首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ability of a Deuteromycete fungus, Cladosporium sphaerospermum, previously isolated from soil of an aged gas manufacturing plant, to degrade polycyclic aromatic hydrocarbons was investigated. This strain was able to degrade PAHs in non-sterile soils (average 23%), including high molecular weight PAHs, after 4 weeks of incubation. In a microcosm experiment, PAH depletion was clearly correlated to fungal establishment. In liquid culture, this strain degraded rapidly benzo(a)pyrene during its early exponential phase of growth (18% after 4 days of incubation). Among extracellular ligninolytic enzyme activities tested, only laccase activity was detected in liquid culture in the absence or in presence of benzo(a)pyrene. C. sphaerospermum might be a potential candidate for an effective bioremediation of aged PAH-contaminated soils.  相似文献   

2.
Phanerochaete chrysosporium NRRL 6361 and Pleurotus pulmonarius CBS 664.97 were tested for their ability to grow under nonsterile conditions and to degrade various aromatic hydrocarbons in an aged contaminated soil that also contained high concentrations of heavy metals. After 24 days fungal incubation, carbon-CO2 liberated, an indicator of microbial activity, reached a plateau. At the end of the incubation time (30 days), fungal colonization was clearly visible and was confirmed by ergosterol and cell organic carbon determinations. In spite of unfavorable pH (around 7.4) and the presence of heavy metals, both fungi produced Mn-peroxidase activity. In contrast, laccase and aryl-alcohol oxidase were detected only in the soil treated with P. pulmonarius CBS 664.97 and lignin-peroxidase in that with P. chrysosporium NRRL 6361. No lignin-modifying enzyme activities were present in non-inoculated soil incubated for 30 days (control microcosm). Regardless of the fungus employed, a total removal of naphtalene, tetrachlorobenzene, and dichloroaniline isomers, diphenylether and N-phenyl-1-naphtalenamine, was observed. Significant release of chloride ions was also observed in fungal-treated soil, in comparison with that recorded in the control microcosm. Both fungi led to a significant decrease in soil toxicity, as assessed using two different soil contact assays, including the Lepidium sativum L. germination test and the Collembola mortality test.  相似文献   

3.
Biodegradation of UV-irradiated anthracene, pyrene,benz[a]anthracene,and dibenz[a,h]anthracene was comparedto that of the non-irradiated samples, individuallyand in synthetic mixtures with enrichment cultures.Combined treatment was repeated for individual anthraceneand for the PAH mixture with Sphingomonas sp.strain EPA 505 and Sphingomonas yanoikuyae.Enrichment culture studies were performed on the PAHmixtures in the presence of the main photoproduct ofanthracene, pure 9,10-anthracenedione. Photochemicallypretreated creosote solutions were also subjected tobiodegradation and the results were compared tothose of the non-irradiated solutions. The primaryinterest was on 16 polycyclic aromatic hydrocarbons(PAHs) listed as priority pollutants by European Union(EU) and the United States Environmental ProtectionAgency (USEPA). Irradiation accelerated thebiodegradation onset for anthracene, pyrene, andbenz[a]anthracene when they were treatedindividually. The biodegradation of irradiatedpyrene started with no lag phase andwas complete by 122 h whereas biodegradation of thenon-irradiated sample had a lag of 280 h andresulted in complete degradation by 720 h. Biodegradation ofPAHs was accelerated in synthetic mixtures, especiallyin the presence of pure 9,10-anthracenedione.In general, irradiation had no effect on the biodegradation of PAHsincubated in synthetic mixtures or with pure cultures. Undercurrent experimental conditions, the UV-irradiation invariablyreduced the biodegradation of PAHs in creosote. Based onthe results of the present and previous photochemical-biologicalstudies of PAHs, the influence of the photochemical pretreatmenton the biodegradation is highly dependent on the compoundsbeing treated and other process parameters.  相似文献   

4.
植物-固定化菌剂联合修复多环芳烃污染土壤   总被引:1,自引:0,他引:1  
以火凤凰根际土壤中发现的3种优势菌[分枝杆菌(Ⅰ)、产黄纤维单胞菌(Ⅱ)、少动鞘氨醇单胞菌(Ⅲ)]构建的多菌剂体系为供试菌剂,针对大港油田原油污染土壤,将固定化供试菌剂接种于修复植物火凤凰根际,探讨供试菌剂强化火凤凰修复多环芳烃(PAHs)污染土壤的效果.结果 表明:处理ⅠⅢ(有效活茵数为109 cfu·mL-1)和Ⅰ...  相似文献   

5.
Soil samples from an agricultural field contaminated with 10 ppm14C-benz(a)anthracene in glass tubes were brought into contact with cultures of wood-rotting fungi, precultivated on wheat straw substrate. Forty-five strains of white-rot fungi and four brown-rot fungi were tested for their ability to colonize the soil and to mineralize14C-benz(a)anthracene to14CO2 within a 20-week incubation time. Twenty-two white-rot fungi and all brown-rot fungi were unable to colonize the soil. Twenty-three strains of white-rot fungi, all belonging to the genusPleurotus, colonized the soil. During the experiment the noncolonizing fungi and their substrate disintegrated more and more to a nonstructured pulp from which water diffused into the soil. The same phenomenon was observed in the control which contained only straw without fungus and contaminated soil. In samples with colonizing fungi the substrate as well as the mycelia in the soil remained visibly unchanged during the entire experiment. Surprisingly, most samples with fungi not colonizing the soil and the control without fungus liberated between 40 and 58 % of the applied radioactivity as14CO2 whereas the samples with the colonizing fungi respired only 15–25 % as14CO2. This was 3–5 times more14CO2 than that liberated from the control (4.9 %) which contained only contaminated soil without straw and fungus. A similar result was obtained with selected colonizing and noncolonizing fungi and soil contaminated with 10 ppm14C-pyrene. However, in pure culture studies in which14C-pyrene was added to the straw substrate,Pleurotus sp. (P2), as a representative of the colonizing fungi, mineralized 40.3 % of the added radioactivity to14CO2. The noncolonizing fungiDichomitus squalens andFlammulina velutipes liberated only 17.2 or 1.7 %, respectively, as14CO2. These results lead to the hypothesis that the native soil microflora stimulated by the formed products of straw lysis is responsible for high degradation rates found with noncolonizing fungi.  相似文献   

6.
The white-rot fungi Trametes versicolor PRL 572, Trametes versicolor MUCL 28407, Pleurotus ostreatus MUCL 29527, Pleurotus sajor-caju MUCL 29757 and Phanerochaete chrysosporium DSM 1556 were investigated for their ability to degrade the polycyclic aromatic hydrocarbons (PAH) anthracene, benz[a]anthracene and dibenz[a,h]anthracene in soil. The fungi were grown on wheat straw and mixed with artificially contaminated soil. The results of this study show that, in a heterogeneous soil environment, the fungi have different abilities to degrade PAH, with Trametes showing little or no accumulation of dead-end metabolites and Phanerochaete and Pleurotus showing almost complete conversion of anthracene to 9,10-anthracenedione. In contrast to earlier studies, Phanerochaete showed the ability to degrade the accumulated 9,10-anthracenedione while Pleurotus did not. This proves that, in a heterogeneous soil system, the PAH degradation pattern for white-rot fungi can be quite different from that in a controlled liquid system. Received: 20 March 1996 / Received revision: 2 July 1996 / Accepted: 8 July 1996  相似文献   

7.
土壤,植物样品中多环芳烃(PAHs)分析方法研究   总被引:59,自引:5,他引:59  
土壤、植物和籽实样品分别用四氢呋喃、甲醇、乙酸乙酯以超声技术提取。提取液经旋转浓缩蒸发仪浓缩,经硅胶柱净化后,由高效液相色谱(HPLC)分离,萤光检测分析。对于土壤、植物和籽实样品,其方法回收率根据各个PAH化合物的理化性质不同分别为45.68-93.42、77.59-108.13和79.11-98.96%,结果表明,二氯甲烷、四氢呋喃适合作为土壤样品的提取剂;甲醇、乙酸乙酯分别适合于植物和籽实样  相似文献   

8.
With the focus on alternative microbes for soil-bioremediation, 18 species of litter-decomposing basidiomycetous fungi were screened for their ability to grow on different lignocellulosic substrates including straw, flax and pine bark as well as to produce ligninolytic enzymes, namely laccase and manganese peroxidase. Following characteristics have been chosen as criteria for the strain selection: (i) the ability to grow at least on one of the mentioned materials, (ii) production of either of the ligninolytic enzymes and (iii) the ability to invade non-sterile soil. As the result, eight species were selected for a bioremediation experiment with an artificially contaminated soil (total polycyclic aromatic hydrocarbon (PAH) concentration 250 mg/kg soil). Up to 70%, 86% and 84% of benzo(a)anthracene, benzo(a)pyrene, and dibenzo(a,h)anthracene, respectively, were removed in presence of fungi while the indigenous microorganisms converted merely up to 29%, 26% and 43% of these compounds in 30 days. Low molecular-mass PAHs studied were easily degraded by soil microbes and only anthracene degradation was enhanced by the fungi as well. The agaric basidiomycetes Stropharia rugosoannulata and Stropharia coronilla were the most efficient PAH degraders among the litter-decomposing species used.  相似文献   

9.
The high hydrophobicity of polycyclic aromatic hydrocarbons (PAHs) strongly reduces their bioavailability in aged contaminated soils, thus limiting their bioremediation. The biodegradation of PAHs in soils can be enhanced by employing surface-active agents. However, chemical surfactants are often recalcitrant and exert toxic effects in the amended soils. The effects of two biogenic materials as pollutant-mobilizing agents on the aerobic bioremediation of an aged-contaminated soil were investigated here. A soil historically contaminated by about 13 g kg(-1) of a large variety of PAHs, was amended with soya lecithin (SL) or humic substances (HS) at 1.5% w/w and incubated in aerobic solid-phase and slurry-phase reactors for 150 days. A slow and only partial biodegradation of low-molecular weight PAHs, along with a moderate depletion of the initial soil ecotoxicity, was observed in the control reactors. The overall removal of PAHs in the presence of SL or HS was faster and more extensive and accompanied by a larger soil detoxification, especially under slurry-phase conditions. The SL and HS could be metabolized by soil aerobic microorganisms and enhanced the occurrence of both soil PAHs and indigenous aerobic PAH-degrading bacteria in the reactor water phase. These results indicate that SL and HS are biodegradable and efficiently enhance PAH bioavailability in soil. These natural surfactants significantly intensified the aerobic bioremediation of a historically PAH-contaminated soil under treatment conditions similar to those commonly employed in large-scale soil bioremediation.  相似文献   

10.
In this study we evaluated the capacity of a defined microbial consortium (five bacteria: Mycobacterium fortuitum, Bacillus cereus, Microbacterium sp., Gordonia polyisoprenivorans, Microbacteriaceae bacterium, Naphthalene-utilizing bacterium; and a fungus identified as Fusarium oxysporum) isolated from a PAHs contaminated landfarm site to degrade and mineralize different concentrations (0, 250, 500 and 1000 mg kg(-1)) of anthracene, phenanthrene and pyrene in soil. PAHs degradation and mineralization was evaluated by gas chromatography and respirometry, respectively. The microbial consortium degraded on average, 99%, 99% and 96% of the different concentrations of anthracene, phenanthrene and pyrene in the soil, in 70 days, respectively. This consortium mineralized 78%, on average, of the different concentrations of the 3 PAHs in soil after 70 days. Contrarily, the autochthonous soil microbial population showed no substantial mineralization of the PAHs. Bacterial and fungal isolates from the consortium, when inoculated separately to the soil, were less effective in anthracene mineralization compared to the consortium. This signifies synergistic promotion of PAHs mineralization by mixtures of the monoculture isolates (the microbial consortium).  相似文献   

11.
多环芳烃污染土壤生物修复研究进展   总被引:1,自引:0,他引:1  
多环芳烃 (Polycyclic aromatic hydrocarbons,PAHs) 是一类广泛分布于环境中的持久性污染物,结构稳定、难以降解,对生态环境和生物具有“三致”毒害性,其环境去除和修复备受关注。绿色、安全、经济的生物修复技术被广泛应用于PAHs污染土壤的修复。本文从土壤中PAHs的来源、迁移、归趋和污染水平总结了目前我国土壤多环芳烃污染的基本状况;归纳了具有PAHs降解作用的微生物、植物种类及机理;比较了微生物修复、植物修复和联合修复3类主要的生物修复技术。指出植物与微生物的互作机理的解析,抗逆菌株、植株的筛选与培育,实际应用的安全和效能评估应成为多环芳烃污染土壤修复领域未来的研究方向。  相似文献   

12.
In this study, we investigated the potential of multispecies rhizoremediation and monoculture rhizoremediation in decontaminating polycyclic aromatic hydrocarbon (PAH) contaminated soil Plant-mediated PAH dissipation was evaluated using monoplanted soil microcosms and soil microcosms vegetated with several different grass species (Brachiaria serrata and Eleusine corocana). The dissipation of naphthalene and fluorene was higher in the "multispecies" vegetated soil compared to the monoplanted and nonplanted control soil. The concentration of naphthalene was undetectable in the multispecies vegetated treatment compared to 96% removal efficiencies in the monoplanted treatments and 63% in the nonplanted control after 10 wk of incubation. Similar removal efficiencies were obtained for fluorene. However, there was no significant difference in the dissipation of pyrene in both the mono- and multispecies vegetated treatments. There also was no significant difference between the dissipation of PAHs in the monoplanted treatments with different grass species. Principle component analysis (PCA) and cluster analysis were used to evaluate functional diversity of the different treatments during phytoremediation of PAHs. Both PCA and cluster analysis revealed differences in the metabolic fingerprints of the PAH contaminated and noncontaminated soils. However, the differences in metabolic diversity between the multispecies vegetated and monoplanted treatments were not clearly revealed. The results suggest that multispecies rhizoremediation using tolerant plant species rather than monoculture rhizoremediation have the potential to enhance pollutant removal in moderately contaminated soils.  相似文献   

13.
Eight rapid Poly R-478 dye-decolorizing isolates from The Netherlands were screened in this study for the biodegradation of polycyclic aromatic hydrocarbons (PAH) supplied at 10 mg liter(-1). Several well-known ligninolytic culture collection strains, Phanerochaete chrysosporium BKM-F-1767, Trametes versicolor Paprican 52, and Bjerkandera adusta CBS 595.78 were tested in parallel. All of the strains significantly removed anthracene, and nine of the strains significantly removed benzo(a)pyrene beyond the limited losses observed in sterile liquid and HgCl2-poisoned fungus controls. One of the new isolates, Bjerkandera sp. strain Bos 55, was the best degrader of both anthracene and benzo(a)pyrene, removing 99.2 and 83.1% of these compounds after 28 days, respectively. Half of the strains, exemplified by strains of the genera Bjerkandera and Phanerochaete, converted anthracene to anthraquinone, which was found to be a dead-end metabolite, in high yields. The extracellular fluids of selected strains were shown to be implicated in this conversion. In contrast, four Trametes strains removed anthracene without significant accumulation of the quinone. The ability of Trametes strains to degrade anthraquinone was confirmed in this study. None of the strains accumulated PAH quinones during benzo(a)pyrene degradation. Biodegradation of PAH by the various strains was highly correlated to the rate by which they decolorized Poly R-478 dye, demonstrating that ligninolytic indicators are useful in screening for promising PAH-degrading white rot fungal strains.  相似文献   

14.
Eight rapid Poly R-478 dye-decolorizing isolates from The Netherlands were screened in this study for the biodegradation of polycyclic aromatic hydrocarbons (PAH) supplied at 10 mg liter(-1). Several well-known ligninolytic culture collection strains, Phanerochaete chrysosporium BKM-F-1767, Trametes versicolor Paprican 52, and Bjerkandera adusta CBS 595.78 were tested in parallel. All of the strains significantly removed anthracene, and nine of the strains significantly removed benzo(a)pyrene beyond the limited losses observed in sterile liquid and HgCl2-poisoned fungus controls. One of the new isolates, Bjerkandera sp. strain Bos 55, was the best degrader of both anthracene and benzo(a)pyrene, removing 99.2 and 83.1% of these compounds after 28 days, respectively. Half of the strains, exemplified by strains of the genera Bjerkandera and Phanerochaete, converted anthracene to anthraquinone, which was found to be a dead-end metabolite, in high yields. The extracellular fluids of selected strains were shown to be implicated in this conversion. In contrast, four Trametes strains removed anthracene without significant accumulation of the quinone. The ability of Trametes strains to degrade anthraquinone was confirmed in this study. None of the strains accumulated PAH quinones during benzo(a)pyrene degradation. Biodegradation of PAH by the various strains was highly correlated to the rate by which they decolorized Poly R-478 dye, demonstrating that ligninolytic indicators are useful in screening for promising PAH-degrading white rot fungal strains.  相似文献   

15.
采用室内盆栽实验,利用柴油按不同比例混合土壤0 g/kg(CK),2 g/kg(L1),10 g/kg(L2)和50 g/kg(L3)制备了含不同浓度PAHs的污染土样,选择1年生樟树(Cinnamomum camphora)、广玉兰(Magnolia grandiflora)、栾树(Koelreuteria bipinnata)、马褂木(Liriodendron chinense)幼苗为供试植物,进行了土壤微生物对柴油的响应及对PAHs的修复研究。结果表明:(1)4个树种土壤微生物区系组成以细菌占优势,放线菌次之,真菌最少。(2)在各测定时间树种间土壤微生物总数对污染处理响应差异较大。栾树各污染处理组土壤微生物总数均高于对照组;樟树各污染处理土壤微生物在实验前期低于对照;广玉兰为污染处理组在4月份显著低于对照,而在其他月份多高于对照;马褂木在4月份均低于对照,其他月份为L1处理低于对照,L2、L3处理高于对照(1月L2除外)。(3)4个树种对照土壤中微生物总数随时间的变化都是从10月逐渐增加至翌年4月,然后不断减少至10月;污染处理土壤微生物总数呈现峰值提前或滞后现象,主要出现在1月或7月。真菌是控制PAHs降解的重要因素。(4)经过1a实验,各树种L1、L2处理土壤中的PAHs浓度已与对照土壤相当;L3处理各树种土壤中PAHs含量为马褂木>栾树>广玉兰>樟树。  相似文献   

16.
Summary Polycyclic aromatic hydrocarbon (PAH) biodegradation was investigated in contaminated soils from two different industrial sites under simulated land treatment conditions. Soil samples from a former impregnation plant (soil A) showed high degradation rates of PAHs by the autochthonous microorganisms, whereas PAHs in material of a closed-down coking plant (soil B) were not degraded even after inoculation with bacteria known to effectively degrade PAHs. As rapid PAH biodegradation in soil B was observed after PAHs were extracted and restored into the extracted soil material, the kind of PAH binding in soil B appears to completely prevent biodegradation. Sorption of PAHs onto extracted material of soil B follows a two-phase process (fast and slow); the latter is discussed in terms of migration of PAHs into soil organic matter, representing less accessible sites within the soil matrix. Such sorbed PAHs are suggested to be non-bioavailable and thus non-biodegradable. By eluting soil B with water, no biotoxicity, assayed as inhibition of bioluminescence, was detected in the aqueous phase. When treating soil A analogously, a distinct toxicity was observed, which was reduced relative to the amount of activated carbon added to the soil material. The data suggest that sorption of organic pollutants onto soil organic matter significantly affects biodegradability as well as biotoxicity.  相似文献   

17.
微生物降解多环芳烃(PAHs)的研究进展   总被引:13,自引:0,他引:13  
从多环芳烃(PAHs)的降解菌株的筛选、降解机制以及PAHs污染的生物修复等方面介绍了微生物降解PAHs的最新研究进展。  相似文献   

18.
污染土壤中多环芳烃生物降解的调控研究   总被引:17,自引:6,他引:17  
选用温度、湿度、表面活性剂TW80和CNP比4个因素为调控因子,采用正交法进行周期为150天的实验研究.结果表明,30天后,土壤中PAHs的降解率可达44.5~74.6%,60天后,达70.4~93.7%,降解率的不同与调控条件显著相关.在此期间,降解最佳条件为40℃,湿度25%,CNP比为120101,TW80分别为200~500mg·kg-1.实验结束时,土壤中PAHs的降解率达91.2~99.8%.降解的最佳条件是40℃,湿度15%.经R值判别表明,不同时期各因子对PAHs降解影响有所不同.温度对PAHs降解影响较大,表面活性剂对土壤中PAHs的生物降解有调控作用.  相似文献   

19.
20.
Biodegradation of polycyclic aromatic hydrocarbons by Pichia anomala   总被引:3,自引:0,他引:3  
Pichia anomala 2.2540, isolated from soil contaminated by crude oil, degraded naphthalene, dibenzothiophene, phenanthrene and chrysene, both singly and in combination. The yeast degraded 4.5 mg naphthalene l(-1) within 24 h. Phenanthrene was degraded after a lag of 24 h. When a mixture of all four polycyclic aromatic hydrocarbons was treated at either 0.1-1.6 mg l(-1) or 3.1-5.3 mg l(-1), naphthalene was completely degraded first within 24 h, followed by phenanthrene and dibenzothiophene after 48 h. Chrysene, which remained in the mixture even after 96 h, could be degraded along with naphthalene. Chrysene at 0.7 and 1 mg l(-1), in the presence of 4.3 and 65 mg naphthalene l(-1), respectively, was removed within 96 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号