首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of Triton X-100 on purified sarcoplasmic reticulum vesicles has been studied by means of chemical, ultrastructural and enzymic techniques. At low detergent/membrane ratios (about 1 Triton X-100 per 60 phospholipid molecules) the only effect observed is an increase in vesicle permeability. Higher surfactant concentrations, up to a 1:1 detergent/phospholipid ratio, produce a large enhancement of ATPase activity. Membrane solubilization occurs as a critical phenomenon when the surfactant/phospholipid molar ratio reaches a value around 1.5:1, corresponding to 2 mumol Triton X-100/mg protein. At this point, the suspension turbidity drops, virtually all the protein and phospholipid is solubilized and every organized structure disappears. Simultaneously, a dramatic increase in the specific activity of the solubilized ATPase is observed. The sudden solubilization of almost all the bilayer components at a given detergent concentration is attributed to the relative simplicity of this membrane system. Solubilization takes place at the same surfactant/membrane ratio, at least between 0.5 and 4 mg membrane protein/ml. The non-solubilized residue seems to consist mainly of delipidized aggregated forms of ATPase.  相似文献   

2.
Inactivation of sarcoplasmic ATPase in the solubilized state was studied in the absence and presence of Ca2+, Mg2+ and glycerol. The effects of the detergents octa(ethyleneglycol) mono-n-dodecyl ether (C12E8), 1-O-tetradecylpropanediol-(1,3)-3-phosphorylcholine and myristoylglycerophosphocholine were compared. All three detergents caused a rapid decline of the dinitrophenyl phosphatase activity of the unprotected enzyme. The stabilizing effect of Ca2+ ions was kinetically analysed. It was found that the stability of the solubilized enzyme depends on the Ca2+ concentration in a manner which is best explained by assuming rapid inactivation of Ca2+-free enzyme accompanied by slow inactivation of a calcium-enzyme complex (E1Ca). The apparent affinity constants obtained are in the order of 10(6)M-1, suggesting that high-affinity Ca2+ binding must be involved. No indications of a contribution were found, either of low-affinity Ca2+-binding sites of the conformational state E2 or of the high-affinity calcium complex E1Ca2. If Ca2+ was replaced by Mg2+, which exerts a weaker protection, the apparent affinity constants for Mg2+ are in the range of 1 mM-1. The stoichiometry of the effect of Mg2+ depends on the detergent.  相似文献   

3.
The interaction of lysophosphatidylcholines and lysophosphatidylethanolamines with lobster abdominal muscle sarcoplasmic reticulum was studied. Only lysophosphatidylcholines with 16 and 18 carbon acyl chains were effective solubilizing agents. The rate of membrane solubilization was most rapid with the palmitoyl and oleoyl derivatives. All lysophosphatides partially inhibited calcium-dependent ATPase activity between 0.0 and 2.0 μmol of lysophosphatide mg?1 of membrane protein. Lysophosphatides that were active in solubilizing membranes exhibited a reactivating effect on ATPase activity between 2.0 and 6.0 μmol of lysophosphatide mg?1 of membrane protein. Arrhenius plots of temperature-dependent ATPase activity showed high activation energies and loss of discontinuities in Arrhenius plots when inhibiting concentrations of the lysophosphatides were present. These results suggest that the inhibiting effect of lysophosphatides on membrane enzyme activity is due to intrusion of the lysophosphatide into the membrane, which results in a less fluid lipid environment around the enzyme. Subsequent membrane solubilization at higher lysophosphatide concentrations may release the enzyme from the inhibiting effects of the lysophosphatide by increasing lipid fluidity neighboring the enzyme. The effects of lysophosphatides on a membrane enzyme system were also examined in the presence of 10 mm Triton X-100. Under these conditions, little effect on membrane enzyme activity was generated by increasing concentrations of the lysophosphatidylcholines (lauryl, palmitoyl, and steroyl), while the unsaturated lysophosphatidylcholine and the lysophosphatidylethanolamines caused a two- to threefold increase in enzyme activity. Temperature-dependent enzyme activity studies showed that discontinuities in the Arrhenius plots of enzyme activity occurred at varying temperatures, depending on the lysophosphatide used. Lowest transition temperatures occurred for lysophosphatidylcholine (oleoyl) and the lysophosphatidylethanolamines. These results suggest that, in the presence of 10 mm Triton X-100, lipid exchange occurs around the sarcoplasmic reticulum ATPase enzyme and the fluidity of this lipid-protein complex is increased by lysophosphatides with unsaturated acyl chains or ethanolamine head groups.  相似文献   

4.
The effect of Triton X-100 on purified sarcoplasmic reticulum vesicles has been studied by means of chemical, ultrastructural and enzymic techniques. At low detergent/membrane ratios (about 1 Triton X-100 per 60 phospholipid molecules) the only effect observed is an increase in vesicle permeability. Higher surfactant concentrations, up to a 1:1 detergent/phospholipid ratio, produce a large enhancement of ATPase activity. Membrane solubilization occurs as a critical phenomenon when the surfactant/phospholipid molar ratio reaches a value around 1.5:1, corresponding to 2 μmol Triton X-100/mg protein. At this point, the suspension turbidity drops, virtually all the protein and phospholipid is solubilized and every organized structure disappears. Simultaneously, a dramatic increase in the specific activity of the solubilized ATPase is observed. The sudden solubilization of almost all the bilayer components at a given detergent concentration is attributed to the relative simplicity of this membrane system. Solubilization takes place at the same surfactant/membrane ratio, at least between 0.5 and 4 mg membrane protein/ml. The non-solubilized residue seems to consist mainly of delipidized aggregated forms of ATPase.  相似文献   

5.
6.
Vanadate binding to different sarcoplasmic reticulum membrane preparations was determined by measuring bound vanadate colorimetrically and by phosphorylating the vanadate-free enzyme fraction with [gamma-32P] ATP. Colorimetry allowed the study of the dependence of equilibrium vanadate binding on ionized magnesium and the displacing effect of ionized calcium at vanadate concentrations greater than 0.1 mM only. At saturating magnesium concentration the enzyme binds 6-8 nmol vanadate/mg protein and half-maximum saturation is reached at 40 microM. Vanadate is displaced from the enzyme when its high-affinity calcium-binding sites are saturated and conversely calcium is solely displaced from its high-affinity binding sites by vanadate. The phosphorylation procedure allowed the measurement of equilibrium binding as well as the kinetics of vanadate binding and release at vanadate concentrations below 0.1 mM. Half-times of 30s and 3s were observed for vanadate release induced by 0.1 mM and 1 mM calcium respectively. Millimolar concentrations of ATP are required for vanadate displacement. Under equilibrium conditions the enzyme displays an affinity for vanadate of 1.6 X 10(6) M-1. The dependence on the concentration of vanadate of the rate of vanadate binding yielded an affinity of only 1 X 10(4) M-1. Closed vesicles bind vanadate much more slowly than calcium-permeable preparations. The initial rate of calcium-induced vanadate dissociation is accelerated considerably when the vesicles are made calcium permeable. The rate of vanadate dissociation from calcium-permeable vesicles reaches half-maximum values at 1-2 mM calcium indicating that the internal low-affinity calcium-binding sites must first be occupied in order to release bound vanadate. The results suggest that vanadate binding leads to a transition of the external high to internal low-affinity calcium-binding sites.  相似文献   

7.
在酸性条件下,1% Triton X—100加 0.25mol/L KI能有效地溶解燕麦根细胞质膜ATP酶。溶解的ATP酶水解ATP的最适pH在6.5左右,酶活性受到Na_3VO_4和DES的强烈抑制,而不受Na_2MoO_4和NaN_3的抑制。溶解的酶液经透析后,K~ —ATP酶活性占Mg~(2 ),KCl—ATP酶活性的85%。  相似文献   

8.
Ca2+ ATPase activity and Ca2+ transport from Triton X-100-solubilized sarcoplasmic reticulum vesicles and soybean phospholipids were reconstituted by passing this mixture through a Bio-Bead SM-2 column. This rapid procedure gave a coupling efficiency of 0.83 mol of Ca2+-mol? of ATP hydrolyzed when 35 mg of soybean phospholipids mg?1 of protein was used.  相似文献   

9.
Activation of acetylcholinesterase by Triton X-100   总被引:1,自引:0,他引:1  
  相似文献   

10.
The Ca-ATPase from skeletal muscle sarcoplasmic reticulum was labeled with [3H]adamantane diazirine. Adamantane diazirine is a hydrophobic photoactivated probe that partitions into the cell membrane and can be used to identify regions of proteins that are embedded within the membrane. Digestion of the labeled protein with trypsin and separation of the labeled tryptic fragments by SDS-polyacrylamide-gel electrophoresis indicated that all of the major tryptic fragments were labeled by the probe. The presence of glutathione in the sample buffer during photolysis did not alter the pattern of labeling, indicating that adamantane diazirine labeled the Ca-ATPase from within the lipid bilayer. These results indicate that the Ca-ATPase polypeptide must cross the membrane at least 3 times.  相似文献   

11.
12.
Permeabilization of microorganisms by Triton X-100.   总被引:17,自引:0,他引:17  
A simple permeabilization procedure has been developed which allows the reliable determination of enzyme activitiesin situ in a variety of different microorganisms. Permeabilization is obtained by freezing cell suspensions in the presence of a low concentration of the anionic detergent Triton X-100. After thawing, the cells can be used directly in the enzyme assays. The procedure has been optimized using the yeastSaccharomyces cerevisiae. Yeast cells are completely permeabilized by Triton X-100 concentrations of 0.05% (v/v), and permeabilization is independent of cell age and cell concentration. The treatment makes the cells freely diffusible for macromolecules up to molecular weights around 70,000. Cytoplasmic and mitochondrial amino acid biosynthetic enzymes as well as aminoacyl-tRNA synthetases could be readily measured in treated cells. The method has been successfully applied to the determination of enzyme activities in other fungi as well as in gram-positive and gramnegative bacteria.  相似文献   

13.
14.
15.
The effect of low concentrations of Triton X-100, below that required for solubilization, on the properties of the Ca2+-ATPase of sarcoplasmic reticulum has been investigated. The changes observed have been compared with the changes produced on solubilization of the vesicles at higher concentrations of detergent. In the range 0.02-0.05% (w/v) Triton X-100, concentrations which did not solubilize the vesicles but completely inhibit ATP-mediated Ca2+ accumulation, 8-16 mol of detergent/mol of ATPase was associated with the vesicles. This amount of Triton X-100 altered equilibrium Ca2+ binding and Ca2+ activation of p-nitrophenyl phosphate and of ATP hydrolysis in a manner which lowered the apparent Ca2+ cooperatively (nH = 1 or less), and which increased the K0.5(Ca) value 20-fold. These changes in Ca2+ binding and activation parameters were associated with a 90% lower Ca2+-induced change in fluorescence of fluorescein isothiocyanate modified enzyme. The rates of p-nitrophenyl phosphate and of ATP hydrolysis, at saturating Ca2+ concentrations, were about half that of detergent-free vesicles. The rate constant for phosphoenzyme hydrolysis in the absence of Ca2+, calculated from medium Pi in equilibrium HOH exchange and phosphoenzyme measurements, was lowered from 38 to 11 s-1. The steady-state level of phosphoenzyme formed from Pi in the absence of Ca2+ was slightly increased up to 0.02% Triton X-100 and then decreased about half at 0.05%. The synthesis of ATP in single turnover type experiments was not affected by detergent binding. Pi in equilibrium ATP exchange was inhibited 65%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Millisecond mixing and quenching experiments were performed in order to study the rate of phosphorylation by Pi of the Ca2+-dependent ATPase of sarcoplasmic reticulum vesicles. A rapid phosphoenzyme formation was observed when the vesicles were preincubated in the absence of Ca2+ prior to the addition of Pi and Mg2+ to the medium, the half-time being in the range of 6 to 10 ms. A lag phase and a 5- to 10-fold slower rate of phosphoenzyme formation were observed when the enzyme was preincubated with Ca2+ prior to the addition to the reaction mixture of Pi, Mg2+, and an excess of ethylene glycol bis(β-aminoethyl ether)N,N′-tetraacetic acid. The rate of phosphoenzyme hydrolysis was measured either by the addition of Ca2+ or, in the absence of Ca2+, by tracing the hydrolysis of radioactive phosphoenzyme upon the addition of nonradioactive Pi. In the presence of Ca2+, the rate of phosphoenzyme hydrolysis was found to be one order of magnitude slower than the rate of hydrolysis measured in the absence of Ca2+. Different rates of phosphoenzyme formation and cleavage were found depending on whether sarcoplasmic reticulum vesicles or purified Ca2+-dependent ATPase were used. A transient phosphorylation by Pi was observed when the enzyme was preincubated in the absence of Ca2+ and then added to a medium containing Pi, Mg2+, and excess of Ca2+. The enzyme was phosphorylated during the initial 100 ms, the phosphoenzyme formed being slowly hydrolyzed in the subsequent incubation intervals. In these conditions ATP synthesis was observed if ADP was added to the mixture 100 ms after starting the reaction. No transient phosphorylation by Pi was observed when the enzyme was preincubated with Ca2+. Synthesis of a small but significant amount of ATP was observed when the enzyme was preincubated in the absence of Ca2+ and then added to a medium containing Pi, ADP, Mg2+, and 20 mm CaCl2. This was not observed when the enzyme was preincubated in the presence of Ca2+.  相似文献   

17.
The effect which hydrostatic pressure exerts on the hydrolysis of dinitrophenyl phosphate and nitrophenyl phosphate by the sarcoplasmic reticulum calcium-transport enzyme was determined. Activation volumes for substrate hydrolysis at saturating and non-saturating concentrations of calcium were determined and used to evaluate volume increments for initial calcium binding. A reaction scheme in which two unidirectional substrate-driven reactions transfer high-affinity into low-affinity calcium-binding sites was applied to determine binding-volume increments. It has been inferred from the pressure dependence of the volume-generating function, defined as the difference between the reciprocal reaction rates of the saturated and the unsaturated enzyme, that calcium binding proceeds in two steps. The two associated binding constants are endowed with large binding-volume increments of opposite signs (+84 to +207 ml/mol and -3 to -136 ml/mol). Under different experimental conditions, with respect to the temperature, degree of calcium saturation and absence or presence of Me2SO, they add up to the same integral volume increment of 73 +/- 3.5 ml/mol for the entry of two calcium ions into the reaction cycle. In aqueous media, the two binding constants contribute about equally to binding and to the observed binding-volume increment. The presence of Me2SO strongly favours the first binding step. The size of the integral volume increment is in line with that determined for the interaction of calcium with calmodulin [Kupke, D.W. & Dorrier, T.E. (1986) Biochem. Biophys. Res. Commun. 38, 199-204].  相似文献   

18.
Razin S  Barash V 《FEBS letters》1969,3(3):217-220
  相似文献   

19.
Calcium and lanthanide binding in the sarcoplasmic reticulum ATPase   总被引:8,自引:0,他引:8  
The interactions of calcium and lathanides with the sarcoplasmic reticulum ATPase, and their respective ability to activate the enzyme, were studied by direct measurements of binding with radioactive tracers, functional effects on the ATPase partial reactions, changes in the quantum yield of tryptophanyl residues and a covalently bound fluorescein label (fluorescein 5-isothiocyanate, FITC), and energy transfer between bound lanthanide and fluorescent labels. We find that: (a) Lanthanides displace calcium from specific ATPase sites with diphasic kinetics that are consistent with sequential exchange. (b) Lanthanides in excess of the calcium stoichiometry are mostly bound to sarcoplasmic reticulum lipids and non-ATPase proteins. (c) Both calcium and lanthanides activate the ATPase and allow formation of the phosphorylated intermediate by utilization of ATP; however, hydrolytic cleavage of the intermediate formed in the presence of lanthanides occurs at a slower rate than the intermediate formed in the presence of calcium. (d) In contrast to a calcium-dependent change in the quantum yield of both the tryptophanyl residues (transmembrane region) and the FITC label (extramembranous region), lanthanides induce only a change in the quantum yield of the FITC label. (e) Measurements of energy transfer between bound lanthanide and fluorescent labels detect lanthanide bound midway between the catalytic site in the globular region of the ATPase outside the membrane, and the transmembrane calcium binding domain which is involved in enzyme activation (Clarke, D. M., Loo, T. W., Inesi, G., and MacLennan, D. H. (1989a) Nature 339, 476-478). It is apparent that cation bound in this midway location controls exchange of calcium bound in the transmembrane region. The possibility that the midway location may provide a domain for binding of a second calcium is discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号