首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, we show that glucose-induced activation of plasma membrane H(+)-ATPase from Saccharomyces cerevisiae is strongly dependent on calcium metabolism and that the glucose sensor Snf3p works in a parallel way with the G protein Gpa2p in the control of the pathway. The role of Snf3p is played by the Snf3p C-terminal tail, since in a strain with the deletion of the SNF3 gene, but also expressing a chimera protein formed by Hxt1p (a glucose transporter) and the Snf3p C-terminal tail, a normal glucose-activation process can be observed. We present evidences indicating that Snf3p would be the sensor for the internal signal (phosphorylated sugars) of this pathway that would connect calcium signaling and activation of the plasma membrane ATPase. We also show that Snf3p could be involved in the control of Pmc1p activity that would regulate the calcium availability in the cytosol.  相似文献   

2.
The effect of iron on the activity of the plasma membrane H(+)-ATPase (PMA) from corn root microsomal fraction (CRMF) was investigated. In the presence of either Fe(2+) or Fe(3+) (100-200 microM of FeSO(4) or FeCl(3), respectively), 80-90% inhibition of ATP hydrolysis by PMA was observed. Half-maximal inhibition was attained at 25 microM and 50 microM for Fe(2+) and Fe(3+), respectively. Inhibition of the ATPase activity was prevented in the presence of metal ion chelators such as EDTA, deferoxamine or o-phenanthroline in the incubation medium. However, preincubation of CRMF in the presence of 100 microM Fe(2+), but not with 100 microM Fe(3+), rendered the ATPase activity (measured in the presence of excess EDTA) irreversibly inhibited. Inhibition was also observed using a preparation further enriched in plasma membranes by gradient centrifugation. Addition of 0.5 mM ATP to the preincubation medium, either in the presence or in the absence of 5 mM MgCl(2), reduced the extent of irreversible inhibition of the H(+)-ATPase. Addition of 40 microM butylated hydroxytoluene and/or 5 mM dithiothreitol, or deoxygenation of the incubation medium by bubbling a stream of argon in the solution, also caused significant protection of the ATPase activity against irreversible inhibition by iron. Western blots of CRMF probed with a polyclonal antiserum against the yeast plasma membrane H(+)-ATPase showed a 100 kDa cross-reactive band, which disappeared in samples previously exposed to 500 microM Fe(2+). Interestingly, preservation of the 100 kDa band was observed when CRMF were exposed to Fe(2+) in the presence of either 5 mM dithiothreitol or 40 microM butylated hydroxytoluene. These results indicate that iron causes irreversible inhibition of the corn root plasma membrane H(+)-ATPase by oxidation of sulfhydryl groups of the enzyme following lipid peroxidation.  相似文献   

3.
Seeds of most crops can be severely damaged and lose vigor when stored under conditions of high humidity and temperature. The aged seeds are characterized by delayed germination and slow post-germination growth. To date, little is known about the physiological mechanisms responsible for slow root growth of seedlings derived from aged seeds. Plasma membrane H(+)-ATPase is a universal H(+) pump in plant cells and is involved in various physiological processes including the elongation growth of plant cells. In the present study, we investigated the effect of a mild seed ageing treatment on plasma membrane H(+)-ATPase activity of seedling roots. Maize (Zea mays L.) seeds with 17% water content were aged at 45 degrees C for 30h. The aged seeds showed a 20% reduction in germination. Seedlings from aged seeds grew slowly during an experimental period of 120h after imbibition. Plasma membranes of maize seedling roots were isolated for investigation in vitro. Plasma membrane H(+)-ATPase (EC 3.6.3.6) activity was 14% lower for seedling roots developed from aged seeds as compared to control seeds. Protein gel immunoblotting analysis demonstrated that the reduced activity of plasma membrane H(+)-ATPase was attributed to a decrease in steady-state protein concentration of this enzyme. In conclusion, seed ageing causes a lower steady-state enzyme concentration of the H(+)-ATPase in the plasma membrane, which is related to slow germination and post-germination growth of seedling roots.  相似文献   

4.
5.
Previous work has indicated that sugar sensing may be important in the regulation of fructan biosynthesis in grasses. We used primary leaves of barley (Hordeum vulgare cv Baraka) to study the mechanisms involved. Excised leaf blades were supplied in the dark with various carbohydrates. Fructan pool sizes and two key enzymes of fructan biosynthesis, sucrose (Suc):Suc-1-fructosyltransferase (1-SST; EC 2. 4.1.99) and Suc:fructan-6-fructosyltransferase (6-SFT; EC 2.4.1.10) were analyzed. Upon supply of Suc, fructan pool sizes increased markedly. Within 24 h, 1-SST activity was stimulated by a factor of three and 6-SFT-activity by a factor of more than 20, compared with control leaves supplemented with mannitol (Mit). At the same time, the level of mRNA encoding 6-SFT increased conspicuously. These effects were increased in the presence of the invertase inhibitor 2, 5-dideoxy-2,5-imino-D-mannitol. Compared with equimolar solutions of Suc, glucose (Glu) and fructose stimulated 6-SFT activity to a lesser extent. Remarkably, trehalose (Tre; Glc-alpha-1 and 1-alpha-Glc) had stimulatory effects on 6-SFT activity and, to a somewhat lesser extent, on 6-SFT mRNA, even in the presence of validoxylamine A, a potent trehalase inhibitor. Tre by itself, however, in the presence or absence of validoxylamine A, did not stimulate fructan accumulation. Monosaccharides phosphorylated by hexokinase but not or weakly metabolized, such as mannose (Man) or 2-deoxy-Glc, had no stimulatory effects on fructan synthesis. When fructose or Man were supplied together with Tre, fructan and starch biosynthesis were strongly stimulated. Concomitantly, phospho-Man isomerase (EC 5.3.1.8) activity was detected. These results indicate that the regulation of fructan synthesis in barley leaves occurs independently of hexokinase and is probably based on the sensing of Suc, and also that the structurally related disaccharide Tre can replace Suc as a regulatory compound.  相似文献   

6.
The plasma membrane of Schizosaccharomyces pombe contains an H(+)-ATPase similar to the cation transport ATPases of other eukaryotic organisms. The fluorescence excitation and emission spectra of the purified H(+)-ATPase are characteristic of tryptophan residues. pH reduction from 7.5 to 5.7 produces a 4% decrease in fluorescence intensity, while a further reduction to pH 5.0 leads to an increase of fluorescence. A close correlation is observed between the pH dependence of the intrinsic fluorescence and the pH dependence of (i) ATPase activity, (ii) the fluorescence of Tb-formycin triphosphate bound to the active site, and (iii) inhibition by vanadate of ATPase activity. It is proposed that the effect of pH on intrinsic fluorescence reveals the existence of an H+ induced conformational change of the H(+)-ATPase similar to the E1----E2 transition of the other plasma membrane cation transport ATPases.  相似文献   

7.
The plant plasma membrane H(+)-ATPase: structure, function and regulation   总被引:1,自引:0,他引:1  
The proton-pumping ATPase (H(+)-ATPase) of the plant plasma membrane generates the proton motive force across the plasma membrane that is necessary to activate most of the ion and metabolite transport. In recent years, important progress has been made concerning the identification and organization of H(+)-ATPase genes, their expression, and also the kinetics and regulation of individual H(+)-ATPase isoforms. At the gene level, it is now clear that H(+)-ATPase is encoded by a family of approximately 10 genes. Expression, monitored by in situ techniques, has revealed a specific distribution pattern for each gene; however, this seems to differ between species. In the near future, we can expect regulatory aspects of gene expression to be elucidated. Already the expression of individual plant H(+)-ATPases in yeast has shown them to have distinct enzymatic properties. It has also allowed regulatory aspects of this enzyme to be studied through random and site-directed mutagenesis, notably its carboxy-terminal region. Studies performed with both plant and yeast material have converged towards deciphering the way phosphorylation and binding of regulatory 14-3-3 proteins intervene in the modification of H(+)-ATPase activity. The production of high quantities of individual functional H(+)-ATPases in yeast constitutes an important step towards crystallization studies to derive structural information. Understanding the specific roles of H(+)-ATPase isoforms in whole plant physiology is another challenge that has been approached recently through the phenotypic analysis of the first transgenic plants in which the expression of single H(+)-ATPases has been up- or down-regulated. In conclusion, the progress made recently concerning the H(+)-ATPase family, at both the gene and protein level, has come to a point where we can now expect a more integrated investigation of the expression, function and regulation of individual H(+)-ATPases in the whole plant context.  相似文献   

8.
The plasma membrane H(+)-ATPase activity from corn seedling roots is shown to be stimulated 3- to 4-fold by the addition of lysophosphatidylcholine (lysoPC). This effect clearly differs from that of other detergents by both the magnitude and the absence of inhibition at higher concentrations. LysoPC decreases the apparent Km for MgATP, increases Vmax of the ATPase reaction but does not change its pH optimum. On the contrary, the acid phosphatase activity associated with plasma membranes is not influenced by lysoPC. A lysoPC stimulation is also demonstrated for the solubilized preparation of the H(+)-ATPase. It is assumed that lysoPC stimulation of the plant plasma membrane H(+)-ATPase is not only due to permeabilization of the vesicles for MgATP, but also to direct action on the enzyme.  相似文献   

9.
The plasma membrane (PM) H(+)-ATPase has been proposed to play important transport and regulatory roles in plant physiology, including its participation in auxin-induced acidification in coleoptile segments. This enzyme is encoded by a family of genes differing in tissue distribution, regulation, and expression level. A major expressed isoform of the maize PM H(+)-ATPase (MHA2) has been characterized. RNA gel blot analysis indicated that MHA2 is expressed in all maize organs, with highest levels being in the roots. In situ hybridization of sections from maize seedlings indicated enriched expression of MHA2 in stomatal guard cells, phloem cells, and root epidermal cells. MHA2 mRNA was induced threefold when nonvascular parts of the coleoptile segments were treated with auxin. This induction correlates with auxin-triggered proton extrusion by the same part of the segments. The PM H(+)-ATPase in the vascular bundies does not contribute significantly to auxin-induced acidification, is not regulated by auxin, and masks the auxin effect in extracts of whole coleoptile segments. We conclude that auxin-induced acidification in coleoptile segments most often occurs in the nonvascular tissue and is mediated, at least in part, by increased levels of MHA2.  相似文献   

10.
Incubation of oat root plasma membrane vesicles in the presence of ATP with trypsin or chymotrypsin increased the rate of ATP hydrolysis and ATP-dependent proton pumping by the plasma membrane H(+)-ATPase. Proton pumping was stimulated more than 200%, whereas ATP hydrolytic activity was stimulated about 30%. The Km (ATP) for both proton pumping and ATP hydrolysis was lowered from about 0.3 mM to below 0.1 mM. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of trypsin-treated plasma membranes revealed a decrease in a 100-kDa band and the appearance of a 93-kDa band. Western blot analysis using antibodies against the H(+)-ATPase showed that both of these bands represented the H(+)-ATPase and suggested that a 7-kDa segment was released. Extensive treatment with carboxypeptidase A also activated the H(+)-ATPase indicating that the 7-kDa segment originated from the C terminus.  相似文献   

11.
We investigated the effect of the cyclic AMP-protein kinase A (PKA) signalling pathway on renal Na(+),K(+)-ATPase and ouabain-sensitive H(+),K(+)-ATPase. Male Wistar rats were anaesthetized and catheter was inserted through the femoral artery into the abdominal aorta proximally to the renal arteries for infusion of the investigated substances. Na(+),K(+)-ATPase activity was measured in the presence of Sch 28080 to block ouabain-sensitive H(+),K(+)-ATPase and improve specificity of the assay. Dibutyryl-cyclic AMP (db-cAMP) administered at a dose of 10(-7) mol/kg per min and 10(-6) mol/kg per min increased Na(+),K(+)-ATPase activity in the renal cortex by 34% and 42%, respectively, and decreased it in the renal medulla by 30% and 44%, respectively. db-cAMP infused at 10(-6) mol/kg per min increased the activity of cortical ouabain-sensitive H(+),K(+)-ATPase by 33%, and medullary ouabain-sensitive H(+),K(+)-ATPase by 30%. All the effects of db-cAMP were abolished by a specific inhibitor of protein kinase A, KT 5720. The stimulatory effect on ouabain-sensitive H(+),K(+)-ATPase and on cortical Na(+),K(+)-ATPase was also abolished by brefeldin A which inhibits the insertion of proteins into the plasma membranes, whereas the inhibitory effect on medullary Na(+),K(+)-ATPase was partially attenuated by 17-octadecynoic acid, an inhibitor of cytochrome p450-dependent arachidonate metabolism. We conclude that the cAMP-PKA pathway stimulates Na(+),K(+)-ATPase in the renal cortex as well as ouabain-sensitive H(+),K(+)-ATPase in the cortex and medulla by a mechanism requiring insertion of proteins into the plasma membrane. In contrast, medullary Na(+),K(+)-ATPase is inhibited by cAMP through a mechanism involving cytochrome p450-dependent arachidonate metabolites.  相似文献   

12.
A novel system for generating large interior positive membrane potentials in proteoliposomes was used to examine the effects of membrane voltage on reconstituted plasma membrane H(+)-ATPase from Saccharomyces cerevisiae. The membrane potential-generating system was dependent upon the lipophilic electron carrier tetracyanoquinodimethane, located within the bilayer, to mediate electron flow from vesicle entrapped ascorbate to external K3Fe(CN)6. Membrane potential formation was followed by the potential-dependent probe oxonol V and was found to rapidly reach a steady-state which lasted at least 90 s. A membrane potential of approximately 254 mV was determined under optimal conditions and ATP hydrolysis by wild-type H(+)-ATPase was inhibited from 34 to 46% under these conditions. In contrast, membrane potential had little effect on pma1-105 mutant enzyme suggesting that it is defective in electrogenic proton translocation. Applied membrane voltage was also found to alter the sensitivity of wild-type enzyme to vanadate at concentrations less than 50 microM. These data suggest a coupling between the charge-transfer and ATP hydrolysis domains and establish a solid basis for future probing of the electrogenic properties of the yeast H(+)-ATPase.  相似文献   

13.
Light activates proton (H(+))-ATPases in guard cells, to drive hyperpolarization of the plasma membrane to initiate stomatal opening, allowing diffusion of ambient CO(2) to photosynthetic tissues. Light to darkness transition, high CO(2) levels and the stress hormone abscisic acid (ABA) promote stomatal closing. The overall H(+)-ATPase activity is diminished by ABA treatments, but the significance of this phenomenon in relationship to stomatal closure is still debated. We report two dominant mutations in the OPEN STOMATA2 (OST2) locus of Arabidopsis that completely abolish stomatal response to ABA, but importantly, to a much lesser extent the responses to CO(2) and darkness. The OST2 gene encodes the major plasma membrane H(+)-ATPase AHA1, and both mutations cause constitutive activity of this pump, leading to necrotic lesions. H(+)-ATPases have been traditionally assumed to be general endpoints of all signaling pathways affecting membrane polarization and transport. Our results provide evidence that AHA1 is a distinct component of an ABA-directed signaling pathway, and that dynamic downregulation of this pump during drought is an essential step in membrane depolarization to initiate stomatal closure.  相似文献   

14.
To investigate the mechanism by which fusicoccin (FC) induces the activation of the plasma membrane (PM) H(+)-ATPase, we used phenylarsine oxide (PAO), a known inhibitor of protein tyrosine-phosphatases. PAO was supplied in vivo in the absence or presence of FC to radish (Raphanus sativus L.) seedlings and cultured Arabidopsis cells prior to PM extraction. Treatment with PAO alone caused a slight decrease of PM H(+)-ATPase activity and, in radish, a decrease of PM-associated 14-3-3 proteins. When supplied prior to FC, PAO drastically inhibited FC-induced activation of PM H(+)-ATPase, FC binding to the PM, and the FC-induced increase of the amount of 14-3-3 associated with the PM. On the contrary, PAO was completely ineffective on all of the above-mentioned parameters when supplied after FC. The H(+)-ATPase isolated from PAO-treated Arabidopsis cells maintained the ability to respond to FC if supplied with exogenous, nonphosphorylated 14-3-3 proteins. Altogether, these results are consistent with a model in which the dephosphorylated state of tyrosine residues of a protein(s), such as 14-3-3 protein, is required to permit FC-induced association between the 14-3-3 protein and the PM H(+)-ATPase.  相似文献   

15.
Potential-sensitive fluorescent probes oxonol V and oxonol VI were employed for monitoring membrane potential (Delta(psi)) generated by the Schizosaccharomyces pombe plasma membrane H(+)-ATPase reconstituted into vesicles. Oxonol VI was used for quantitative measurements of the Delta(psi) because its response to membrane potential changes can be easily calibrated, which is not possible with oxonol V. However, oxonol V has a superior sensitivity to Delta(psi) at very low concentration of reconstituted vesicles, and thus it is useful for testing quality of the reconstitution. Oxonol VI was found to be a good emission-ratiometric probe. We have shown that the reconstituted H(+)-ATPase generates Delta(psi) of about 160 mV on the vesicle membrane. The generated Delta(psi) was stable at least over tens of minutes. An influence of the H(+) membrane permeability on the Delta(psi) buildup was demonstrated by manipulating the H(+) permeability with the protonophore CCCP. Ratiometric measurements with oxonol VI thus offer a promising tool for studying processes accompanying the yeast plasma membrane H(+)-ATPase-mediated Delta(psi) buildup.  相似文献   

16.
More than 35 site-directed mutants of the plasma membrane H(+)-ATPase of the yeast Saccharomyces cerevisiae have been constructed and expressed to investigate the function of N- and C-termini and of conserved amino acids. Conserved motif TGES seems to form part of both the catalytic machinery for the hydrolysis of the phosphorylated intermediate and the vanadate binding site. In addition, it is involved in the coupling of ATP hydrolysis to H+ transport. The phosphorylated intermediate is also essential for this coupling, but not for ATP hydrolysis. The aspartate residues of conserved motifs DPPR, TGD and TGDGVND (the last one) seem to form part of the ATP binding site. The positive charge of the conserved motif KGAP is important for the kinase or phosphorylating activity. A conserved proline and a conserved aspartate predicted to have a transmembrane location are essential for activity. The N-terminus contains a conserved acidic region which may be involved in assembly into the plasma membrane. All the hydrophobic stretches at the C-terminus are also required for assembly. The last 11 amino acids constitute a non-essential inhibitory domain involved in regulation of the enzyme by glucose metabolism.  相似文献   

17.
18.
The effect of external inorganic nitrogen and K+ content on K+ uptake from low-K+ solutions and plasma membrane (PM) H+-ATPase activity of sorghum roots was studied. Plants were grown for 15 days in full-nutrient solutions containing 0.2 or 1.4 mM K+ and inorganic nitrogen as NO3-, NO3-/NH4+ or NH4+ and then starved of K+ for 24, 48 and 72 h. NH4+ in full nutrient solution significantly affected the uptake efficiency and accumulation of K+, and this effect was less pronounced at the high K+ concentration. In contrast, the translocation rate of K+ to the shoot was not altered. Depletion assays showed that plants grown with NH4+ more efficiently depleted the external K+ and reached higher initial rates of low-K+ uptake than plants grown with NO3-. One possible influence of K+ content of shoot, but not of roots, on K+ uptake was evidenced. Enhanced K+-uptake capacity was correlated with the induction of H+ extrusion by PM H+-ATPase. In plants grown in high K+ solutions, the increase in the active H+ gradient was associated with an increase of the PM H+-ATPase protein concentration. In contrast, in plants grown in solutions containing 0.2 mM K+, only the initial rate of H+-pumping and ATP hydrolysis were affected. Under these conditions, two specific isoforms of PM H+-ATPase were detected, independent of the nitrogen source and deficiency period. No change in enzyme activity was observed in NO3--grown plants. The results suggest that K+ homeostasis in NH4+-grown sorghum plants may be regulated by a high capacity for K+ uptake, which is dependent upon the H+-pumping activity of PM H+-ATPase.  相似文献   

19.
20.
More than 11 different P-type H(+)-ATPases have been identified in Arabidopsis by DNA cloning. The subcellular localization for individual members of this proton pump family has not been previously determined. We show by membrane fractionation and immunocytology that a subfamily of immunologically related P-type H(+)-ATPases, including isoforms AHA2 and AHA3, are primarily localized to the plasma membrane. To verify that AHA2 and AHA3 are both targeted to the plasma membrane, we added epitope tags to their C-terminal ends and expressed them in transgenic plants. Both tagged isoforms localized to the plasma membrane, as indicated by aqueous two-phase partitioning and sucrose density gradients. In contrast, a truncated AHA2 (residues 1-193) did not, indicating that the first two transmembrane domains alone are not sufficient for plasma membrane localization. Two epitope tags were evaluated: c-myc, a short, 11-amino acid sequence, and beta-glucuronidase (GUS), a 68-kD protein. The c-myc tag is recommended for its sensitivity and specific immunodetection. GUS worked well as an epitope tag when transgenes were expressed at relatively high levels (e.g. with AHA2-GUS944); however, evidence suggests that GUS activity may be inhibited when a GUS domain is tethered to an H(+)-ATPase complex. Nevertheless, the apparent ability to localize a GUS protein to the plasma membrane indicates that a P-type H(+)-ATPase can be used as a delivery vehicle to target large, soluble proteins to the plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号