首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 493 毫秒
1.
A cDNA library was constructed in the yeast expression vector pYcDE8 using mRNA from the phytopathogenic fungus Ustilago maydis and cDNAs capable of complementing mutations in three yeast genes, URA3, LEU2 and TPI1, were identified. Nucleotide sequence analysis indicated that the cDNA clone, which complemented the yeast ura3 mutation, carries the pyr6 gene encoding orotidine-5'-phosphate decarboxylase. The genomic copy of the pyr6 gene was isolated by hybridization with the cDNA and used to complement a pyr- mutant of U. maydis. One-step gene disruption was demonstrated by transforming U. maydis with a copy of the pyr6 gene interrupted in the coding region by a selectable marker for resistance to hygromycin B.  相似文献   

2.
We describe the isolation and characterization of three new biosynthetic genes-ARG4, ADE1, and URA3-from the methylotrophic yeast Pichia pastoris. The predicted products of the genes share significant sequence similarity to their Saccharomyces cerevisiae counterparts, namely argininosuccinate lyase, PR-aminoimidazolesuccinocarboxamide synthase, and orotidine-5'-phosphate decarboxylase, respectively. Along with the previously described HIS4 gene, each gene was incorporated as the yeast selectable marker into a set of shuttle vectors designed to express foreign genes in P. pastoris. In addition, we have constructed a series of host strains containing all possible combinations of ade1, arg4, his4, and ura3 auxotrophies to be used with these new vectors.  相似文献   

3.
4.
For functional analysis, the presence of gene families and isoenzymes often makes it necessary to delete more than one gene, while the number of marker genes is limited in Schizosaccharomyces pombe. Here we describe a loxP-flanked ura4(+) cassette and Cre recombinase vector for a Cre-loxP-mediated marker removal procedure in S. pombe. This loxP-ura4-loxP cassette can be used for disruption of hmt1(+) as a model target gene. We have constructed two vectors which express Cre recombinase under the control of the nmt1 or nmt41 promoter. Excisive recombination at loxP sites in the chromosome was promoted efficiently and accurately when the Cre recombinase was expressed under the control of the nmt41 promoter. In addition, ura4(+) could be excised from the genome by Cre recombinase, when a single loxP site was adjacent to ura4. The use of the Cre-loxP system proved to be a practical strategy to excise a marker gene for repeated use in S. pombe.  相似文献   

5.
Y Sakai  T Kazarimoto    Y Tani 《Journal of bacteriology》1991,173(23):7458-7463
An integrative transformation system was established for an asporogenous methylotrophic yeast, Candida boidinii. This system uses a uracil auxotrophic mutant of C. boidinii as the host strain in combination with its URA3 gene as the selectable marker. First, the C. boidinii URA3 gene coding for orotidine-5'-phosphate decarboxylase (ODCase) was cloned by using complementation of the pyrF mutation of Escherichia coli. Next, the host ODCase-negative mutant strains (ura3 strains) were isolated by mutagenesis and selection for 5-fluro-orotic acid (5-FOA) resistance. Five ura3 host strains that exhibited both a low reversion rate and good methylotrophic growth were obtained. All of these strains could be transformed to Ura+ phenotype with a C. boidinii URA3-harboring plasmid linearized within the Candida DNA. The transformants had a stable Ura+ phenotype after nonselective growth for 10 generations. These results and extensive Southern analysis indicated that the linearized plasmid was integrated into the host chromosomal DNA by homologous recombination at the URA3 locus in C. boidinii.  相似文献   

6.
7.
目的:建立一种在代谢工程改造的毕赤酵母菌中高效敲除靶标蛋白基因的方法。方法:构建敲除载体,以粒细胞-巨噬细胞集落刺激因子(GM-CSF)基因为靶基因,以尿嘧啶合成关键酶URA3基因为营养缺陷型筛选标记,第一步重组利用ura3正筛选获得敲除载体在酵母染色体中的定点整合,第二步通过5-氟乳清酸(5-FOA)筛选到表型为ura3-的克隆,ura3基因被剔除的同时,目的基因GM-CSF也随之丢失,实现第二次重组;利用基因组PCR和蛋白电泳进行鉴定。结果:通过两步基因同源重组,敲除了毕赤酵母GJK01的报告蛋白GM-CSF的编码基因388 bp,PCR结果显示该基因已完全丢失,SDS-PAGE分析无GM-CSF表达。结论:仅通过2周时间的筛选、鉴定,在毕赤酵母GJK01中敲除了报告蛋白GM-CSF的编码基因,突变菌株的阳性率达到50%,最终建立了以URA3为筛选标记的两步基因同源重组敲除目的基因的方法。  相似文献   

8.
Li C  Rodriguez M  Banerjee D 《Gene》2000,254(1-2):97-103
Endomyces fibuliger is a yeast used in the production of Chinese rice wine. It secretes enzymes such as glucoamylase, alpha-amylase and acid protease. Very little is known of the genetics of E. fibuliger. In order to develop a transformation system for this yeast, orotidine-5'-phosphate decarboxylase mutant strains were obtained and characterized. Transformation of the E. fibuliger ura3 mutant F1 with an integrative plasmid that carried the wild-type URA3 gene of E. fibuliger gave complementation of this mutation. The E. fibuliger gene encodes the orotidine-5'-phosphate decarboxylase enzyme consisting of 266 amino acid residues with a 69.4% sequence identity with orotidine-5'-phosphate decarboxylase of Saccharomyces cerevisiae. Our finding that E. fibuliger URA3 complements the ura3 mutation in S. cerevisiae confirms that the URA3 gene of E. fibuliger encodes a protein that exerts a similar function.  相似文献   

9.
Summary The Candida albicans LEU2 gene was disrupted by substituting lambda DNA for a small deletion within the LEU2 gene. Cotransformation with a selectable URA3 ARS vector was used to introduce a linear fragment containing the disruption into the genome of a C. albicans ura3 deletion mutant. Cotransformants containing the lambda DNA were identified by colony hybridization and the URA3 plasmid was subsequently cured. Leu2 disrupted heterozygotes were detected by Southern hybridization and one disruptant was subsequently treated with UV irradiation. Only one leu2 ura3 mutant (SGY-484) was isolated out of 11,000 mutagenized cells. SGY-484 was transformed to Leu+ with either the C. albicans or Saccharomyces cerevisiae LEU2 gene. Southern hybridization analysis revealed that the mutant is not homozygous for the disruption; the leu2 mutation reverts and is most likely a point mutation. Unexpectedly, an ade2 ura3 mutant was isolated from the same mutagenesis.  相似文献   

10.
The oil-producing fungus Mortierella alpina 1S-4 is an industrial strain. In order to prepare host strains for a transformation system for this fungus, six uracil auxotrophs were obtained by means of random mutation with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). When the activities of orotate phosphoribosyl transferase (OPRTase, EC 2.4.2.10) and orotidine-5'-phosphate decarboxylase (OMPdecase, EC 4.1.1.23) were examined in the mutants and wild strain, OPRTase activity was found to be completely absent in all mutants, on the other hand, OMPdecase activity was intact. The genomic DNA and cDNA of the ura5 gene encoding OPRTase and the ura3 gene encoding OMPdecase were cloned and sequenced. The Ura5p deduced amino acid sequence of this fungus showed highest similarity to that of Vibrio cholerae classed among prokaryote. Furthermore, the mutational points in the ura5 genes of two selected mutants were identified; a base-replacement and a base-insertion.  相似文献   

11.
Summary The mutant allele rad9-192 renders Schizosaccharomyces pombe cells sensitive to ionizing radiation and UV light. We have isolated from a S. pombe genomic DNA library a unique recombinant plasmid that is capable of restoring wild-type levels of radioresistance to a rad9 192-containing cell population. Plasmid integration studies using the cloned DNA, coupled with mating and tetrad analyses, indicate that this isolated DNA contains the wild-type rad9 gene. We inactivated the repair function of the cloned fragment by a single insertion of the S. pombe ura4 gene. This nonfunctional fragment was used to create a viable disruption mutant, thus demonstrating that the rad9 gene does not encode an essential cellular function. In addition, the rad9-192 mutant population is as radiosensitive as the disruption mutant, indicating that rad9 gene function is severely if not totally inhibited by the molecular defect responsible for the rad9-192 phenotype. DNA sequence analysis of rad9 reveals an open reading frame of 1,278 bp, interrupted by three introns 53 bp, 57 bp, and 56 by long, respectively, and ending in the termination codon TAG. This gene is capable of encoding a protein of 426 amino acids, with a corresponding calculated molecular weight of 47,464 daltons. No significant homology was detected between the rad9 gene or its deduced protein sequence and sequences previously entered into DNA and protein sequence data banks.  相似文献   

12.
13.
To facilitate the functional genomic analysis of an archaeon, we have developed a homologous gene replacement strategy for Halobacterium salinarum based on ura3, which encodes the pyrimidine biosynthetic enzyme orotidine-5'-monophosphate decarboxylase. H. salinarum was shown to be sensitive to 5-fluoroorotic acid (5-FOA), which can select for mutations in ura3. A spontaneous 5-FOA-resistant mutant was found to contain an insertion in ura3 and was a uracil auxotroph. Integration of ura3 at the bacterioopsin locus (bop ) of this mutant restored 5-FOA sensitivity and uracil prototrophy. Parallel results were obtained with a Deltaura3 strain constructed by gene replacement and with derivatives of this strain in which ura3 replaced bop. These results show that H. salinarum ura3 encodes functional orotidine-5'-monophosphate decarboxylase. To demonstrate ura3-based gene replacement, a Deltabop strain was constructed by transforming a Deltaura3 host with a bop deletion plasmid containing a mevinolin resistance marker. In one approach, the host contained intact ura3 at the chromosomal bop locus; in another, ura3 was included in the plasmid. Plasmid integrants selected with mevinolin were resolved with 5-FOA, yielding Deltabop recombinants at a frequency of > 10-2 in both approaches. These studies establish an efficient new genetic strategy towards the systematic knockout of genes in an archaeon.  相似文献   

14.
Summary Three different Schizosaccharomyces pombe strains have been transformed with a circular or linearized non-ars plasmid carrying the ura4 + gene as a selectable marker. The first strain shows full homology between the genomic ura4-294 gene (point mutation) and the marker gene on the plasmid. The second strain carries a 600 bp deletion (ura4-D6) that decreases homology between plasmid and chromosome. No homology remains in the third strain which has a complete deletion of the ura4 gene on the chromosome (ura4-D18). When sequence homology exists between transforming DNA and the chromosomal ura4 region, gene conversion is strongly preferred over integration of the circular plasmid. Reduction of the length of homology leads to a decrease of transformation frequencies, and homology dependent as well as a minority of homology independent integrations are observed. In the complete absence of homology two rate types of transformants are encountered: either the circular plasmid replicates autonomously, although it is devoid of an ars sequence, or alternatively the plasmid integrates into the genome at various positions. Transformation with plasmid cut within the coding region of ura4 can lead to tandemly arranged multiple integrations, when no homology exists between the free ends and the chromosome. The integrations occur at the ura4 locus, when homology is retained between plasmid and chromosome, and at various sites in the genome of the strain with a complete deletion of the ura4 gene. The results suggest that homology dependent events (conversion, integration) are strongly preferred in transformation of S. pombe with non-ars plasmids. In addition low frequency integration by illegitimate recombination is observed. Linearized plasmid can be ligated in vivo to form monomers or multimers in the absence of homology between the free plasmid ends and the chromosomal genome.  相似文献   

15.
A method for introducing specific mutations into the diploid Candida albicans by one-step gene disruption and subsequent UV-induced recombination was developed. The cloned C. albicans URA3 gene was disrupted with the C. albicans ADE2 gene, and the linearized DNA was used for transformation of two ade2 mutants, SGY-129 and A81-Pu. Both an insertional inactivation of the URA3 gene and a disruption which results in a 4.0-kilobase deletion were made. Southern hybridization analyses demonstrated that the URA3 gene was disrupted on one of the chromosomal homologs in 15 of the 18 transformants analyzed. These analyses also revealed restriction site dimorphism of EcoRI at the URA3 locus which provides a unique marker to distinguish between chromosomal homologs. This enabled us to show that either homolog could be disrupted and that disrupted transformants of SGY-129 contained more than two copies of the URA3 locus. The A81-Pu transformants heterozygous for the ura3 mutations were rendered homozygous and Ura- by UV-induced recombination. The homozygosity of a deletion mutant and an insertion mutant was confirmed by Southern hybridization. Both mutants were transformed to Ura+ with plasmids containing the URA3 gene and in addition, were resistant to 5-fluoro-orotic acid, a characteristic of Saccharomyces cerevisiae ura3 mutants as well as of orotidine-5'-phosphate decarboxylase mutants of other organisms.  相似文献   

16.
Cryptococcus gattii (Cg) is an emerging pathogen of both healthy and immunocompromised patients worldwide. Understanding the molecular genetic basis of virulence and physiology of this pathogen will be critical for defining its pathogenic mechanisms. The purine biosynthetic gene, URA5 encoding orate phosphorybosyltransferase (OPRTase), has been successfully used as a selectable marker for gene disruption by transformation and homologous recombination in Cg. Here, we report the characterization of ura5 auxotrophy and URA5 reversion phenomenon at the molecular, genetic, and structural levels, and use of ura5URA5 reversion as a tool for reconstitution of gene of interest and auxotrophic marker to their native loci. We identified a single mutation of GG128T→GAT with substitution of glycine to aspartic acid at amino acid position 43 resulting in ura5 auxotrophy. The ura5URA5 reversion on CSM lacking uracil (CSM-U) was found to be a rare phenomenon with a reversion frequency of 0.000002%, and sequence analysis of URA5 from all the reverted strains revealed mutation of GA128T→GGT back to its ancestral state. The URA5 allele in the reverted strains was fully functional, as demonstrated by the excellent growth of these strains on medium lacking uracil, as well as by the ability of this allele to efficiently transform ura5 mutant to restore prototrophy. The deduced Cg URA5 protein modeled on the known crystal structures of OPRTase from Salmonella typhimurium (1LH0_A, 1STO) and from Escherichia coli (1ORO_A) indicated that the glycine 43 of Cg URA5 was situated on a conserved loop, and it’s substitution to more globose aspartic acid may have resulted in URA5 inactivation in auxotrophic strain. The advantages of this approach for the generation of a reconstituted strain are (1) that it restores the functionality of the native URA5, (2) that it eliminates an additional biolistic delivery of exogenous URA5, and (3) that it allows easy selection of reconstituted strains with homologous integration. This strategy was successfully used for the generation of Cg can2+CAN2/URA5 homologous reconstituted strains, which grew in ambient air to the wild-type level while can2 mutant exhibited severe growth defect under similar conditions. Srinivas D. Narasipura and Ping Ren contributed equally to this work.  相似文献   

17.
Mammalian ribonucleotide reductase consists of two non-identical subunits, proteins M1 and M2. M2-related DNA sequences are present on mouse chromosomes 4, 7, 12 and 13. However, M2-overproducing mouse cells show amplification of a chromosome 12-specific, single 13 kb HindIII fragment, which probably represents the active gene. We have isolated this fragment from parental mouse cell DNA and used it to clone and characterize the functional M2 gene. The 5770 bp transcribed M2 sequence contains ten exons separated by nine 95-917 bp introns. The 501 bp of 5' flanking DNA is G + C rich and contains TTTAAA and CCAAT sequences as well as potential Sp1 binding sites. The M2-related sequence on chromosome 13, which contains only the last six exons and several internal rearrangements, is a pseudogene. Transfection of BALB/3T3 cells with the M2 gene resulted in stable transformants with a 10-fold reduction in sensitivity to hydroxyurea, compared to control cells. This confirmed that the cloned M2 genomic DNA represents the functional gene and conclusively establishes the link between hydroxyurea resistance and M2 expression in mammalian cells. M2 genomic DNA should be a valuable dominant, selectable marker for identifying and isolating stable co-transformants.  相似文献   

18.
Watson AT  Garcia V  Bone N  Carr AM  Armstrong J 《Gene》2008,407(1-2):63-74
Cre/lox site-specific recombination systems provide important tools for genetic manipulation. Here we present an efficient method for gene tagging and gene replacement using Cre recombinase-mediated cassette exchange (RMCE). The cassette consists of the S. pombe ura4(+) selectable marker flanked by a wild-type loxP site at one end and by a modified heterospecific lox site (loxM3) at the other. The cassette is stable because the flanking lox sites cannot recombine with each other. Following integration of the cassette at the chosen chromosomal locus, exchange is achieved by introducing a Cre-expression plasmid containing an equivalent cassette containing the required tag or gene sequence. Recombinants are selected by uracil prototrophy using the reagent 5-fluoroorotic acid (5-FOA). The cassette exchange system provides for repetitive integrations at the same locus, allowing different protein tags or gene sequences to be integrated quickly and efficiently. We have established a range of reagents and verified utility by C-terminally tagging the S. pombe rad4 and swi1 genes with yEGFP and the yEGFP derivatives yECFP and yECitrine and by transferring the coding sequence for both genes.  相似文献   

19.
We have characterized the rRNA gene repeat in Schizosaccharomyces pombe. This repeat, which does not contain the 5S RNA gene, is found in a 10.4 kb HindIII DNA fragment. We have determined the nucleotide sequences of the S. pombe 5.8S RNA gene and intergenic spacers from two different 10.4 kb DNA fragments. Analysis of isolated total cellular 5.8S RNA revealed the presence of eight species of 5.8S RNA, differing in the number of nucleotides at the 5'-end. The eight 4.8S RNA species vary in length from 158 to 165 nucleotides. Apart from the heterogeneity observed at the 5'-end, the sequence of the eight 5.8S RNA species appears to be identical and is the same sequence as coded for by the 5.8S genes. The gene sequence shows great homology to the 5.8S RNA genes or S. cerevisiae and N. crassa. Most of the base differences are confined to the highly variable stem though to be involved in co-axial helix stacking with the 25S RNA, where base pairing is nearly identical despite the sequence differences. Secondary structure models are examined in light of 5.8S RNA oligonucleotide conservation across species from yeasts to higher eukaryotes.  相似文献   

20.
The frequency with which transforming DNA undergoes homologous recombination at a chromosomal site can be quite low in some fungal systems. In such cases, strategies for gene disruption or gene replacement must either select against ectopic integration events or provide easy screening to identify homologous site, double-crossover insertion events. A protocol is presented for efficient isolation of Neurospora crassa strains carrying a definitive null allele in a target gene. The protocol relies on the presence of a selectable marker flanking a disrupted plasmid-borne copy of the gene, and in the case presented led to a seven-fold enrichment for putative homologous site replacement events. In addition, a polymerase chain reaction assay is utilized for rapid identification of homologous recombinants among the remaining candidates. This protocol was used to identify 3 isolates, out of 129 primary transformants, which have a disruption in the Neurospora ccg-1 gene. The method should be applicable to a variety of fungal systems in which two selectable markers can be expressed, including those in which homologous recombination rates are too low to allow easy identification of homologous site insertions by the more traditional molecular method of Southern analysis. In addition to disrupting target genes for the purpose of generating null mutations, this method is useful for the targeting of reporter gene fusions to a native chromosomal site for the purpose of studying gene regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号