首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
NMR structures of biomolecules are primarily based on nuclear Overhauser effects (NOEs) between protons. For the interpretation of NOEs in terms of distances, usually the assumption of a single rotational correlation time corresponding to a rigid molecule approximation is made. Here we investigate the effect of fast internal motions of the interproton vectors in the context of the relaxation matrix approach for structure determination of biomolecules. From molecular dynamics simulations generalized order parameters were calculated for the DNA octamer d(GCGTTCGC).d(CGCAACGC), and these were used in the calculation of NOE intensities. The magnitudes of the order parameters showed some variation for the different types of interproton vectors. The lowest values were observed for the interresidue base H6/H8-H2" proton vectors (S2 = 0.60), while the cytosine H5-H6 interproton vectors were among the most motionally restricted (S2 = 0.92). Inclusion of the motion of the interproton vectors resulted in a much better agreement between theoretically calculated NOE spectra and the experimental spectra measured by 2D NOE spectroscopy. The interproton distances changed only slightly, with a maximum of 10%; nevertheless, the changes were significant and resulted in constraints that were better satisfied. The structure of the DNA octamer was determined by using restrained molecular dynamics simulations with H2O as a solvent, with and without the inclusion of local internal motions. Starting from A- or B-DNA, the structures showed a high local convergence (0.86 A), while the global convergence for the octamer was ca. 2.6 A.  相似文献   

2.
Two series of modified oligonucleotides based on the self-complementary dodecamer d(CGCTAATTAGCG) were synthesized. The first contained the -C identical withCCH2R linker at C5 of deoxyuridine at position 4 (T*) of d(CGCT*AATTAGCG) and the second contained the -SR linker. The goal of the study was to evaluate and compare these two types of side chains for suitability as tethers for linking reporter groups to oligonucleotides. Our primary concern was how these tethers would effect duplex stability. The modified nucleosides were synthesized by palladium-mediated coupling reactions between the substituted alkyne and 5'-(4, 4'-dimethoxytrityl)-5-iodo-2'-deoxyuridine and between a disulfide and 5-chloromercurio-2'-deoxyuridine. The C5 deoxyuridine side chains evaluated included C identical with CCH3, C identical with CCH2NHC(O)CH3, C identical with CCH2N(CH3)2, C identical with CCH2N-HC(O)C5H4N, C identical with CCH2NHC(O)C10H15, SCH3, SC6H5 and SCH2CH2NHC(O)CH3. The nucleosides containing these substituents were incorporated into oligo-deoxyribonucleotides by standard phosphoramidite methodology. Melting studies demonstrated that the sequence containing the C identical with CCH3side chain had the highest T m value (59.1 degrees C) in comparison with the control sequence (T m = 55.2 degrees C) and that any additional substituent on C3 of the propynyl group lowered the T m value relative to propynyl. Nevertheless, even the most destabilizing substituent, adamantylcarbamoyl, yielded an oligodeoxyribonucleotide that dissociated with a T m of 54 degrees C, which is only 1.2 degrees C less than the control sequence. In contrast, the thioether substituents led to lower T m values, ranging from as low as 45.1 degrees C for SPh up to 52.2 degrees C for SMe. Replacing the methyl of the SMe substituent with a CH2CH2NHC(O)CH3 tether led to no further reduction in melting temperature. The T m value of the CH2CH2NHC(O)CH3-containing oligonucleotide was less than the natural sequence by 1.6 degrees C/substituent. This is sufficiently small that it is anticipated that the C5 thioether linkage may be as useful as the acetylenic linkage for tethering reporter groups to oligonucleotides. More importantly, the thioether linkage provides a means to position functional groups to interact specifically with opposing complementary (target) sequences.  相似文献   

3.
M W Kalnik  B F Li  P F Swann  D J Patel 《Biochemistry》1989,28(15):6170-6181
High-resolution two-dimensional NMR studies are reported on the self-complementary d-(C1-G2-C3-O6etG4-A5-G6-C7-T8-T9-G10-C11-G12) duplex (designated O6etG.T 12-mer) containing two symmetrically related O6etG.T lesion sites located four base pairs in from either end of the duplex. Parallel studies were undertaken on a related sequence containing O6meG.T lesion sites (designated O6meG.T 12-mer) in order to evaluate the influence of the size of the alkyl substituent on the structure of the duplex and were undertaken on a related sequence containing G.T mismatch sites (designated G.T 12-mer duplex), which served as the control duplex. The exchangeable and nonexchangeable proton and the phosphorus nuclei have been assigned from an analysis of two-dimensional nuclear Overhauser enhancement (NOE) and correlated spectra of the O6etG.T 12-mer, O6meG.T 12-mer, and G.T 12-mer duplexes in H2O and D2O solutions. The distance connectivities observed in the NOESY spectra of the O6alkG.T 12-mer duplexes establish that the helix is right-handed and all of the bases adopt an anti conformation of the glycosidic torsion angle including the O6alkG4 and T9 bases at the lesion site. The imino proton of T9 at the O6alkG.T lesion sites resonates at 8.85 ppm in the O6etG.T 12-mer duplex and at 9.47 ppm in the O6meG.T 12-mer duplex. The large upfield shift of the T9 imino proton resonance at the O6alkG4.T9 lesion site relative to that of the same proton in the G4.T9 wobble pair (11.99 ppm) and the A4.T9 Watson-Crick pair (13.95 ppm) in related sequences establishes that the hydrogen bonding of the imino proton of T9 to O6alkG4 is either very weak or absent. The imino proton of T9 develops NOEs to the CH3 protons of the O6etG and O6meG alkyl groups across the base pair, as well as to the imino and H5 protons of the flanking C3.G10 base pair and the imino and CH3 protons of the flanking A5.T8 base pair in the O6alkG.T 12-mer duplexes. These observations establish that the O6alkG4 and T9 residues are stacked into the duplex and that the O6CH3 and O6CH2CH3 groups of O6alkG4 adopt a syn orientation with respect to the N1 of the alkylated guanine.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
We have investigated intermolecular interactions and conformational features of the netropsin X d(G-G-A-A-T-T-C-C) complex by one- and two-dimensional NMR studies in aqueous solution. Netropsin removes the 2-fold symmetry of the d(G-G-A-A-T-T-C-C) duplex at the AATT binding site and to a lesser extent at adjacent dG X dC base pairs resulting in doubling of resonances for specific positions in the spectrum of the complex at 25 degrees C. We have assigned the amide, pyrrole, and CH2 protons of netropsin, and the base and sugar H1' protons of the nucleic acid from an analysis of the nuclear Overhauser effect (NOESY) and correlated (COSY) spectra of the complex at 25 degrees C. We observe intermolecular nuclear Overhauser effects (NOE) between all three amide and both pyrrole protons on the concave face of the antibiotic and the minor groove adenosine H2 proton of the two central A4 X T5 base pairs of the d(G1-G2-A3-A4-T5-T6-C7-C8) duplex. Weaker intermolecular NOEs are also observed between the pyrrole concave face protons and the sugar H1' protons of residues T5 and T6 in the AATT minor groove of the duplex. We also detect intermolecular NOEs between the guanidino CH2 protons at one end of netropsin and adenosine H2 proton of the two flanking A3 X T6 base pairs of the octanucleotide duplex. These studies establish a set of intermolecular contacts between the concave face of the antibiotic and the minor groove AATT segment of the d(G-G-A-A-T-T-C-C) duplex in solution. The magnitude of the NOEs require that there be no intervening water molecules sandwiched between the antibiotic and the DNA so that release of the minor groove spine of hydration is a prerequisite for netropsin complex formation.  相似文献   

5.
In this study, we investigate the role of the apex nucleotides of the two turns found in the intramolecular "paperclip" type triplex DNA formed by 5'-TCTCTCCTCTCTAGAGAG-3'. Our previously published structure calculations show that residues C7-A18 form a hairpin turn via Watson-Crick basepairing and residues T1-C6 bind into the major groove of the hairpin via Hoogsteen basepairing resulting in a broad turn of the T1-T12 5'-pyrimidine section of the DNA. We find that only the C6C7/G18 apex triad (and not the T12A13/T1 apex triad) is required for intramolecular triplex formation, is base independent, and occurs whether the purine section is located at the 5' or 3' end of the sequence. NMR spectroscopy and molecular dynamics simulations are used to investigate a bimolecular complex (which retains only the C6C7/G18 apex) in which a pyrimidine strand 5'- TCTCTCCTCTCT-3' makes a broad fold stabilized by the purine strand 5'-AGAGAG-3' via Watson Crick pairing to the T8-T12 and Hoogsteen basepairing to T1-T5 of the pyrimidine strand. Interestingly, this investigation shows that this 5'-AGAGAG-3' oligo acts as a new kind of triplex forming oligonucleotide, and adds to the growing number of triplex forming oligonucleotides that may prove useful as therapeutic agents.  相似文献   

6.
High-resolution proton and phosphorus NMR studies are reported on the self-complementary d(C1-G2-T3-G4-A5-A6-T7-T8-C9-O6meG10-C11-G12) duplex (henceforth called O6meG.T 12-mer), which contains T3.O6meG10 interactions in the interior of the helix. The imino proton of T3 is observed at 9.0 ppm, exhibits a temperature-independent chemical shift in the premelting transition range, and broadens out at the same temperature as the imino proton of the adjacent G2.C11 toward the end of the helix at pH 6.8. We observed inter base pair nuclear Overhauser effects (NOEs) between the base protons at the T3.O6meG10 modification site and the protons of flanking G2.C11 and G4.C9 base pairs, indicative of the stacking of the T3 and O6meG10 bases into the helix. Two-dimensional correlated (COSY) and nuclear Overhauser effect (NOESY) studies have permitted assignment of the base and sugar H1', H2', and H2' nonexchangeable protons in the O6meG.T 12-mer duplex. The observed NOEs demonstrate an anti conformation about all the glycosidic bonds, and their directionality supports formation of a right-handed helix in solution. The observed NOEs between the T3.O6meG10 interaction and the adjacent G2.C11 and G4.C9 base pairs at the modification site exhibit small departures from patterns for a regular helix in the O6.meG.T 12-mer duplex. The phosphorus resonances exhibit a 0.5 ppm spectral dispersion indicative of an unperturbed phosphodiester backbone for the O6meG.T 12-mer duplex. We propose a model for pairing of T3 and O6meG10 at the modification site in the O6meG.T 12-mer duplex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Solution structure of the nogalamycin-DNA complex   总被引:2,自引:0,他引:2  
X L Zhang  D J Patel 《Biochemistry》1990,29(40):9451-9466
The nogalamycin-d(A-G-C-A-T-G-C-T) complex (two drugs per duplex) has been generated in aqueous solution and its structure characterized by a combined application of two-dimensional NMR experiments and molecular dynamics calculations. Two equivalents of nogalamycin binds to the self-complementary octanucleotide duplex with retention of 2-fold symmetry in solution. We have assigned the proton resonances of nogalamycin and the d(A1-G2-C3-A4-T5-G6-C7-T8) duplex in the complex and identified the intermolecular proton-proton NOEs that define the alignment of the antitumor agent at its binding site on duplex DNA. The analysis was greatly aided by a large number of intermolecular NOEs involving exchangeable protons on both the nogalamycin and the DNA in the complex. The molecular dynamics calculations were guided by 274 intramolecular nucleic acid distance constraints, 90 intramolecular nogalamycin distance constraints, and 104 intermolecular distance constraints between nogalamycin and the nucleic acid protons in the complex. The aglycon chromophore intercalates at (C-A).(T-G) steps with the long axis of the aglycon approximately perpendicular to the long axis of the flanking C3.G6 and A4.T5 base pairs. The aglycon selectively stacks over T5 and G6 on the T5-G6-containing strand with the aglycon edge containing OH-4 and OH-6 substituents directed toward the C3-A4-containing strand. The C3.G6 and A4.T5 base pairs are intact but buckled at the intercalation site with a wedge-shaped alignment of C3 and A4 on the C3-A4 strand compared to the parallel alignment of T5 and G6 on the T5-G6 strand in the complex. The nogalose sugar in a chair conformation, the aglycon ring A in a half-chair conformation, and the COOCH3-10 side chain form a continuous domain that is sandwiched within the walls of the minor groove and spans the three base pair (G2-C3-A4).(T5-G6-C7) segment. The nogalose ring is positioned in the minor groove such that its nonpolar face is directed toward the G6-C7 sugar-phosphate backbone while its polar face containing OCH3 groups is directed toward the G2-C3 sugar-phosphate backbone in the complex. The intermolecular contacts include a nonpolar patch of aglycon (CH3-9) and nogalose (CH3-3') methyl groups forming van der Waals contacts with the base-sugar residues in the minor groove and intermolecular hydrogen bonds involving the amino groups of G2 and G6 with the ether oxygens OCH3-3' and O7, respectively, on the nogalose sugar.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
X L Gao  D J Patel 《Biochemistry》1990,29(49):10940-10956
This paper reports on a solution NMR characterization of the sequence selectivity and metal ion specificity in chromomycin-DNA oligomer complexes in the presence of divalent cations. The sequence selectivity studies have focused on chromomycin complexes with the self-complementary d(A1-A2-G3-G4-C5-C6-T7-T8) duplex containing a pair of adjacent (G3-G4).(C5-C6) steps and the self-complementary d(A1-G2-G3-A4-T5-C6-C7-T8) duplex containing a pair of separated (G2-G3).(C6-C7) steps in aqueous solution. The antitumor agent (chromomycin) and nucleic acid protons have been assigned following analysis of distance connectivities in NOESY spectra and coupling connectivities in DQF-COSY spectra for both complexes in H2O and D2O solution. The observed intermolecular NOEs establish that chromomycin binds as a Mg(II)-coordinated dimer [1 Mg(II) per complex] and contacts the minor-groove edge with retention of 2-fold symmetry centered about the (G3-G4-C5-C6).(G3-G4-C5-C6) segment of the d(A2G2C2T2) duplex. By contrast, complex formation is centered about the (G2-G3-A4-T5).(A4-T5-C6-C7) segment and results in removal of the two fold symmetry of the d(AG2ATC2T) duplex. Thus, the binding of one subunit of the chromomycin dimer at its preferred (G-G).(C-C) site assists in the binding of the second subunit to the less preferred adjacent (A-T).(A-T) site. These observations suggest a hierarchy of chromomycin binding sites, with a strong site detected at the (G-G) step due to the hydrogen-bonding potential of acceptor N3 and donor NH2 groups of guanosine that line the minor groove. The divalent cation specificity has been investigated by studies on the symmetric chromomycin-d(A2G2C2T2) complex in the presence of diamagnetic Mg(II), Zn(II), and Cd(II) cations and paramagnetic Ni(II) and Co(II) cations. A comparative NOESY study of the Mg(II) and Ni(II) symmetric complexes suggests that a single tightly bound divalent cation aligns the two chromomycins in the dimer through coordination to the C1 carbonyl and C9 enolate ions on the hydrophilic edge of each aglycon ring. Secondary divalent cation binding sites involve coordination to the major-groove N7 atoms on adjacent guanosines in G-G steps. This coordination is perturbed on lowering the pH below 6.0, presumably due to protonation of the N7 atoms. The midpoint of the thermal dissociation of the symmetric complex is dependent on the divalent cation with the stability for reversible transitions decreasing in the order Mg(II) greater than Zn(II) greater than Cd(II) complexes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
13C spin-lattice relazation times (T1 values) in cytidine were determined experimentally to investigate molecular motions of both metal-free and ion-complexed cytidines in dimethylsulfoxide solutions. It was found that the correlation times of the protonated carbons were equal within experimental error, and this equality of correlation times of different sites of the molecule suggests strongly isotropic random motion of the molecule. Correlation times for internal motion of the amino group obtained from the observed T1 of the amino protons are 4.6 -10(-11) S, 2.0 - 10(-9) S and 1.1 - 10(-10) S for the metal-free cytidine and the cytidine complexed with either CaCl2 or ZnCl2, respectively. An experimental value of T1 of the H6 proton of the cytidine base agrees very well with the value estimated from a conformation determined by the nuclear "Overhauser" effect. Spin-lattice relaxation time measurements of the 7Li nucleus in the LiCl/cytidine system strongly suggested that the 7Li cation is directly coordinated with cytidine.  相似文献   

10.
This paper reports on a combined two-dimensional NMR and energy minimization computational characterization of the conformation of the N-(deoxyguanosyl-8-yl)aminofluorene adduct [(AF)G] positioned across adenosine in a DNA oligomer duplex as a function of pH in aqueous solution. This study was undertaken on the d[C1-C2-A3-T4-C5-(AF)G6-C7-T8-A9-C10-C11].[G12-G13-T14 -A15-G16-A17-G18- A19-T20-G21-G22] complementary undecamer [(AF)G 11-mer duplex]. The modification of the single G6 on the pyrimidine-rich strand was accomplished by reaction of the oligonucleotide with N-acetoxy-2-(acetylamino)fluorene and subsequent deacetylation under alkaline conditions. The HPLC-purified modified strand was annealed with the unmodified purine-rich strand to generate the (AF)G 11-mer duplex. The exchangeable and nonexchangeable protons are well resolved and narrow in the NMR spectra of the (AF)G 11-mer duplex so that the base and the majority of sugar nucleic acid protons, as well as several aminofluorene ring protons, have been assigned following analysis of two-dimensional NOESY and COSY data sets at pH 6.9, 30 degrees C in H2O and D2O solution. The NOE distance constraints establish that the glycosidic torsion angle is syn at (AF)G6 and anti at A17, which results in the aminofluorene ring being positioned in the minor groove. A very large downfield shift is detected at the H2' sugar proton of (AF)G6 associated with the (AF)G6[syn].A17[anti] alignment in the (AF)G 11-mer duplex. The NMR parameters demonstrate formation of Watson-Crick C5.G18 and C7.G16 base pairs on either side of the (AF)G6[syn].A17[anti] modification site with the imino proton of G18 more stable to exchange than the imino proton of G16. Several nonexchangeable aminofluorene protons undergo large downfield shifts as do the imino and H8 protons of G16 on lowering of the pH from neutrality to acidic values for the (AF)G 11-mer duplex. Both the neutral and acidic pH conformations have been defined by assigning the NOE constraints in the [C5-(AF)G6-C7].[G16-A17-G18] segment centered about the modification site and incorporating them in distance constrained minimized potential energy calculations in torsion angle space with the DUPLEX program. A series of NOEs between the aminofluorene protons and the DNA sugar protons in the neutral pH conformation establish that the aminofluorene ring spans the minor groove and is directed toward the G16-A17-G18 sugar-phosphate backbone on the partner strand.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Summary New 2D and 3D 1H-13C-15N triple resonance experiments are presented which allow unambiguous assignments of intranucleotide H1'-H8(H6) connectivities in 13C-and 15N-labeled RNA oligonucleotides. Two slightly different experiments employing double INEPT forward and back coherence transfers are optimized to obtain the H1'-C1'-N9/N1 and H8/H6-C8/C6-N9/N1 connectivities, respectively. The correlation of H1' protons to glycosidic nitrogens N9/N1 is obtained in a nonselective fashion. To correlate H8/H6 with their respective glycosidic nitrogens, selective 13C-refocusing and 15N-inversion pulses are applied to optimize the magnetization transfers along the desired pathway. The approach employs the heteronuclear one-bond spin-spin interactions and allows the 2D 1H-15N and 3D1H-13C-15N chemical shift correlation of nuclei along and adjacent to the glycosidic bond. Since the intranucleotide correlations obtained are based exclusively on through-bond scalar interactions, these experiments resolve the ambiguity of intra-and internucleotide H1'-H8(H6) assignments obtained from the 2D NOESY spectra. These experiments are applied to a 30-base RNA oligonucleotide which contains the binding site for Rev protein from HIV.  相似文献   

12.
Structural studies have been extended to dual lesions where an exocyclic adduct is positioned opposite an abasic site in the center of a DNA oligomer duplex. NMR and energy minimization studies were performed on the 1,N2-propanodeoxyguanosine exocyclic adduct (X) positioned opposite a tetrahydrofuran abasic site (F) with the dual lesions located in the center of the (C1-A2-T3-G4-X5-G6-T7-A8-C9).(G10-T11-A12-C-13-F14-C15 -A16-T17-G-18) X.F 9-mer duplex. Two-dimensional NMR experiments establish that the X.F 9-mer helix is right-handed with Watson-Crick A.T and G.C base pairing on either side of the lesion site. NOEs are detected from the methylene protons of the exocyclic ring of X5 to the imino protons of G4.C15 and G6.C13 which flank the lesion site, as well as to the H1' and H1" protons of the cross strand F14 tetrahydrofuran moiety. These NMR results establish that the exocyclic adduct X5 is positioned between flanking G4.C15 and G6.C13 base pairs and directed toward the abasic lesion F14 on the partner strand. These studies establish that the exocyclic ring of the 1,N2-propanodeoxyguanosine adduct fits into the cavity generated by the abasic site.  相似文献   

13.
The relative motion between various vertebrae of multi-level cervical ligamentous spinal segments (C2-T2), using Bryant angles, is described. A three-dimensional sonic digitizer was utilized to study the motion in flexion, extension, right lateral bending and right axial rotation. Effects of a number of injuries and stabilization (interspinous wiring and acrylic cement, PMMA) on the motion behavior of C5-C6 (injured) and C4-C5 (superior to injured) levels were investigated. The data were normalized with respect to intact specimens. The injury to capsular ligaments at C5-C6 produced a significant increase in the relative motion at C4-C5. Although the interspinous wiring reduced the motion at C5-C6 the C4-C5 motion was still higher. The application of PMMA made the motion at C4-C5 comparable to the intact specimen.  相似文献   

14.
Two-dimensional homonuclear and heteronuclear NMR and minimized potential energy calculations have been combined to define the structure of the antitumor agent mitomycin C (MC) cross-linked to deoxyguanosines on adjacent base pairs in the d(T1-A2-C3-G4-T5-A6).d(T7-A8-C9-G10-T11-A12) duplex. The majority of the mitomycin and nucleic acid protons in the MC-X 6-mer complex have been assigned from through-bond and through-space two-dimensional proton NMR studies in aqueous solution at 5 and 20 degrees C. The C3.G10 and G4.C9 base pairs are intact at the cross-link site and stack on each other in the complex. The amino protons of G4 and G10 resonate at 9.36 and 8.87 ppm and exhibit slow exchange with solvent H2O. The NMR experimental data establish that the mitomycin is cross-linked to the DNA through the amino groups of G4 and G10 and is positioned in the minor groove. The conformation of the cross-link site is defined by a set of NOEs between the mitomycin H1" and H2" protons and the nucleic acid imino and amino protons of G4 and the H2 proton of A8 and another set of NOEs between the mitomycin geminal H10" protons and the nucleic acid imino and amino protons of G10 and the H2 proton of A2. Several phosphorus resonances of the d(T-A-C-G-T-A) duplex shift dramatically on mitomycin cross-link formation and have been assigned from proton-detected phosphorus-proton two-dimensional correlation experiments. The proton chemical shifts and NOEs establish fraying at the ends of the d(T-A-C-G-T-A) duplex, and this feature is retained on mitomycin cross-link formation. The base-base and base-sugar NOEs exhibit similar patterns for symmetry-related steps on the two nucleic acid strands in the MC-X 6-mer complex, while the proton and phosphorus chemical shifts are dramatically perturbed at the G10-T11 step on cross-link formation. The NMR distance constraints have been included in minimized potential energy computations on the MC-X 6-mer complex. These computations were undertaken with the nonplanar five-membered ring of mitomycin in each of two pucker orientations. The resulting low-energy structures MX1 and MX2 have the mitomycin cross-linked in a widened minor groove with the chromophore ring system in the vicinity of the G10-T11 step on one of the two strands in the duplex.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
The NMR parameters for the 1,N2-propanodeoxyguanosine (X) opposite deoxyadenosine positioned in the center of the complementary d(C1-A2-T3-G4-X5-G6-T7-A8-C9).d(G10-T11-A12-C13-A14-C15-A 16-T17-G18) X.A 9-mer duplex are pH dependent. A previous paper established protonated X5(syn).A14(anti) pairing in the X.A 9-mer duplex at pH 5.8 [Kouchakdjian, M., Marinelli, E., Gao, X., Johnson, F., Grollman, A., & Patel, D. J. (1989) Biochemistry 28, 5647-5657]; this paper focuses on the pairing alignment at the lesion site at pH 8.9. The observed NOEs between specific exocyclic CH2 protons and both the imino proton of G6 and the sugar H1' protons of C13 and A14 establish that X5 is positioned toward the G6.C13 base pair with the exocyclic ring directed between C13 and A14 on the partner strand. The observed NOE between the H2 proton of A14 and the imino proton of G4, but not G6, establishes that A14 at the lesion site is directed toward the G4.C15 base pair. NOEs are detected between all exocyclic CH2 protons of X5 and the H2 proton of A14, confirming that both X5 and A14 are directed toward the interior of the helix. The X5(anti).A14(anti) alignment at pH 8.9 is accommodated within the helix with retention of Watson-Crick pairing at flanking G4.C15 and G6.C13 base pairs. The energy-minimized conformation of the (G4-X5-G6).(C13-A14-C15) segment at pH 8.9 establishes that X5 and A14 are directed into the helix, partially stack on each other, and are not stabilized by intermolecular hydrogen bonds. The X5 base is partially intercalated between C13 and A14 on the unmodified strand, while A14 is partially intercalated between G4 and X5 on the modified strand. This results in a larger separation between the G4.C15 and G6.C13 base pairs flanking the lesion site in the basic pH conformation of the X.A 9-mer duplex. The midpoint of the transition between the protonated X5(syn).A14(anti) and X5(anti).A14(anti) conformations occurs at pH 7.6, establishing an unusually high pKa for protonation of the A14 ring opposite the X5 exocyclic adduct site. Thus, the interplay between hydrophobic and hydrogen-bonding contributions modulated by pH defines the alignment of 1,N2-propanodeoxyguanosine opposite deoxyadenosine in the interior of DNA helices.  相似文献   

16.
Kumar NN  Swamy KC 《Chirality》2008,20(6):781-789
Diastereoselective synthesis and characterization of chiral unsymmetrical tris-spirocyclic cyclotriphosphazenes based on chiral 1,1'-bi-2-naphthol (BINOL) are reported. Specifically, the chiral compounds (-)N(3)P(3)[1,1'-O(2)(C(10)H(6))(2)](O-2,2'C(6)H(4)-C(6)H(4)O)Cl(2) [(-)-4] and (-)N(3)P(3)[1,1'-O(2)(C(10)H(6))(2)](OCH(2)CH(2)NMe)(2) [(-)-5] are prepared by starting with the chiral mono-spiro compound (-)N(3)P(3)[1,1'-O(2)(C(10)H(6))(2)]Cl(4) [(-)-3]. Synthesis of four other chiral spirocyclics, N(3)P(3)[1,1'-O(2)(C(10)H(6))(2)](OCH(2)CH(2) NMe)(O-2,2'C(6)H(4)-C(6)H(4)O)[(-)-6 and (+)-6], N(3)P(3)[1,1'-O(2)(C(10)H(6))(2)](NMe(2))(4) [(-)-7], N(3)P(3)[1,1'-O(2)(C(10)H(6))(2)](O-2,2'C(6)H(4)-C(6)H(4)O)(NMeCH(2)CH(2)OH)(2) [(-)-8 and (+)-8], and N(3)P(3)[1,1'-O(2)(C(10)H(6))(2)](O-2,2'C(6)H(4)-C(6)H(4)O)[NHCH(2)CH(2)CH(2)Si(OEt)(3)](2) (9) is also reported herein. Compounds 4-6 are obtained in the solid state diastereoselectively and their X-ray structures have been determined and discussed. The diastereoselectivity is also shown by structural characterization of two distinct isomers in the case of 6 [(-)-6 and (+)-6, respectively] by starting with precursor of 3 having (R) or (S)-BINOL residue. The (1)H NMR spectra of 7 and 8 exhibit doublets with virtual coupling for the methyl protons, consistent with the chiral nature of the binaphthoxy residue. The potential of 9, which hydrolyzes readily in CDCl(3) solution, as a useful precursor for chiral polymer applications is highlighted.  相似文献   

17.
Detailed investigation of the spatial structure of duplex (Phn-NH(CH2)2NH) x pd(CCAAACA).pd(TGTTTGGC) having a covalently linked N-(2-hydroxyethyl)-phenazine in aqueous solution was continued by means of one- and two-dimensional 1H-NMR spectroscopy. Distances between the protons of the oligonucleotides as well as distances between the phenazinium and the nearest nucleotide groups protons were determined from the series of one-dimensional NOE experiments. The effective correlation time tau c determined for some proton pairs shows the phenazinium fragment to have greater internal motion than the heterocyclic bases. The deoxyribose protons coupling constants show the sugars to be in 2'-endo-conformation. The restrained molecular mechanics have yielded a possible structure of duplex in the aqueous solution fitting the experimental set of interproton distances.  相似文献   

18.
The solution structure of the adduct derived from the covalent bonding of the fjord region (+)-(11S, 12R, 13R, 14S) stereoisomer of anti -11,12-dihydroxy-13,14-epoxy-11,12,13, 14-tetrahydrobenzo[g]chrysene, (+)- anti -B[g]CDE, to the exocyclic N(6)amino group of the adenine residue dA6, (designated (+)- trans-anti -(B[g]C)dA6), positioned opposite a thymine residue dT17 in the DNA sequence context d(C1-T2-C3-T4-C5-(B[g]C)A6-C7-T8-T9-C10-C11). d(G12-G13-A14-A15-G16-T17-G18-A19-G20++ +-A21-G22) (designated (B[g]C)dA. dT 11-mer duplex), has been studied using structural information derived from NMR data in combination with molecular dynamics (MD) calculations. The solution structure of the (+)- trans-anti -(B[g]C)dA.dT 11-mer duplex has been determined using an MD protocol where both interproton distance and dihedral angle restraints deduced from NOESY and COSY spectra are used during the refinement process, followed by additional relaxation matrix refinement to the observed NOESY intensities to account for spin diffusion effects. The results established that the covalently attached benzo[g]chrysene ring intercalates into the DNA helix directed towards the 5'-side of the modified strand and stacks predominantly with dT17 when intercalated between dC5.dG18 and (B[g]C)dA6.dT17 base-pairs. All base-pairs, including the modified (B[g]C)dA6.dT17 base-pair, are aligned through Watson-Crick pairing as in normal B -DNA. In addition, the potential strain associated with the highly sterically hindered fjord region of the aromatic portion of the benzo[g]chrysenyl ring is relieved through the adoption of a non-planar, propeller-like geometry within the chrysenyl ring system. This conformation shares common structural features with the related (+)- trans-anti -(B[c]Ph)dA adduct in the identical base sequence context, derived from the fjord region (+)-(1S,2R,3R,4S)-3, 4-dihydroxy-1,2-epoxy-1,2,3,4-tetrahydrobenzo[c]phenanthrene stereoisomer, in which intercalation is also observed towards the 5'-side of the modified dA6.dT17 base-pair.  相似文献   

19.
D J Patel  L Shapiro 《Biochimie》1985,67(7-8):887-915
We have investigated intermolecular interactions and conformational features of the netropsin complexes with d(G1-G2-A3-A4-T5-T6-C7-C8) duplex (AATT 8-mer) and the d(G1-G2-T3-A4-T5-A6-C7-C8) duplex (TATA 8-mer) by one and two-dimensional NMR studies in solution. We have assigned the amide, pyrrole and methylene protons of netropsin and the base and sugar H1' protons of the nucleic acid from an analysis of the nuclear Overhauser effect (NOESY) and correlated (COSY) spectra of the complex at 25 degrees C. The directionality of the observed distance-dependent NOEs demonstrates that the 8-mer helices remain right-handed and that the arrangement of concave and convex face protons of netropsin are retained in the complexes. The observed changes in NOE patterns and chemical shift changes on complex formation suggest small conformational changes in the nucleic acid at the AATT and TATA antibiotic binding sites and possibly the flanking G.C base pairs. We observe intermolecular NOEs between all three amide and both pyrrole protons on the concave face of the antibiotic and the minor groove adenosine H2 proton of the two central A4.T5 base pairs of the AATT 8-mer and TATA 8-mer duplexes. The concave face pyrrole protons of the antibiotic also exhibit NOEs to the sugar H1' protons of residues 5 and 6 in the AATT and TATA 8-mer complexes. We also detect intermolecular NOEs between the guanidino and propioamidino methylene protons at either end of netropsin and the adenosine H2 proton of the two flanking A3.T6 base pairs in the AATT 8-mer and T3.A6 base pairs in the TATA 8-mer duplexes. These studies establish a set of nine contacts between the concave face of the antibiotic and the minor groove AATT segment and TATA segment of the 8-mer duplexes in solution. The observed magnitude of the NOEs require that there be no intervening water molecules sandwiched between the concave face of the antibiotic and the minor groove of the DNA so that release of the minor groove spine of hydration is a prerequisite for netropsin complex formation. The observed differences in the netropsin amide proton chemical shifts in the AATT 8-mer and TATA 8-mer complexes suggest differences in the strength and/or type of intermolecular hydrogen bonds at the AATT and TATA binding sites.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Structural studies using 500 MHz 1H NMR spectroscopy on Bam H1 recognition site d(GGATCC)2 in solution at 19 degrees is reported. The resonances from the sugar ring and base protons have been assigned from the 2D-COSY and NOESY spectra. Analyses of the NOESY cross-peaks between the base protons H8/H6 and sugar protons H2'/H2", H3' reveal that the nucleotide units G2, A3 and C6 adopt (C3'-endo, chi = 200 degrees-220 degrees) conformation while G1, T4 and C5 exhibit (C2'-endo, chi = 240 degrees-260 degrees) conformation. NMR data clearly suggest that the two strands of d(GGATCC)2 are conformationally equivalent and there is a structural two-fold between the two A-T pairs. The above information and the NOESY data are used to generate a structural model of d(GGATCC)2. The important features are: (i) G1-G2 stack, the site of cleavage, shows an alternation in sugar pucker i.e. C2'-endo, C3'-endo as in a B-A junction, (ii) G2-A3 stack adopts a mini A-DNA, both the sugars being C3'-endo, (iii) A3-T4 stack, the site of two-fold, displays an A-B junction with alternation in sugar pucker as C3'-endo, C2'-endo, (iv) T4-C5 stack adopts a mini B-DNA both the sugars being C2'-endo and (v) C5-C6 stack exhibits a B-A junction with C2'-endo, C3'-endo sugar puckers. Thus, our studies demonstrate that conformational microheterogeneity with a structural two fold, is present in the Bam H1 recognition site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号