首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AIMS: Azimsulfuron is a recently introduced sulfonylurea herbicide useful in controlling weeds in paddy fields. To date very little information is available on the biodegradation of this pesticide and on its effect on the soil microbial community. The aim of this work was to study its biodegradation both in slurry soil microcosms and in batch tests with mixed and pure cultures. METHODS AND RESULTS: Azimsulfuron was applied to forest bulk soil in order to study its effect on the structure of the bacterial soil community, as detectable by denaturant gradient gel electrophoresis (DGGE) analyses. Biodegradation and abiotic processes were investigated by HPLC analyses. In addition, a microbial consortium was selected, that was able to use azimsulfuron as the sole energy and carbon source. One of the metabolites produced by the consortium was isolated and identified through LC-MS analyses. Cultivable bacteria of the consortium were isolated and identified by 16S rDNA sequencing (1400 bp). CONCLUSIONS: Azimsulfuron treatment seems to have the ability to cause changes in the bacterial community structure that are detectable by DGGE analyses. It is easily biodegraded both in microcosms and in batch tests, with the formation of an intermediate that was identified as 2-methyl-4-(2-methyl-2H-tetrazol-5-yl)-2H-pyrazole-3-sulfonamide. SIGNIFICANCE AND IMPACT OF THE STUDY: The study increases the knowledge on the biodegradation of azimsulfuron and its effects on the soil microbiota.  相似文献   

2.
Gasdorf, Helen J. (Northern Regional Research Laboratory, Peoria, Ill.), R. G. Benedict, M. C. Cadmus, R. F. Anderson, and R. W. Jackson. Polymer-producing species of Arthrobacter. J. Bacteriol. 90:147-150.1965.-Two slime-producing microorganisms, designated as NRRL B-1973 and NRRL B-1797, were isolated from a Guatemalan soil sample. Their morphological and physiological characteristics permit their assignment to the genus Arthrobacter. Both cultures produce a large amount of extracellular polysaccharide, the maximal amount being 1.4 g per 3 g of glucose. The carbohydrate constituents of B-1973 polysaccharide are galactose, glucose, and mannuronic acid; those of B-1797 are galactose, glucose, and glucuronic acid. The organisms are morphologically and physiologically alike. The differences between these two cultures and previously described species of Arthrobacter appear sufficient to designate a new species. The name Arthrobacter viscosus sp. n. is proposed.  相似文献   

3.
Almost 30% of the precious agricultural output of India is lost owing to pest infestation. In India, pesticide consumption for protecting crops is about 3% of the total world consumption. Monocrotophos (MCP), an organophosphorus insecticide, is widely used to control insects on crops. Being readily water soluble and highly toxic, its removal from wastewater generated during manufacture becomes inevitable. Bioremediation of wastewater containing MCP by Arthrobacter atrocyaneus, Bacillus megaterium, and Pseudomonas mendocina was highest at pH 8.0, but maximum reduction in Chemical Oxygen Demand (COD) was at pH 7.0. Removal of MCP and reduction in COD by B. megaterium and Ps. mendocina were highest at 35°C, while with A. atrocyaneus, it was maximum at 30°C, under aerated culture condition and inoculum density of 108 cells/ml. Use of pure cultures for bioremediation of effluent containing MCP appears to be the first such attempt. Received: 26 September 2001 / Accepted: 5 February 2002  相似文献   

4.
Pseudomonas mendocina isolated from soil degraded an insecticide, Monocrotophos (MCP), by 67% and harbored a 7.4 kb plasmid, designated as pMCP424. On the basis of curing and transformation experiments, MCP degradation by Pseudomonas mendocinawas plasmid-borne and transferable to other bacteria.  相似文献   

5.
The effect of dicumarol on growth of selected soil bacteria: Azotobacter chroococcum, Arthrobacter globiformis, A. citreus and Bacillus megaterium was studied. The following minimum concentrations were inhibitory in vitro: Arthrobacter citreus--20 mug/ml., Bacillus megaterium--40 mug/ml., Azotobacter chroococcum--40 mug/ml. Arthrobacter globiformis--70 mug/ml. Cells of all microorganisms studied grown in the presence of dicumarol developed aberrant morphological forms.  相似文献   

6.
The substrate specificity of isomerases produced by six strains of Arthrobacter sp. was studied. The role of utilizable carbon sources in controlling enzyme biosynthesis was established. All of the strains studied were found to produce xylose isomerases efficiently, converting D-xylose into D-xylulose and D-glucose into D-fructose. All but A. ureafaciens B-6 strains showed low activity toward D-ribose, Arthrobacter sp. B-5 was slightly active toward L-arabinose, and A. ureafaciens B-6 and Arthrobacter sp. B-2239, toward L-rhamnose. In Arthrobacter sp. B-5, the synthesis of xylose/glucose isomerase was constitutive (i.e., it was not suppressed by readily metabolizable carbon sources). The synthesis of xylose/glucose isomerase induced by D-xylose in Arthrobacter sp. strains B-2239, B-2240, B-2241, and B-2242 and by D-xylose and xylitol in A. ureafaciens B-6 was suppressed by readily metabolizable carbon sources in a concentration-dependent manner. The data obtained suggest that D-xylose and/or its metabolites are involved in the regulation of xylose/glucose isomerase synthesis in the Arthrobacter sp. strains B-5, B-2239, B-2240, and B-2241.  相似文献   

7.
Motility in Arthrobacter atrocyaneus, A. citreus, and A. simplex was found to correlate with the morphogenic cycle of these organisms. The percentage of the A. atrocyaneus and A. simplex populations that were flagellated at a given time during the growth cycle differed significantly from that of the normorphogenic Pseudomonas aeruginosa population. Flagellation in A. atrocyaneus was shown to be dependent upon the morphogenic cycle rather than upon growth. The commitment to flagellar synthesis in A. atrocyaneus was found to occur only after induction to the rod morphology. Flagellar synthesis in A. atrocyaneus was shown to be restricted to only a small segment of the morphogenic cycle.  相似文献   

8.
Growth of Arthrobacter atrocyaneus and A. pyridinolis on certain growth substrates was found to be inhibited by pyruvate and compounds which can be converted to pyruvate. Growth of A. atrocyaneus on acetate, for example, was completely inhibited by 5 mm pyruvate; growth of this organism on glucose was less sensitive and growth on succinate was insensitive to inhibition by pyruvate. Growth of a third Arthrobacter species, A. crystallopoietes, on acetate and other substrates was not inhibited by pyruvate. The site of pyruvate inhibition was shown to be the isocitrate lyase reaction. Glyoxylate, which affords a bypass of this reaction, restored the ability of A. atrocyaneus to evolve (14)CO(2) from acetate in the presence of pyruvate. The isocitrate lyases from A. atrocyaneus and A. pyridinolis were competitively inhibited by concentrations of pyruvate as low as 1 mm, whereas the enzyme from A. crystallopoietes was unaffected by this concentration of pyruvate. Comparable levels of phosphoenolpyruvate did not inhibit the isocitrate lyases from any of the species. A mutant strain of A. atrocyaneus, PW11, which is deficient in isocitrate lyase activity, grew on glucose at a reduced rate that was comparable to the rate of growth of the wild-type strain on glucose plus lactate. Addition of lactate to PW11 did not further reduce its rate of growth on glucose. Thus, the glyoxylate pathway appears to be used as an anaplerotic pathway during growth of A. atrocyaneus on glucose. Two other considerations suggest that A. atrocyaneus and A. pyridinolis, but not A. crystallopoietes, may be deficient in the ability to convert pyruvate to 4-carbon acids. First, the former two species accumulate intracellular pyruvate from exogenous l-alanine to a much greater extent than does A. crystallopoietes. Moreover, A. atrocyaneus and A. pyridinolis are incapable of growth on lactate as sole source of carbon whereas A. crystallopoietes can grow on lactate.  相似文献   

9.
AIMS: To investigate the effects of aeration on the ex situ biodegradation of polycyclic aromatic hydrocarbons (PAHs) in creosote-contaminated soil and its effect on the microbial community present. METHODS AND RESULTS: Aerated and nonaerated microcosms of soil excavated from a former timber treatment yard were maintained and sampled for PAH concentration and microbial community changes by terminal restriction fragment length polymorphism (TRFLP) analysis. After an experimental period of just 13 days, degradation was observed with all the PAHs monitored. Abiotic controls showed no loss of PAH. Results unexpectedly showed greater loss of the higher molecular weight PAHs in the nonaerated control. This may have been due to the soil excavation causing initial decompaction and aeration and the resulting changes caused in the microbial community composition, indicated by TRFLP analysis showing several ribotypes greatly increasing in relative abundance. Similar changes in both microcosms were observed but with several possible key differences. The species of micro-organisms putatively identified included Bacilli, pseudomonad, aeromonad, Vibrio and Clostridia species. CONCLUSIONS: Excavation of the contaminated soil leads to decompaction, aeration and increased nutrient availability, which in turn allow microbial biodegradation of the PAHs and a change in the microbial community structure. SIGNIFICANCE AND IMPACT OF THE STUDY: Understanding the changes occurring in the microbial community during biodegradation of all PAHs is essential for the development of improved site remediation protocols. TRFLP allows useful monitoring of the total microbial community.  相似文献   

10.
The effective and accurate assessment of the total microbial community diversity is one of the primary challenges in modem microbial ecology, especially for the detection and characterization of unculturable populations and populations with a low abundance. Accordingly, this study was undertaken to investigate the diversity of the microbial community during the biodegradation of cis- and trans-dichloroethenes in soil and wastewater enrichment cultures. Community profiling using PCR targeting the 16S rRNA gene and denaturing gradient gel electrophoresis (PCR-DGGE) revealed an alteration in the bacterial community profiles with time. Exposure to cis- and trans-dichloroethenes led to the disappearance of certain genospecies that were initially observed in the untreated samples. A cluster analysis of the bacterial DGGE community profiles at various sampling times during the degradation process indicated that the community profile became stable after day 10 of the enrichment. DNA sequencing and phylogenetic analysis of selected DGGE bands revealed that the genera Acinetobacter, Pseudomonas, Bacillus, Comamonas, and Arthrobacter, plus several other important uncultured bacterial phylotypes, dominated the enrichment cultures. Thus, the identified dominant phylotypes may play an important role in the degradation of cis- and trans-dichloroethenes.  相似文献   

11.
The reaction of soil bacteria and fungi to the digestive fluid of the earthworm Aporrectodea caliginosa was studied. The fluid was obtained by centrifugation of the native enzymes of the digestive tract. The inhibition of growth of certain bacteria, spores, and fungal hyphae under the effect of extracts from the anterior and middle sections of the digestive tract of A. caliginosa was discovered for the first time. In bacteria, microcolony formation was inhibited as early as 20-30 s after the application of the gut extracts, which may indicate the nonenzymatic nature of the effect. The digestive fluid exhibited the same microbicidal activity whether the earthworms were feeding on soil or sterile sand. This indicates that the microbicidal agents are formed within the earthworm's body, rather than by soil microorganisms. The effect of the digestive fluid from the anterior and middle divisions is selective in relation to different microorganisms. Of 42 strains of soil bacteria, seven were susceptible to the microbicidal action of the fluid (Alcaligenes.faecalis 345-1, Microbacterium sp. 423-1, Arthrobacter sp. 430-1, Bacillus megaterium 401-1, B. megaterium 413-1, Kluyvera ascorbata 301-1, Pseudomonas reactans 387-2). The remaining bacteria did not die in the digestive fluid. Of 13 micromycetes, the digestive fluid inhibited spore germination in Aspergillus terreus and Paecilomyces lilacinus and the growth of hyphae in Trichoderma harzianum and Penicillium decumbens. The digestive fluid stimulated spore germination in Alternaria alternata and the growth of hyphae in Penicillium chrysogenum. The reaction of the remaining micromycetes was neutral. The gut fluid from the posterior division of the abdominal tract did not possess microbicidal activity. No relation was found between the reaction of microorganisms to the effects of the digestive fluid and the taxonomic position of the microorganisms. The effects revealed are similar to those shown earlier for millipedes and wood lice in the following parameters: quick action of the digestive fluid on microorganisms, and the selectivity of the action on microorganisms revealed at the strain level. The selective effect of the digestive gut fluid of the earthworms on soil microorganisms is important for animal feeding, maintaining the homeostasis of the gut microbial community, and the formation of microbial communities in soils.  相似文献   

12.
Leaks and spillages during the extraction, transport and storage of petroleum and its derivatives may result in environmental contamination. Biodiesel is an alternative energy source that can contribute to a reduction in environmental pollution. The aim of the present work was to evaluate biodegradation of diesel, biodiesel, and a 20% biodiesel-diesel mixture in oxisols from southern Brazil, using two bioremediation strategies: natural attenuation and bioaugmentation/biostimulation. Fuel biodegradation was monitored over 60 days by dehydrogenase activity, CO2 evolution and gas chromatography. The bacterial inoculum employed for bioaugmentation/biostimulation consisted of Bacillus megaterium, Bacillus pumilus, Pseudomonas aeruginosa, and Stenotrophomonas maltophilia and PCR-DGGE using 16S RNAr primers showed that some members of this consortium survived in the soil after 60 days. The biodegradation of pure biodiesel was higher for bioaugmentation/biostimulation than for natural attenuation, suggesting that the addition of the microbial consortium, together with adjustment of the macronutrient ratio, increased biodiesel degradation. The results of dehydrogenase and respiratory activity, together with GC analysis, suggested that the presence of biodiesel may, by stimulating general microbial degradative metabolism, increase the biodegradation of petroleum diesel. The microbial community was altered by both treatments, with natural attenuation producing a lower diversity index than the amended soil. The bioaugmentation/biostimulation strategy was showed to have a high potential for cleaning up soils contaminated with diesel and biodiesel blends.  相似文献   

13.
Monocrotophos (dimethyl (E)-1-methyl-2-(methylcarbamoyl) vinyl phosphate, or MCP), an organophosphorus insecticide, was used as a sole phosphorus source by the microorganisms isolated from the soil. None of the isolates could utilize MCP as a sole source of carbon. Two of the potential microbial isolates, Pseudomonas aeruginosa F10B and Clavibacter michiganense subsp. insidiosum SBL 11, could utilize MCP as a sole source of phosphorus. Pseudomonas aeruginosa F10B showed a lag phase of 4 h, while in the case of C. michiganense subsp. insidiosum SBL 11, it was 8 h when cultured in the presence of MCP. The generation time for both strains was increased in the medium containing MCP. It was 2.15 h for P. aeruginosa F10B in MCP medium as compared with 1.29 h in basal medium, while in case of C. michiganense subsp. insidiosum SBL 11 it was increased to 3.4 h in MCP medium as compared with 1.28 h in basal medium. These two strains were able to degrade technical MCP in shake-flask culture up to 98.9 and 86.9%, respectively, and pure MCP up to 79 and 80%, respectively, within 24 h at 37 degrees C. The optimal concentration of MCP required for the normal growth was 500 ppm. In the substrate preference study, Tris-p-nitrophenyl phosphate was the most preferred substrate followed by paraoxon. The enzyme responsible for the break down of MCP was phosphotriesterase, which was localized on the membrane-bound fraction of the disrupted cells. The gene responsible for the production of phosphotriesterase (opd) in P. aeruginosa F10B was plasmid-borne.  相似文献   

14.
Regulation of nitrogen catabolic enzymes in Bacillus spp.   总被引:15,自引:9,他引:6       下载免费PDF全文
The levels of the inducible nitrogen catabolic enzymes arginase (L-arginine amidinohydrolase, EC 3.5.3.1) and alanine dehydrogenase (L-alanine:NAD+ oxidoreductase [deaminating], EC 1.4.1.1) from Bacillus licheniformis and histidase (L-histidine ammonia-lyase, EC 4.3.1.3) from Bacillus subtilis and the ammonia assimilatory enzymes from B. licheniformis were determined in cultures grown in the presence of different nitrogen sources. Although the levels of these enzymes were dependent upon the nitrogen source present, induction of the catabolic enzymes in response to the addition of inducer occurred even in the presence of preferred nitrogen sources. Intracellular pool sizes of ammonia, glutamate, glutamine, and alpha-ketoglutarate were measured in continuous cultures of b. licheniformis growing in the presence of different nitrogen sources. A comparison of the pool sizes of these metabolites with the ammonia assimilatory enzyme levels showed that the pools of the metabolites did not change in a manner consistent with their use as regulators of the synthesis of any of these enzymes.  相似文献   

15.
The growth of microbial populations and their biosynthesis of proteinases with the fibrinolytic activity were studied in an artificial ecosystem composed of a strain producing the enzymes (Nocardia minima 1) and a zero strain (Arthrobacter citreus VKM 654). The microorganisms in the association were shown to interact in terms of amensalism via metabolites if the enzyme-producing strain dominated.  相似文献   

16.
Micromycetes of the complex of typical chernozem saprotrophic fungi released phytotoxic metabolites into medium. The metabolites displayed their phytotoxic activities directly in soil. Evaluation of the toxicities, range of biological effects activities, and stabilities of phytotoxins in soil and the rates of their biodegradation allowed the species that can serve as indicators of chernozem microbial toxicosis to be selected, namely, Aspergillus clavatus, Fusarium solani, Talaromyces flavus, Penicillium rubrum, and P. funiculosum.  相似文献   

17.
Bacillus licheniformis solubilized a range of inorganic phosphates and five different Indian rock phosphates (low grade) to varying extent in broth culture and in soil. Statistical evaluation indicated that broth cultures alone were inadequate indicators of the potential for microbial solubilization of rock phosphates.  相似文献   

18.
Atrazine sensitive leguminous plants were grown in a soil spiked with atrazine and augmented with an atrazine-degrading bacterium, Arthrobacter sp. strain MCM B-436, to ascertain its degradative efficiency. Germination and survival of plants was correlated with atrazine removal from soil. This experiment was carried out at laboratory as well as field level, showing consistent results. This bioindicator approach serves as an efficient measure for atrazine removal and could be easily adapted to determine atrazine degradation efficiency of other microbial strains.  相似文献   

19.
Micromycetes of the complex of typical chernozem saprotrophic fungi released phytotoxic metabolites into their growth medium. The metabolites displayed their phytotoxic activities directly in soil. Evaluation of the toxicity, range of biological effects, activity, and stability of the phytotoxins in soil, as well as of the rates of their biodegradation, made it possible to select species that can serve as indicators of microbial toxicosis of chernozem (Aspergillus clavatus, Fusarium solani, Talaromyces flavus, Penicillium rubrum, and P. funiculosum).  相似文献   

20.
Bioremediation treatments including natural attenuation (NA), biostimulation (BS), and bioaugmentation (BA) were performed and compared regarding the degradation of 4-chloroaniline (4CA) contaminating two types of agricultural soil collected from Nakornnayok (NN) and Chiangmai (CM) provinces, Thailand. Despite the different soil properties, both soil types exhibited intrinsic potential for biodegradation. 4CA degradation by NA in loam soil-NN was fairly effective (ca. 40%), while in sandy-clay loam soil-CM it occurred poorly (<10%). Compared to NA, BS with aniline and BA with 4CA-degrading Klebseilla sp. CA17 were comparatively more effective techniques, although the degradation occurred differently in each soil type. In soil-NN, the biodegradation of 4CA took place at a higher rate, achieving biodegradation of 70–75% within 4 weeks, than in soil-CM, i.e., up to 40–46% within 8 weeks. During each treatment, changes in soil microbial activity, numbers of 4CA-degrading micro-organisms, and dynamic modification of soil microbial community structure were also monitored. The results suggest that both BS and BA are feasible techniques for bioremediation of 4CA accumulated in soil, although the biodegrading efficiency in soil environment depends not only on site characteristics but also on the characteristics of either indigenous microbial population or the survival and stability of bioaugmented cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号