bundle proteins.   总被引:2,自引:3,他引:2       下载免费PDF全文
Charge substitutions generated by site-directed mutagenesis at the termini of adjacent anti-parallel alpha-helices in a four-helix bundle protein were used to determine a precise value for the contribution of indirect charge-charge interactions to overall protein stability, and to simulate the electrostatic effects of alpha-helix macrodipoles. Thermodynamic double mutant cycles were constructed to measure the interaction energy between such charges on adjacent anti-parallel helices in the four-helix bundle cytochrome b562 from Escherichia coli. Previously, theoretical calculations of helix macrodipole interactions using modeled four-helix bundle proteins have predicted values ranging over an order of magnitude from 0.2 to 2.5 kcal/mol. Our system represents the first experimental evidence for electrostatic interactions such as those between partial charges due to helix macrodipole charges. At the positions mutated, we have measured a favorable interaction energy of 0.6 kcal/mol between opposite charges simulating an anti-parallel helix pair. Pairs of negative or positive charges simulating a parallel orientation of helices produce an unfavorable interaction of similar magnitude. The interaction energies show a strong dependence upon ionic strength, consistent with an electrostatic effect. Indirect electrostatic contacts do appear to confer a limited stabilization upon the association of anti-parallel packing of helices, favoring this orientation by as much as 1 kcal/mol at 20 mM K phosphate.  相似文献   

4.
Rajan SS  Yang X  Shuvalova L  Collart F  Anderson WF 《Biochemistry》2004,43(49):15472-15479
YfiT, a 19-kDa polypeptide from Bacillus subtilis, belongs to a small sequence family with members predominantly from Gram positive bacteria. We have determined the crystal structure of YfiT in complex with Ni(2+) to a resolution of 1.7 A. YfiT exists as a dimer and binds Ni(2+) in a 1:1 stoichiometry. The protein has an unusual four-helix bundle topology and coordinates Ni(2+) in an octahedral geometry with three conserved histidines and three waters. Although there is no similarity in their overall structures, the coordination geometry of the metal and the residues that constitute the putative active site in YfiT are similar to those of metalloproteases such as thermolysin. Our structural analyses suggest that YfiT might function as a metal-dependent hydrolase.  相似文献   

5.
Heteronuclear 13C and 15N three-dimensional nuclear magnetic resonance (n.m.r.) techniques have been used to determine the solution structure of human interleukin 4, a four-helix bundle protein. A dynamical simulated annealing protocol was used to calculate an ensemble of structures from an n.m.r. data set of 1735 distance restraints, 101 phi angle restraints and 27 pairs of hydrogen bond restraints. The protein structure has a left-handed up-up-down-down topology for the four helices with the two long overhand loops in the structure being connected by a short section of irregular antiparallel beta-sheet. Analysis of the side-chains in the protein shows a clustering of hydrophobic residues, particularly leucines, in the core of the bundle with the side-chains of charged residues being located on the protein surface. The solution structure has been compared with a recent structure prediction for human interleukin 4 and with crystal structures of other helix bundle proteins.  相似文献   

6.
Syntaxin-1/SNAP-25 heterodimers with 1:1 stoichiometry likely play a key role in neurotransmitter release but they have been difficult to characterize. In this issue of Structure, Weninger et al. present a beautiful single molecule spectroscopy study showing the dynamic nature of these heterodimers and how they are influenced by other factors.  相似文献   

7.
The folding of a model native-like dimeric four-helix bundle protein, (alpha(2))(2), was investigated using guanidine hydrochloride, hydrostatic pressure, and low temperature. Unfolding by guanidine hydrochloride followed by circular dichroism and intrinsic fluorescence spectroscopy revealed a highly cooperative transition between the native-like and unfolded states, with free energy of unfolding determined from CD data, DeltaG(unf) = 14.3 +/- 0.8 kcal/mol. However, CD and intrinsic fluorescence data were not superimposable, indicating the presence of an intermediate state during the folding transition. To stabilize the folding intermediate, we used hydrostatic pressure and low temperature. In both cases, dissociation of the dimeric native-like (alpha(2))(2) into folded monomers (alpha(2)) was observed. van't Hoff analysis of the low temperature experiments, assuming a two-state dimer 171-monomer transition, yielded a free energy of dissociation of (alpha(2))(2) of DeltaG(diss) = 11.4 +/- 0.4 kcal/mol, in good agreement with the free energy determined from pressure dissociation experiments (DeltaG(diss) = 10.5 +/- 0.1 kcal/mol). Binding of the hydrophobic fluorescent probe 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid (bis-ANS) to the pressure- and cold-dissociated states of (alpha(2))(2) indicated the existence of molten-globule monomers. In conclusion, we demonstrate that the folding pathway of (alpha(2))(2) can be described by a three-state transition including a monomeric molten globule-like state.  相似文献   

8.
C Beck  X Siemens    D L Weaver 《Biophysical journal》2001,81(6):3105-3115
Proteins with complex folding kinetics will be susceptible to misfolding at some stage in the folding process. We simulate this problem by using the diffusion-collision model to study non-native kinetic intermediate misfolding in a four-helix bundle protein. We find a limit on the size of the pairwise hydrophobic area loss in non-native intermediates, such that burying above this limit creates long-lasting non-native kinetic intermediates that would disrupt folding and prevent formation of the native state. Our study of misfolding suggests a method for limiting the production of misfolded kinetic intermediates for helical proteins and could, perhaps, lead to more efficient production of proteins in bulk.  相似文献   

9.

Background  

The tumor suppressor DLC2 (Deleted in Liver Cancer -2) participates in cell signaling at the mitochondrial membrane. DLC2 is characterized by a SAM (sterile alpha motif) domain, a Rho GTPase activating protein (GAP) domain, and a START lipid transfer domain.  相似文献   

10.
Focal adhesion kinase (FAK) is a tyrosine kinase found in focal adhesions, intracellular signaling complexes that are formed following engagement of the extracellular matrix by integrins. The C-terminal 'focal adhesion targeting' (FAT) region is necessary and sufficient for localizing FAK to focal adhesions. We have determined the crystal structure of FAT and show that it forms a four-helix bundle that resembles those found in two other proteins involved in cell adhesion, alpha-catenin and vinculin. The binding of FAT to the focal adhesion protein, paxillin, requires the integrity of the helical bundle, whereas binding to another focal adhesion protein, talin, does not. We show by mutagenesis that paxillin binding involves two hydrophobic patches on opposite faces of the bundle and propose a model in which two LD motifs of paxillin adopt amphipathic helices that augment the hydrophobic core of FAT, creating a six-helix bundle.  相似文献   

11.
12.
We have used a two histidine-containing synthetic peptide (Sharp et al. (1998) Proc. Natl. Acad. Sci. U.S.A. 95, 10465-10470) as a scaffold to bind Zn(II) chlorin e6 (ZnCe6) through histidine ligation. Protocols for the preparation and purification of the peptide using an Escherichia coli expression system are presented. Size-exclusion chromatography and circular dichroism measurements indicate that the peptide self-assembles into a four-helix bundle protein. Two variants of the peptide lacking either one or both of the histidine residues were used to demonstrate the stoichiometry of ZnCe6 binding. Comparison of the titration profiles determined by UV-vis spectroscopy for the purified one- and two-histidine peptides suggests that the two-histidine peptide can bind two ZnCe6. The binding stoichiometry of ZnCe6 was verified by gel chromatography and native gel electrophoresis using the peptide variant lacking histidine residues as the control. Like many other chlorophyll analogue molecules, ZnCe6 can be photooxidized. The light-induced electron transfer between the ZnCe6-peptide complex and the added phenyl-p-benzoquinone was measured using time-resolved EPR spectroscopy and shown to be faster and have a higher yield than the electron transfer between unbound ZnCe6 and quinone. The implications of constructing a ZnCe6-peptide complex in terms of artificial photosynthesis are discussed.  相似文献   

13.
Recent work is discussed concerning the computational design of four-helix bundle proteins that form complexes with nonbiological cofactors. Given that often there are no suitable natural proteins to provide starting points in the creation of such nonbiological systems, computational design is well suited for the design and study of new protein-cofactor complexes. Recent design efforts are presented in the context of prior work on the de novo design and engineering of porphyrin-binding four-helix bundle proteins and current developments in nonlinear optical materials. Such protein-nonbiological cofactor complexes stand to enable new applications in protein science and materials research.  相似文献   

14.
15.
We have designed, synthesized and characterized three- and four-helix bundle template-assembled synthetic proteins CTASPs). The TASPs were synthesized using disulphide bonds between the peptides and either the cyclotribenzylene (CTB) template, or the cavitand (BOWL) template, to form the three- and four helix bundles, respectively. The TASPs were constructed using peptides that were linked via their N-termini (peptide CGGGEELLKKXEELLKKG, where X = L, I, Nle or V), or via their C-termini (peptide GEELLKKLEELLKKGGGC). Each TASP was assayed for its structure, stability, 'native-like' characteristics and whether it was a monomer in solution. All TASPs were found to be highly helical, and highly resistant to chemical denaturation using guanidine hydrochloride (GnHCl). Analysis of the GnHCl-induced unfolding curves of the different TASPs demonstrated stability differences based on the number of helices in the bundle, the end of the helix that was attached to the template, and the identity of the core amino acid. The TASPs all had molten-globule structure, which is (generally) consistent with a degenerate sequence in the core. The four-helix bundle TASPs appeared to be monomers in solution, whereas there is some evidence that the three-helix bundle TASPs are weakly self-associating.  相似文献   

16.
Chu R  Pei W  Takei J  Bai Y 《Biochemistry》2002,41(25):7998-8003
The hydrogen exchange behavior of a four-helix bundle protein in low concentrations of denaturant reveals some partially unfolded forms that are significantly more stable than the fully unfolded state. Kinetic folding of the protein, however, is apparently two-state in the absence of the accumulation of early folding intermediates. The partially unfolded forms are either as folded as or more folded than the rate-limiting transition state and appear to represent the major intermediates in a folding and unfolding reaction. These results are consistent with the suggestion that partially unfolded intermediates may form after the rate-limiting step for small proteins with apparent two-state folding kinetics.  相似文献   

17.
Winston SE  Mehan R  Falke JJ 《Biochemistry》2005,44(38):12655-12666
The aspartate receptor is one of the ligand-specific, homodimeric chemoreceptors that detects extracellular attractants and triggers the chemotaxis pathway of Escherichia coli and Salmonella typhimurium. This receptor regulates the activity of the histidine kinase CheA, which forms a kinetically stable complex with the receptor cytoplasmic domain. An atomic four-helix bundle model has been constructed for this domain, which is functionally subdivided into the signaling and adaptation subdomains. The proposed four-helix bundle structure of the signaling subdomain, which binds CheA, is fully supported by experimental evidence. Much less evidence is available to test the four-helix bundle model of the adaptation subdomain, which possesses covalent adaptation sites and docking surfaces for adaptation enzymes. The present study focuses on a putative helix near the C terminus of the adaptation subdomain. To probe the structural and functional features of positions G467-A494 in this C-terminal region, a cysteine and disulfide scanning approach has been employed. Measurement of the chemical reactivities of scanned cysteines reveals an alpha-helical periodicity of exposed and buried residues, confirming alpha-helical secondary structure and mapping out a buried packing face. The effects of cysteine substitutions on activity in vivo and in vitro highlight the functional importance of the helix, especially its buried face. A scan for disulfide bond formation between symmetric pairs of engineered cysteines reveals promiscuous collisions between subunits, indicating the presence of significant thermal dynamics. A scan for functional disulfides reveals lock-on and signal-retaining disulfide bonds formed between symmetric pairs of cysteines at buried positions, indicating that the buried face of the helix lies near the subunit interface of the homodimer in the equilibrium structures of both the apo and aspartate-bound states where it plays a critical role in kinase regulation. These results strongly support the existing four-helix bundle model of the adaptation subdomain structure. A mechanistic model is proposed in which a signal is transmitted through the adaptation subdomain by a change in supercoiling of the four-helix bundle.  相似文献   

18.
Plant invertases are sucrolytic enzymes essential for plant metabolism and development. Enzyme activity is regulated on a posttranslational level via inhibitory proteins, referred to as invertase inhibitors. Ectopic expression of invertase inhibitors in crop plants has high biotechnological potential. However, little biochemical and up to now no detailed structural information is available about this class of plant regulatory proteins. Here, we present the crystal structure of the cell wall-associated invertase inhibitor Nt-CIF from tobacco at a resolution of 1.87A. The structural model reveals an asymmetric four-helix bundle with an uncommon N-terminal extension that appears to be critical for the structural integrity of the protein. Structure analysis of a second crystal form grown in the presence of CdCl(2) reveals two metal binding sites. Nt-CIF is highly thermostable and retains full inhibitory activity after cooling to ambient temperatures. The structure of Nt-CIF provides the first three-dimensional information source for the posttranslational regulation of plant invertases. Based on the recently discovered sequence homology between inhibitors of invertases and pectin methylesterases, our structural model is likely to represent a scaffold also used for the regulation of the latter enzymes, which do not share sequence similarity with invertases. Thus, our structural model sets the 3D-stage for the investigation of posttranslational regulation of invertases as well as pectin methylesterases.  相似文献   

19.
The G protein-coupled receptor kinase-interacting protein 1 (GIT1) is a multidomain protein that plays an important role in cell adhesion, motility, cytoskeletal remodeling, and membrane trafficking. GIT1 mediates the localization of the p21-activated kinase (PAK) and PAK-interactive exchange factor to focal adhesions, and its activation is regulated by the interaction between its C-terminal paxillin-binding domain (PBD) and the LD motifs of paxillin. In this study, we determined the solution structure of rat GIT1 PBD by NMR spectroscopy. The PBD folds into a four-helix bundle, which is structurally similar to the focal adhesion targeting and vinculin tail domains. Previous studies showed that GIT1 interacts with paxillin through the LD4 motif. Here, we demonstrated that in addition to the LD4 motif, the GIT1 PBD can also bind to the paxillin LD2 motif, and both LD2 and LD4 motifs competitively target the same site on the PBD surface. We also revealed that paxillin Ser(272) phosphorylation does not influence GIT1 PBD binding in vitro. These results are in agreement with the notion that phosphorylation of paxillin Ser(272) plays an essential role in regulating focal adhesion turnover.  相似文献   

20.
A protein hydrogel system based on the assembly of a four-helix bundle motif was proposed and synthesized by genetic engineering methods. This new polypeptide, named GBH1, consists of identical amphipathic helices of 22 residues in length oriented in opposite fashion to one another at each end of a polypeptide with a total length of 227 amino acids. The middle portion of the polypeptide (residues 79-147) is an unstructured random coil. The region between the amphipathic and unstructured segment is an α-helical stretch (23-78 and 148-204) not possessing a sequence compatible with a coiled-coil conformation, but rather possesses regions that have overwinding of the helix. The thermal unfolding of GBH1 shows more than one inflection point (T(m1) = 30.5 °C, T(m2) = 64.6 °C), indicative of a partially unfolded intermediate and, thus, multiple interactions in the folded state. A qualitative assessment of hydrogel formation with varying pH showed that acidic conditions did not support the gel state, indirectly indicating that the proposed four-helix bundle is the major cross-linking structure and not a leucine zipper motif. Scanning electron microscopy reveals a network of interacting protein molecules forming a spongelike matrix with numerous pores that would be occupied with water molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号