首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Cytochrome ba3 from Thermus thermophilus belongs to the B family of heme-copper oxidases and pumps protons across the membrane with an as yet unknown mechanism. The K channel of the A family heme-copper oxidases provides delivery of a substrate proton from the internal water phase to the binuclear heme-copper center (BNC) during the reductive phase of the catalytic cycle, while the D channel is responsible for transferring both substrate and pumped protons. By contrast, in the B family oxidases there is no D-channel and the structural equivalent of the K channel seems to be responsible for the transfer of both categories of protons. Here we have studied the effect of the T315V substitution in the K channel on the kinetics of membrane potential generation coupled to the oxidative half-reaction of the catalytic cycle of cytochrome ba3. The results suggest that the mutated enzyme does not pump protons during the reaction of the fully reduced form with molecular oxygen in a single turnover. Specific inhibition of proton pumping in the T315V mutant appears to be a consequence of inability to provide rapid (τ ~ 100 μs) reprotonation of the internal transient proton donor(s) of the K channel. In contrast to the A family, the K channel of the B-type oxidases is necessary for the electrogenic transfer of both pumped and substrate protons during the oxidative half-reaction of the catalytic cycle.  相似文献   

2.
The respiratory heme-copper oxidases catalyze reduction of O2 to H2O, linking this process to transmembrane proton pumping. These oxidases have been classified according to the architecture, location and number of proton pathways. Most structural and functional studies to date have been performed on the A-class oxidases, which includes those that are found in the inner mitochondrial membrane and bacteria such as Rhodobacter sphaeroides and Paracoccus denitrificans (aa3-type oxidases in these bacteria). These oxidases pump protons with a stoichiometry of one proton per electron transferred to the catalytic site. The bacterial A-class oxidases use two proton pathways (denoted by letters D and K, respectively), for the transfer of protons to the catalytic site, and protons that are pumped across the membrane. The B-type oxidases such as, for example, the ba3 oxidase from Thermus thermophilus, pump protons with a lower stoichiometry of 0.5 H+/electron and use only one proton pathway for the transfer of all protons. This pathway overlaps in space with the K pathway in the A class oxidases without showing any sequence homology though. Here, we review the functional properties of the A- and the B-class ba3 oxidases with a focus on mechanisms of proton transfer and pumping. This article is part of a Special Issue entitled: Respiratory Oxidases.  相似文献   

3.
Michel H 《Biochemistry》1999,38(46):15129-15140
Cytochrome c oxidase catalyzes the reduction of molecular oxygen to water, a process in which four electrons, four protons, and one molecule of oxygen are consumed. The reaction is coupled to the pumping of four additional protons across the membrane. According to the currently accepted concept, the pumping of all four protons occurs after the binding of oxygen to the reduced enzyme and is exclusively coupled to the last two electron transfer steps. A careful analysis of the existing data shows that there is no experimental evidence for this paradigm. It is more likely that only three protons are pumped during the second half of the catalytic cycle of cytochrome c oxidase after the reaction with oxygen. In this article a variant of a recent mechanistic model of proton pumping by electrostatic repulsion is discussed. It is based on the electroneutrality principle in a way that in the catalytic cycle each electron transfer to the membrane-embedded electron acceptors is charge-compensated by uptake of one proton. The mechanism takes into account the findings with mutant cytochrome c oxidases and explains the results of many recent experiments, including the effects of hydrogen peroxide.  相似文献   

4.
The cbb 3-type oxidases are members of the heme-copper oxidase superfamily, distant by sequence comparisons, but sharing common functional characteristics. The cbb 3 oxidases are missing an active-site tyrosine residue that is absolutely conserved in all A and B-type heme-copper oxidases. This tyrosine is known to play a critical role in the catalytic mechanisms of A and B-type oxidases. The absence of this tyrosine in the cbb 3 oxidases raises the possibility that the cbb 3 oxidases utilize a different catalytic mechanism from that of the other members of the superfamily, or have this conserved residue in different helices. Recently sequence comparisons indicate that, a tyrosine residues that might be analogous to the active-site tyrosine in other oxidases are present in the cbb 3 oxidases but these tyrosines originates from a different transmembrane helix within the protein. In this research, three conserved tyrosine residues, Y294, Y308 and Y318, in helix VII were substituted for phenylalanine. Y318F mutant in the Rhodobacter capsulatus oxidase resulted in a fully assembled enzyme with nativelike structure and activity, but Y294F mutant is not assembled and have a catalytic activity. On the other hand, Y308F mutant is fully assembled enzyme with nativelike structure, but lacking catalytic activity. This result indicates that Y308 should be crucial in catalytic activity of the cbb 3 oxidase of R. capsulatus. These findings support the assumption that all of the heme-copper oxidases utilize the same catalytic mechanism and provide a residue originates from different places within the primary sequence for different members of the same superfamily.  相似文献   

5.
The ba 3-type cytochrome c oxidase from Thermus thermophilus is phylogenetically very distant from the aa 3–type cytochrome c oxidases. Nevertheless, both types of oxidases have the same number of redox-active metal sites and the reduction of O2 to water is catalysed at a haem a 3-CuB catalytic site. The three-dimensional structure of the ba 3 oxidase reveals three possible proton-conducting pathways showing very low homology compared to those of the mitochondrial, Rhodobacter sphaeroides and Paracoccus denitrificans aa 3 oxidases. In this study we investigated the oxidative part of the catalytic cycle of the ba 3 -cytochrome c oxidase using the flow-flash method. After flash-induced dissociation of CO from the fully reduced enzyme in the presence of oxygen we observed rapid oxidation of cytochrome b (k ≅ 6.8 × 104 s−1) and formation of the peroxy (PR) intermediate. In the next step a proton was taken up from solution with a rate constant of ~1.7 × 104 s−1, associated with formation of the ferryl (F) intermediate, simultaneous with transient reduction of haem b. Finally, the enzyme was oxidized with a rate constant of ~1,100 s−1, accompanied by additional proton uptake. The total proton uptake stoichiometry in the oxidative part of the catalytic cycle was ~1.5 protons per enzyme molecule. The results support the earlier proposal that the PR and F intermediate spectra are similar (Siletsky et al. Biochim Biophys Acta 1767:138, 2007) and show that even though the architecture of the proton-conducting pathways is different in the ba 3 oxidases, the proton-uptake reactions occur over the same time scales as in the aa 3-type oxidases. Smirnova and Zaslavsky contributed equally to the work described in this paper.  相似文献   

6.
On the role of subunit III in proton translocation in cytochromec oxidase   总被引:7,自引:0,他引:7  
Mammalian mitochondrial cytochromec oxidase catalyzes the transfer of electrons from ferrocytochromec to molecular oxygen in the respiratory chain, while conserving the energy released during its electron transfer reactions by the vectorial movement of protons across the inner membrane of the mitochondrion. The protein domain that translocates the protons across the membrane is currently unknown. Recent research efforts have investigated the role of one of the transmembrane subunits of the enzyme (III,M r 29,884) in the vectorial proton translocation reaction. The data that favor subunit III as integral in vectorial proton translocation as well as the data that support a more peripheral role for subunit III in proton translocation are reviewed. Possible experimental approaches to clarify this issue are presented and a general model discussed.  相似文献   

7.
Cytochrome c oxidase is a multisubunit membrane-bound enzyme, which catalyzes oxidation of four molecules of cytochrome c2+ and reduction of molecular oxygen to water. The electrons are taken from one side of the membrane while the protons are taken from the other side. This topographical arrangement results in a charge separation that is equivalent to moving one positive charge across the membrane for each electron transferred to O2. In this reaction part of the free energy available from O2 reduction is conserved in the form of an electrochemical proton gradient. In addition, part of the free energy is used to pump on average one proton across the membrane per electron transferred to O2. Our understanding of the molecular design of the machinery that couples O2 reduction to proton pumping in oxidases has greatly benefited from studies of so called “uncoupled” structural variants of the oxidases. In these uncoupled oxidases the catalytic O2-reduction reaction may display the same rates as in the wild-type CytcO, yet the electron/proton transfer to O2 is not linked to proton pumping. One striking feature of all uncoupled variants studied to date is that the (apparent) pKa of a Glu residue, located deeply within a proton pathway, is either increased or decreased (from 9.4 in the wild-type oxidase). The altered pKa presumably reflects changes in the local structural environment of the residue and because the Glu residue is found near the catalytic site as well as near a putative exit pathway for pumped protons these changes are presumably important for controlling the rates and trajectories of the proton transfer. In this paper we summarize data obtained from studies of uncoupled structural oxidase variants and present a hypothesis that in quantitative terms offers a link between structural changes, modulation of the apparent pKa and uncoupling of proton pumping from O2 reduction.  相似文献   

8.
Gisela Brändén  Peter Brzezinski 《BBA》2006,1757(8):1052-1063
Respiratory heme-copper oxidases are integral membrane proteins that catalyze the reduction of molecular oxygen to water using electrons donated by either quinol (quinol oxidases) or cytochrome c (cytochrome c oxidases, CcOs). Even though the X-ray crystal structures of several heme-copper oxidases and results from functional studies have provided significant insights into the mechanisms of O2-reduction and, electron and proton transfer, the design of the proton-pumping machinery is not known. Here, we summarize the current knowledge on the identity of the structural elements involved in proton transfer in CcO. Furthermore, we discuss the order and timing of electron-transfer reactions in CcO during O2 reduction and how these reactions might be energetically coupled to proton pumping across the membrane.  相似文献   

9.
Vivek Sharma  Ville R.I. Kaila 《BBA》2010,1797(8):1512-21475
Cytochrome cbb3 is a distinct member of the superfamily of respiratory heme-copper oxidases, and is responsible for driving the respiratory chain in many pathogenic bacteria. Like the canonical heme-copper oxidases, cytochrome cbb3 reduces oxygen to water and couples the released energy to pump protons across the bacterial membrane. Homology modeling and recent electron paramagnetic resonance (EPR) studies on wild type and a mutant cbb3 enzyme [V. Rauhamäki et al. J. Biol. Chem. 284 (2009) 11301-11308] have led us to perform high-level quantum chemical calculations on the active site. These calculations bring molecular insight into the unique hydrogen bonding between the proximal histidine ligand of heme b3 and a conserved glutamate, and indicate that the catalytic mechanism involves redox-coupled proton transfer between these residues. The calculated spin densities give insight in the difference in EPR spectra for the wild type and a recently studied E383Q-mutant cbb3-enzyme. Furthermore, we show that the redox-coupled proton movement in the proximal cavity of cbb3-enzymes contributes to the low redox potential of heme b3, and suggest its potential implications for the high apparent oxygen affinity of these enzymes.  相似文献   

10.
The haem-copper oxidases comprise a large family of enzymes that is widespread among aerobic organisms. These remarkable membrane-bound proteins catalyse the respiratory reduction of dioxygen to water, and conserve free energy from this reaction by operating as proton pumps. The mechanism of redox-dependent proton translocation has been elusive despite the availability of high resolution crystal structures from several oxidases. Here, we discuss some recent as well as some older results that may shed light on this mechanism. We conclude that proton-pumping is initiated by vectorial proton transfer from a conserved glutamic acid (Glu242 in the bovine enzyme) to a proton acceptor above the haem groups, and that this primary event is mechanistically coupled to electron transfer from haem a to the binuclear haem a3/CuB centre. Subsequently, Glu242 is reprotonated from the negatively charged side of the membrane. Next this proton is transferred to the binuclear site to complete the chemistry, Glu242 is reprotonated once more, and the “prepumped” proton is ejected on the opposite side of the membrane. The different kinetics of electron-coupled proton transfer in different steps of the catalytic cycle may be related to differences in the driving force due to different Em values of the electron acceptor in the binuclear site.  相似文献   

11.
Uricase (urate: oxygen oxidoreductase; EC 1.7.3.3) from the rust Puccinia recondita was purified to electrophoretic homogeneity. Preparations with a specific activity of 8.4 U/mg were used for characterization of the enzyme, which showed a strong similarity to other plant and fungal urate oxidases. The enzyme had a pH optimum of 9.0, a K m of 35 μM for urate, and it was inhibited only by oxonate and xanthine. A molecular mass of 152 kDa was estimated for the native protein. SDS-PAGE analysis revealed a striking difference to most urate oxidases, since two different-sized subunits were detected. These results suggest that P. recondita uricase is a tetramer with two types of subunits. Received: 21 February 2001 / Accepted: 30 July 2001  相似文献   

12.
During the last few years our knowledge of the structure and function of heme copper oxidases has greatly profited from the use of site-directed mutagenesis in combination with biophysical techniques. This, together with the recently-determined crystal structures of cytochrome c oxidase, has now made it possible to design experiments aimed at targeting specific pump mechanisms. Here, we summarize results from our recent kinetic studies of electron and proton-transfer reactions in wild-type and mutant forms of cytochrome c oxidase from Rhodobacter sphaeroides. These studies have made it possible to identify amino acid residues involved in proton transfer during specific reaction steps and provide a basis for discussion of mechanisms of electron and proton transfer in terminal oxidases. The results indicate that the pathway through K(I-362)/T(I-359), but not through D(I-132)/E(I-286), is used for proton transfer to a protonatable group interacting electrostatically with heme a 3, i.e., upon reduction of the binuclear center. The pathway through D(I-132)/E(I-286) is used for uptake of pumped and substrate protons during the pumping steps during O2 reduction.  相似文献   

13.
In the algae Mougeotia, Bumilleriopsis and Eremosphaera, recently shown to possess the enzymes hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35) and enoyl-CoA hydratase (EC 4.2.1.17), the presence of thiolase (EC 2.3.1.9) and acyl-CoA-oxidizing enzymes can also be demonstrated, indicating that -oxidation of fatty acids is possible in these organisms. The compartmentation of enzymes is different in the various algae. In Mougeotia, both thiolase and the acyl-CoA-oxidizing enzyme are located exclusively in the peroxisomes. The latter enzyme was found to be an oxidase using molecular oxygen as an electron acceptor. On the other hand, in Bumilleriopsis all enzymes of the fatty-acid -oxidation pathway tested are constituents only of the mitochondria, and acyl-CoA is oxidized by a dehydrogenase incapable of reducing oxygen. Finally, in Eremosphaera thiolase and acyl-CoA-oxidizing enzymes were found in the peroxisomes as well as in the mitochondria. In the peroxisomes, oxidation of acyl-CoA is catalyzed by an oxidase, whereas the corresponding enzyme in the mitochondria is a dehydrogenase. The acyl-CoA oxidases/dehydrogenases of the three algae differ not only by their capability for oxidation of acyl-CoA of different chain lengths but also with regard to their Km values and substrate specificities. Indications were obtained that the oxygen is reduced to water rather than to H2O2 by the algal acyl-CoA oxidases. When cells of Eremosphaera were cultured with hypolipodemic substances in the growth medium the activities of the peroxisomal enzymes, but not those of the mitochondrial enzymes of the fatty-acid -oxidation pathway, were increased by a factor of two to three.Abbreviations DPIP 2,6-dichlorophenol indophenol - INT p-iodonitrotetrazolium violet - MEHP monoethylhexylphthalate  相似文献   

14.
Cytochrome oxidase: pathways for electron tunneling and proton transfer   总被引:1,自引:0,他引:1  
 Electrons from cytochrome c, the substrate of cytochrome oxidase, a redox-linked proton pump, are accepted by CuA in subunit II. From there they are transferred to the proton pumping machinery in subunit I, cytochrome a and cytochrome a 3–CuB. The reduction of the latter site, which is the dioxygen reducing unit, is coupled to proton uptake. Dioxygen reduction involves a peroxide and a ferryl ion intermediate, and it is the transition between these and back to the resting oxidized enzyme that are coupled to proton pumping. The X-ray structures suggest electron–transfer pathways that can account for the observed rates provided that the reorganization energies are small. They also reveal two proton-transfer pathways, and mutagenesis experiments have shown that one is used for proton uptake during the initial reduction of cytochrome a 3–CuB, whereas the other mediates transfer of the pumped protons. Received: 23 March 1998 / Accepted: 11 May 1998  相似文献   

15.
16.
Most of biological oxygen reduction is catalyzed by the heme‐copper oxygen reductases. These enzymes are redox‐driven proton pumps that take part in generating the proton gradient in both prokaryotes and mitochondria that drives synthesis of ATP. The enzymes have been divided into three evolutionarily‐related groups: the A‐, B‐, and C‐families. Recent comparative studies suggest that all oxygen reductases perform the same chemistry for oxygen reduction and comprise the same essential elements of the proton pumping mechanism, such as the proton loading and kinetic gating sites, which, however, appear to be different in different families. All species of the A‐family, however, demonstrate remarkable similarity of the central processing unit of the enzyme, as revealed by their recent crystal structures. Here we demonstrate that cytochrome c oxidases (CcO) of such diverse organisms as a mammal (bovine heart mitochondrial CcO), photosynthetic bacteria (Rhodobacter sphaeroides CcO), and soil bacteria (Paracoccus denitrificans CcO) are not only structurally similar, but almost identical in microscopic electrostatics and thermodynamics properties of their key amino‐acids. By using pKa calculations of some of the key residues of the catalytic site, D‐ and K‐ proton input, and putative proton output channels of these three different enzymes, we demonstrate that the microscopic properties of key residues are almost identical, which strongly suggests the same mechanism in these species. The quantitative precision with which the microscopic physical properties of these enzymes have remained constant despite different evolutionary routes undertaken is striking. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
Joachim Reimann  Pia Ädelroth 《BBA》2007,1767(5):362-373
Nitric oxide reductase (NOR) from P. denitrificans is a membrane-bound protein complex that catalyses the reduction of NO to N2O (2NO + 2e + 2H+ → N2O + H2O) as part of the denitrification process. Even though NO reduction is a highly exergonic reaction, and NOR belongs to the superfamily of O2-reducing, proton-pumping heme-copper oxidases (HCuOs), previous measurements have indicated that the reaction catalyzed by NOR is non-electrogenic, i.e. not contributing to the proton electrochemical gradient. Since electrons are provided by donors in the periplasm, this non-electrogenicity implies that the substrate protons are also taken up from the periplasm. Here, using direct measurements in liposome-reconstituted NOR during reduction of both NO and the alternative substrate O2, we demonstrate that protons are indeed consumed from the ‘outside’. First, multiple turnover reduction of O2 resulted in an increase in pH on the outside of the NOR-vesicles. Second, comparison of electrical potential generation in NOR-liposomes during oxidation of the reduced enzyme by either NO or O2 shows that the proton transfer signals are very similar for the two substrates proving the usefulness of O2 as a model substrate for these studies. Last, optical measurements during single-turnover oxidation by O2 show electron transfer coupled to proton uptake from outside the NOR-liposomes with a τ = 15 ms, similar to results obtained for net proton uptake in solubilised NOR [U. Flock, N.J. Watmough, P. Ädelroth, Electron/proton coupling in bacterial nitric oxide reductase during reduction of oxygen, Biochemistry 44 (2005) 10711-10719]. NOR must thus contain a proton transfer pathway leading from the periplasmic surface into the active site. Using homology modeling with the structures of HCuOs as templates, we constructed a 3D model of the NorB catalytic subunit from P. denitrificans in order to search for such a pathway. A plausible pathway, consisting of conserved protonatable residues, is suggested.  相似文献   

18.
The heme?copper oxidases (HCuOs) are terminal components of the respiratory chain, catalyzing oxygen reduction coupled to the generation of a proton motive force. The C-family HCuOs, found in many pathogenic bacteria under low oxygen tension, utilize a single proton uptake pathway to deliver protons both for O2 reduction and for proton pumping. This pathway, called the KC-pathway, starts at Glu-49P in the accessory subunit CcoP, and connects into the catalytic subunit CcoN via the polar residues Tyr-(Y)-227, Asn (N)-293, Ser (S)-244, Tyr (Y)-321 and internal water molecules, and continues to the active site. However, although the residues are known to be functionally important, little is known about the mechanism and dynamics of proton transfer in the KC-pathway. Here, we studied variants of Y227, N293 and Y321. Our results show that in the N293L variant, proton-coupled electron transfer is slowed during single-turnover oxygen reduction, and moreover it shows a pH dependence that is not observed in wildtype. This suggests that there is a shift in the pKa of an internal proton donor into an experimentally accessible range, from >10 in wildtype to ~8.8 in N293L. Furthermore, we show that there are distinct roles for the conserved Y321 and Y227. In Y321F, proton uptake from bulk solution is greatly impaired, whereas Y227F shows wildtype-like rates and retains ~50% turnover activity. These tyrosines have evolutionary counterparts in the K-pathway of B-family HCuOs, but they do not have the same roles, indicating diversity in the proton transfer dynamics in the HCuO superfamily.  相似文献   

19.
The structural features of cytochrome oxidases are reviewed in light of their evolution. The substrate specificity (quinol vs. cytochromec) is reflected in the presence of a unique copper centre (Cu A ) in cytochromec oxidases. In several lines of evolution, quinol oxidases have independently lost this copper. Also, the most primitive cytochromec oxidases do not contain this copper, and electron entry takes place viac-type haems. These enzymes, exemplified by the rhizobial FixN complex, probably remind the first oxidases. They are related to the denitrification enzyme nitric oxide reductase.  相似文献   

20.
Oxygen is favoured as terminal electron acceptor in aerobic and facultative microorganisms because of its appropriate physical state, satisfactory solubility and its desirable combinations of kinetic and thermodynamic properties. Oxygen is generally reduced by four electrons to yield oxygen, but there are important biological consequences of, and roles for, the partial reduction to superoxide and peroxide. Complex and multiple regulatory networks ensure (i) the utilization of oxygen in preference to other oxidants, (ii) the synthesis of oxygen-consuming enzymes with appropriate properties (particularly affinity for the ligand), and (iii) appropriate cellular protection in the event of oxidative stress. This contribution reviews the terminal respiratory oxidases of selected Gram-negative bacteria and microbial haemoglobin-like proteins.Recent studies of the cytochromebd-type oxidases ofEscherichia coli andAzotobacter vinelandii suggest that, despite probable similarity at the amino acid level, the reactivities of these oxidases with oxygen are strikingly different. The respiratory protection afforded to nitrogenase in the obligately aerobic diazotrophA. vinelandii by the cytochromebd complex appears to be accompanied by, and may be the result of, a low affinity for oxygen and a high Vmax. The poorly characterized cytochromeo-containing oxidase in this bacterium is not required for respiratory protection. InE. coli, the cytochromebd-type oxidase has a remarkably high affinity for oxygen, consistent with the view that this is an oxygen-scavenging oxidase utilized under microaerobic conditions. The demonstration of substrate (i.e. oxygen) inhibition in this complex suggests a mechanism whereby wasteful electron flux through a non-proton-pumping oxidase is avoided at higher dissolved oxygen tensions. The demonstration of two ligandbinding sites (haemsd andb 595) in oxidases of this type suggests plausible mechanisms for this phenomenon. InE. coli, assembly of the cytochromebd-type oxidase (and of periplasmic cytochromesb andc) requires the presence of an ABC transporter, which may serve to export haem or some assembly factor' to the periplasm.There is at least one additional oxygen-consuming protein inE. coli — the flavohaemoglobin encoded by thehmp gene. Globin-like proteins are also widely distributed in other bacteria, fungi and protozoa, but most have unknown functions. The function of HMP and the related chimaeric flavohaemoglobins in other bacteria and yeast is unknown; one of several possibilities for HMP is that its relatively low affinity for oxygen during turnover with NADH as substrate could enable it to function as a sensor of falling (or rising) cytoplasmic oxygen concentrations.(until October 1994: Section of Microbiology, Wing Hall, Cornell University, Ithaca, NY 14853-8101, USA)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号