首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Free radical research》2013,47(4-6):299-306
α-Tocopherol performs an antioxidant role in biological membranes by acting as a one-electron reductant. In micellar solutions it has been observed by pulse radiolysis that the micellar charge has a pronounced effect on the rate constant for repair of organic free radicals by α-tocopherol. The interactions between α-tocopherol and model bilayer lipid membranes have been studied by fluorescence spectroscopy. Quencing of α-tocopherol fluorescence by acrylamide and some n-doxyl stearates shows the transverse distribution of α-tocopherol in membranes to be affected by the physical state of the membrane lipids and by the salt concentration in the aqueous phase. Time-resolved fluorescence depolarization measurements, with a diphenylhexatriene-phospholipid conjugate as probe. demonstrate an increase in the bilayer order parameter on incorporation of α-tocopherol into a membrane  相似文献   

2.
-Tocopherol performs an antioxidant role in biological membranes by acting as a one-electron reductant. In micellar solutions it has been observed by pulse radiolysis that the micellar charge has a pronounced effect on the rate constant for repair of organic free radicals by -tocopherol. The interactions between -tocopherol and model bilayer lipid membranes have been studied by fluorescence spectroscopy. Quencing of -tocopherol fluorescence by acrylamide and some n-doxyl stearates shows the transverse distribution of -tocopherol in membranes to be affected by the physical state of the membrane lipids and by the salt concentration in the aqueous phase. Time-resolved fluorescence depolarization measurements, with a diphenylhexatriene-phospholipid conjugate as probe. demonstrate an increase in the bilayer order parameter on incorporation of -tocopherol into a membrane  相似文献   

3.
Oleoylanilide was administered orally to groups of rats according to different patterns. Oleoylanilide was perfused at different concentrations through rat liver. Oleoylanilide was added to isolated hepatocytes. Oleoylanilide was added to plasma-membrane preparations. Membrane preparations were obtained after experiments performed in vivo and perfusion experiments and, by using 1,6-diphenylhexa-1,3,5-triene as fluorescence probe, the fluorescence polarization parameter was measured, from which the microviscosity (eta) was calculated. In all cases the microviscosity decreased markedly. Addition of oleoylanilide to hepatocyte preparations and to isolated membranes produced the same effect, increasing the fluidity of the membranes. These data suggest that oleoylanilide partitions into the membrane, disordering some lipid interactions.  相似文献   

4.
In this paper it is shown that for 1,6-diphenyl-1,3,5-hexatriene there exists a simple analytical relation between the orientational order parameter and the steady-state fluorescence anisotropy. This relation is derived on semi-empirical grounds. The order parameter and the true microviscosity for membranes as calculated from steady-state measurements are evaluated. For biological membranes the estimation of the order parameter from steady-state experiments is feasible, but the evaluation of the true microviscosity is not reliable. Also, the physiological relevance of the order parameter is discussed.  相似文献   

5.
Plasma membranes have been isolated using different methods from Duchenne dystrophy and control human skin fibroblasts. Fluorescence techniques were utilized to resolve the rotational properties and the degree of hindered rotation of the fluorescent probe, 1,6-diphenyl-1,3,5-hexatriene in the membranes. Under specific conditions of fibroblast processing and membrane fractionation, plasma membranes from Duchenne fibroblasts showed significantly less order (0.0125 greater than P less than 0.0025) and less hindrance to probe rotation than membranes from control fibroblasts. The order differences did not seem to be the result of heterogeneity in the membrane environment sampled by the probe. The frequency dependence of the fluorescence lifetime for diphenylhexatriene indicated no measurable contribution by a short lifetime component. Analysis of diphenylhexatriene rotation in the plasma membranes using the 'wobbling-in-cone' theory suggested that both the angle of probe rotation (theta c) and the rotational rate (Dw) were important parameters in understanding the variations between Duchenne and control membranes at 16, 22 and 30 degrees C. Electron spin resonance studies with 5'-doxylstearic acid at 25 degrees C confirmed our fluorescence results. The segmental motion exhibited by the spin label revealed less order in the Duchenne membranes.  相似文献   

6.
A Kintanar  A C Kunwar  E Oldfield 《Biochemistry》1986,25(21):6517-6524
We have investigated the deuterium (2H) nuclear magnetic resonance (NMR) spectra of two 2H-labeled fluorescence probes (trans,trans,trans-1,6-diphenylhexa-1,3,5-trienes, DPHs) incorporated into model lipid bilayer membrane systems at various temperatures. The membranes consisted of multilamellar bilayers of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) containing varying concentrations of cholesterol. The conventional one-order parameter approach often used in the analysis of the NMR data of lipid membranes does not explain the observed temperature variations of the spectral features. Consistent with the molecular symmetry, the results have thus been analyzed in terms of an ordering matrix with more than one independent element. The molecular order parameter (SNMR), the order along the long molecular axis, in the pure lipid system varies from 0.49 to 0.26 as the temperature is increased from 25 to 57 degrees C. These values are somewhat larger than the order parameters obtained from fluorescence depolarization (SFLU) on sonicated DMPC vesicles. Such discrepancies probably arise from the looser packing of the sonicated vesicles. Addition of cholesterol to the model membranes causes the order parameter of the probe molecules to increase. At 35 degrees C, SNMR increases from 0.38 (with no cholesterol) to 0.92 (in the presence of 50 mol % cholesterol). These values are about 10% larger than those obtained from fluorescence depolarization studies on sonicated vesicles. The SNMR for DPH are somewhat larger than those obtained in earlier NMR studies of 2H-labeled cholesterol. However, they compare well with those obtained for 2H-labeled DMPC.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Investigations have been carried out on the alterations of membrane lipids and some enzyme activities during liver regeneration. The results indicated that 32 h after partial hepatectomy the membrane phospholipids per mg protein were augmented. The cholesterol esters were also increased in both microsomal and plasma membranes. The specific radioactivity of the separate phospholipid fractions, estimated by incorporation of 14C-palmitate into the phospholipid molecules, was higher in membranes from partially hepatectomized rats, compared to sham-operated ones, indicating an enhanced phospholipid synthesis. The content and specific radioactivity of diacylglycerols and triacylglycerols was enhanced in both types of membranes from regenerating liver. Moreover, we observed a fluidization of these membranes, which is illustrated by the decrease of the structural order parameter (SDPH) of the lipid bilayer as well as by the elevation of the excimer to monomer fluorescent ratio (IE/IM). 1,6-Diphenyl-1,3,5-hexatriene and pyrene were used as fluorescent probes for determination of the membranes physical state. Palmitoyl-CoA and oleoyl-CoA synthetase, acyl-CoA: lysophosphocholine and acyl-CoA:lysophosphoethanolamine acyltransferase as well as phospholipase C activities were augmented in membranes from partially hepatectomized rats. The biological significance of these alterations in the process of liver regeneration is discussed.  相似文献   

8.
The activation of phosphoinositide-specific phospholipase C by ethanol was compared in hepatocytes isolated from ethanol-fed rats and from pair-fed control animals. Ethanol (100-300 mM) caused a dose-dependent transient increase in cytosolic free Ca2+ levels in indo-1-loaded hepatocytes from both groups of animals. The rate of Ca2+ increase was similar in hepatocytes from control and ethanol-fed rats, but the decay of the Ca2+ increase was somewhat slower in the latter preparation. The ethanol-induced Ca2+ increase caused activation of glycogen phosphorylase, with 50% response at 50 mM-ethanol and a maximal response at 150-200 mM-ethanol, not significantly different in hepatocytes from control and ethanol-fed animals. Ins(1,4,5)P3 formation in response to ethanol (300 mM) or vasopressin (2 nM or 40 nM) was also similar in the two preparations. It is concluded that long-term ethanol feeding does not lead to an adaptive response with respect to the ethanol-induced phospholipase C activation in rat hepatocytes. The ability of ethanol in vitro to decrease membrane molecular order in liver plasma membranes from ethanol-fed and control rats was measured by e.s.r. Membranes from ethanol-fed animals had a significantly lower baseline order parameter compared with control preparations (0.313 and 0.327 respectively), indicative of decreased membrane molecular order. Addition of 100 mM-ethanol significantly decreased the order parameter in control preparations by 2.1%, but had no effect on the order parameter of plasma membranes from ethanol-fed rats, indicating that the plasma membranes had developed tolerance to ethanol, similar to other membranes in the liver. Thus the membrane structural changes associated with this membrane tolerance do not modify the ethanol-induced activation of phospholipase C. The transient activation of phospholipase C by ethanol in hepatocytes may play a role in maintaining an adaptive phenotype in rat liver.  相似文献   

9.
The molecular order of brain and liver membranes isolated from deep sea and continental shelf fish species have been estimated and compared using the fluorescence polarization technique in order to determine whether life in a high pressure habitat is associated with an adjustment of membrane order. Fish were trawled at depths between 200 m and 4000 m, liver and brain membranes were fractionated, and fluorescence polarization was measured at 4°C and ambient pressure. Polarization of the brain myelin fraction provided a statistically significant regression with depth of capture (P<0.001) with a slope of ?0.004 km?1. This change in polarization with depth was sufficient to offset approximately half of the pressure-induced increase in polarization and thus represents the first structural evidence of homeoviscous adaptation to pressure. Polarization of the brain synaptic and liver mitochondrial fraction was not significantly related to depth. This may be due, at least in part, to a high individual variability of polarization compared to laboratory-acclimated freshwater fish.  相似文献   

10.
The influence of corticosteroid hormones and cholesterol on the anilinonaphthalenesulfonate (ANS-) fluorescence in the rat liver mitochondria at different temperatures has been studied. The fluorescence intensity has been found to decrease by warming and increase by cooling the mitochondrial suspension. The steroids studied in proportion to their hydrophobic nature decreased the ANS- fluorescence at 25 degrees C and increased it at 5 degrees C, i.e. at higher and lower temperatures of the phase transition of the membrane lipids. It has been concluded that steroid hormones influence the fluidity of the mitochondrial membranes.  相似文献   

11.
Charged anesthetics selectively alter plasma membrane order   总被引:5,自引:0,他引:5  
W D Sweet  W G Wood  F Schroeder 《Biochemistry》1987,26(10):2828-2835
Although indirect evidence supporting differential lipid fluidity in the two monolayers of plasma membranes has accumulated, unambiguous demonstration of this difference has been difficult to obtain. In the present study, the fluorescent probe 1,6-diphenyl-1,3,5-hexatriene (DPH), selective quenching of fluorescence by trinitrophenyl groups, and differential polarized phase fluorescence techniques were used to directly examine the static (order) and dynamic (rotational rate) components of lipid motion in the exofacial and cytofacial leaflets of LM fibroblast plasma membranes. The limiting anisotropy (0.137), the order parameter (0.590), and the rotational relaxation time (1.20 ns) of DPH in the plasma membranes (inner plus outer leaflet) indicated rapid but restricted probe motion in the lipid environment. However, the statics and dynamics of DPH motion in the individual monolayers were significantly (p less than 0.025) different. The limiting anisotropy, order parameter, and rotational relaxation time of DPH in the cytofacial monolayer were 0.036, 0.08, and 0.16 ns, respectively, greater than calculated for the exofacial monolayer of the LM plasma membrane. At appropriate concentrations, phenobarbital and, to a lesser degree, pentobarbital preferentially reduced the limiting anisotropy of DPH calculated for the exofacial leaflet while prilocaine reduced the limiting anisotropy of DPH in the cytofacial leaflet of LM fibroblast plasma membranes. In contrast, the putative cytofacial anesthetic procaine failed to show any preference for either leaflet. Arrhenius plots of DPH fluorescence in LM plasma membranes showed a prominent characteristic break point near 30-32 degrees C. Phenobarbital, pentobarbital, and procaine did not affect this break point while prilocaine selectively abolished it. The break point was therefore assigned to the inner monolayer of the LM plasma membrane.  相似文献   

12.
Steady state and time resolved fluorescence spectroscopy have been used to probe microenvironments of the therapeutically active intrinsically fluorescent flavonoid, 7-hydroxyflavone (7-HF), in model membranes consisting of multilamellar phosphatidylcholine liposomes. Additionally, the antioxidant effects of 7-HF against lipid peroxidation have been evaluated using spectrophotometric assay. Large Stokes shifted emissions with distinct spectroscopic signatures, are observed from the excited state proton transfer (ESPT) tautomer (which is generated by a solvent mediated mechanism) and the ground state anion of 7-HF. The neutral (7-HFN) and anionic (7-HFA) species' appear to be located in the non-polar acyl chain and the polar head group regions of the lipid vesicles respectively. The partition coefficients of 7-HFN and 7-HFA in these vesicles have also been estimated using their intrinsic fluorescence. Anisotropy (r) versus temperature (T) measurements reveal the utility of the tautomer fluorescence anisotropy as a sensitive parameter for exploring structural changes in the membranes. Fluorescence decay kinetics studies indicate heterogeneity in the microenvironments of both 7-HFN and 7-HFA. Furthermore, we demonstrate that lipid peroxidation of the model membranes is partially arrested upon 7-HF binding, suggesting its potential usefulness as an inhibitor of peroxidative damage of cell membranes.  相似文献   

13.
Conformational changes produced by in vitro bovine growth hormone addition to plasma membranes of hypophysectomized rat liver proteins and lipids have been studied by circular dichroism as well as intrinsic and extrinsic fluorescence. 7,12-Dimethylbenzanthracene has been used as a fluorescent probe of changes in membrane structure. The exposure of membranes to bovine growth hormone produced a change in membrane negative ellipticity. Dimethylbenzanthracene at concentrations similar to those employed in fluorescence studies had no effect on the membrane circular dichroism spectrum. Its presence did, however, prevent a response to growth hormone. There was a decrease in peak fluorescence intensity and a peak shift when bovine growth hormone (0.5 · 10?12 M) was added to liver membranes. The addition of dimethylbenzanthracene (1.6 · 10?6 M) to membranes resulted in a decrease in the intensity of the protein fluorescence peak at 335 nm and the appearance of two peaks at 430 and 407 nm, assignable to the probe. The addition of bovine growth hormone (0.5 · 10?12 M) produced a decrease in fluorescence at 335 nm and also in the peaks at 407 and 430 nm. These data are consistent with the conclusion that bovine growth hormone produces a conformational change in rat liver plasma membrane proteins and lipids.  相似文献   

14.
Low-light digitized video fluorescence polarization microscopy was used to measure lipid order parameters in plasma membrane blebs of single, cultured rat hepatocytes during ATP depletion with the metabolic inhibitors cyanide and iodoacetic acid. Hepatocytes were labeled on the microscope stage with the plasma membrane probe trimethylammoniumdiphenylhexatriene at successive stages of cell injury. A pair of fluorescence polarization ratio images was obtained from a series of four fluorescence images recorded with a polarizer in the emission path oriented first parallel and then perpendicular to each of two orthogonal excitation light polarization directions. From the polarization ratio images, the lipid order parameter S was determined in individual plasma membrane blebs. Results indicate that the plasma membrane becomes uniformly rigid within a few minutes of the addition of metabolic inhibitors when small surface blebs have formed and ATP levels have fallen by greater than 95%. The measured order parameter of S approximately 0.95 in plasma membrane blebs, compared with S approximately 0.75 in normoxic cell plasma membranes, remained unchanged throughout the course of bleb development and ultimate cell death. These findings demonstrate that significant alteration in hepatocyte plasma membrane structure occurs early in hypoxic cell injury.  相似文献   

15.
Optimal reaction conditions were established for hydrogenation of plasma membranes of living murine GRSL leukemia cells, using the water-soluble catalyst Pd(QS)2 (QS, sulphonated alizarine; C14H6O7NaS). Under these conditions more than 80% of the cells remained viable. Analysis by gas chromatography revealed that hydrogenation occurred predominantly in the 18:2, 20:4 and 22:6 fatty acyl chains of the membrane phospholipids. Under the same conditions hydrogenation was also performed in purified plasma membranes from GRSL cells and from rat liver, and in liposomes prepared from the total lipid extracts of these membranes. Hydrogenation increased the lipid structural order parameter in the membranes, as measured by fluorescence polarization. This increase was more pronounced in the liposomes (46%) than in the plasma membranes (17-25%). Hydrogenation increased the expression of a 15 kDa antigen on the surface of viable GRSL cells, as measured in a Fluorescence Activated Cell Sorter, using monoclonal antibodies. The expression of four other antigens, among which H-2k, was not or much less affected by this treatment.  相似文献   

16.
Summary The fluorescent fatty acids,trans-parimaric andcis-parinaric acid, were used as analogs of saturated and unsaturated fatty acids in order to evaluate binding of fatty acids to liver plasma membranes isolated from normal fed rats. Insulin (10–8 to 10–6 m) decreasedtrans-parinaric acid binding 7 to 26% whilecis-parinaric acid binding was unaffected. Glucagon (10–6 m) increasedtrans-parinaric acid binding 44%. The fluorescence polarization oftrans-parinarate,cis-parinarate and 1,6-diphenyl-1,3,5-hexatriene was used to investigate effects of triiodothyronine, insulin and glucagon on the structure of liver plasma membranes from normal fed rats or from rats treated with triiodothyronine or propylthiouracil. The fluorescence polarization oftrans-parinarate,cis-parinarate, and 1,6-diphenyl-1,3,5-hexatriene was 0.300±0.004, 0.251±0.003, and 0.302±0.003, respectively, in liver plasma membranes from control rats and 0.316±0.003, 0.276±0.003 and 0.316±0.003, respectively, in liver plasma membranes from hyperthyroid rats (p<0.025,n=5). Propylthiouracil treatment did not significantly alter the fluorescence polarization of these probe molecules in the liver plasma membranes. Thus, liver plasma membranes from hyperthyroid animals appear to be more rigid than those of control animals. The effects of triiodothyronine, insulin and glucagon addedin vitro to isolated liver plasma membrane preparations were also evaluated as follows: insulin (10–10 m) and triiodothyronine (10–10 m) increased fluorescence polarization oftrans-parinaric acid,cis-parinaric acid and 1,6-diphenyl-1,3,5-hexatriene in liver plasma membranes while glucagon (10–10 m) had no effects. These hormonal effects on probe fluorescence polarization in liver plasma membranes were abolished by pretreatment of the rats for 7 days with triiodothyronine. Administration of triiodothyronine (10–10 m)in vitro increased the fluorescence polarization of trans-parinaric acid in liver plasma membranes from propylthiouracil-treated rats. Thus, hyperthyroidism appeared to abolish thein vitro increase in polarization of probe molecules in the liver plasma membranes. Temperature dependencies in Arrhenius plots of absorption-corrected fluorescence and fluorescence polarization oftrans-parinaric acid,cis-parinaric acid and 1,6-diphenyl-1,3,5-hexatriene were noted near 25°C in liver plasma membranes from triiodothyronine-treated rats and near 18°C in liver plasma membranes from propylthiouracil-treated rats. In summary, hormones such as triiodothyronine, insulin and glucagon may at least in part exert their biological effects on metabolism by altering the structure of the liver plasma membranes.  相似文献   

17.
A discussion is presented of the problems involved in the interpretation of linear dichroism and fluorescence depolarization experiments on macroscopically ordered membrane systems. Particular attention has been paid to ordered membranes containing photosynthetic pigment-protein complexes, but the mathematical treatment can equally well be applied to other systems. The information about the orientational properties of the pigments is obtained by the application of the theories developed for the characterization of the molecular orientational order in liquid-crystalline materials. It is shown that while linear dichroism only yields the order parameter S mu of the absorption transition moment, fluorescence depolarization experiments yield in addition the order parameter Sv of the emission transition moment as well as three orientational correlation functions of the two transition moments. It is argued that in general the latter information can only be obtained on utilizing a number of experimental scattering geometries. In particular, the merits of angle-resolved experiments are illustrated.  相似文献   

18.
The fluorescence probe, 1,6-diphenyl-1,3,5-hexatriene, has been used to investigate the effects of controlled and uncontrolled growth on the dynamic properties of the lipid regions of hepatocyte plasma membranes. DPH was incubated with plasma membranes derived from quiescent and regenerating liver and Morris hepatoma 7777, and the resulting systems were studied by fluorescence polarization spectroscopy. Membranes from the rapidly growing hepatoma exhibited a significantly lower fluorescence polarization than observed in quiescent liver, suggesting the presence of a more fluid membrane lipid domain. Membranes from regenerating liver exhibited a time-dependent increase in membrane fluidity, reaching a maximum 12 h after growth stimulation. A close correspondence between membrane fluidity and the cholesterol-phospholipid ratio was also observed where a decrease in this ratio resulted in a more fluid lipid matrix. These results suggest that cell cycling, as observed in regenerating liver and Morris hepatoma 7777, results in significant increases in membrane fluidity, a property which may play an important regulatory role in various cell functions.  相似文献   

19.
The Stern-Volmer theory, in which the quantum yield ratio (Io/I) depends linearly on the quencher concentration, will typically be inapplicable to fluorescence quenching in membranes. Numerical analysis shows that diffusion-controlled quenching results in a nonlinear concentration dependence for diffusion coefficients less than or of the order of 10(-6) cm2 s-1 and probe fluorescence lifetimes in the region of 10-100 ns. Lateral diffusion coefficients in membranes are typically overestimated an order of magnitude or more by the Stern-Volmer theory. An alternative empirical method is presented, which represents nonlinear concentration curves by a single parameter linear approximation determined by a least-squares analysis. The fitting parameter, P, depends on the interaction distance, the membrane thickness, the maximum extent of quenching and, in the case of biexponential probe fluorescence decay, the fluorescence kinetic parameters. P is presented in tabular form for a useful range of these parameters. The method is used to estimate diffusion coefficients for plastoquinone and plastoquinol from pyrene fluorescence quenching in soya bean phosphatidylcholine liposomes. It is found that the diffusion coefficients are nearly equal and in the region of 1.3-3.5 X 10(-7) cm2 s-1 for interaction radii of 1.5-0.5 nm, respectively.  相似文献   

20.
Membranes from erythrocytes or MAT-A 13762 tumor cells were labeled with the fatty acid spin probe I(5,10) or ANS and examined by spin resonance (ESR) or fluorescence polarization in the presence or absence of the perturbants EDTA, trypsin, glutaraldehyde, and dodecylsulfate. Extraction of cell membranes with hypotonic EDTA produced fragments in which the order parameters and fluorescence polarization values increased. Fluorescence polarization values using membranes labeled with diphenylhexatriene showed an apparent increase in membrane fluidity. A large portion of both I(5,10) and both fluorescence probes coextract with the peripheral membrane proteins in both membrane systems. Paramagnetic quenching of tryptophan fluorescence with I(5,10) and the spectral characteristics of ANS in these membranes indicated further that significant amounts of both probes bind either at or near the protein-lipid interface or directly to protein moieties. Trypsinization of cell membranes, which preferentially cleaves the large cytoskeletal proteins, fragmented the membranes and reduced the ESR order parameter. Glutaraldehyde immobilized I(5,10) in both types of membranes. These studies suggest that the association of cytoskeletal proteins with the membrane does not have any pronounced, consistent effect on biophysical properties of the bilayer.

Attempts to apply these same probes to studies of the plasma membranes of intact cells were not successful because of the diffusion of the probes into the cells. These studies also point out some difficulties in using probe-group techniques to determine the nature of changes in bilayer structural parameters and emphasize the need for a better understanding of probe-group localization and behavior in such studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号