首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell division and root initiation of excised juvenile, mature and half-expanded mature (My) leaf petioles of Hedera helix L. cultured in vitro were studied to determine whether these processes were correlated with localized expression of a proline-rich protein (PRP) gene. Petioles of all three types showed cell divisions at day 5 of culture in auxin-treated petioles but not in non-auxin-treated petioles. No cell division occurred in non-auxin-treated petioles even after day 9 of culture. Juvenile and one population of My auxin-treated petioles formed root primordia after 9 days of culture. Mature petioles and another population of My petioles formed only callus in response to auxin. The spatial and temporal expression pattern of a gene encoding a PRP was analyzed by in situ hybridization. The PRP mRNA was not detectable in petioles of any developmental phase immediately after excision. In both juvenile and mature petioles the PRP mRNA preferentially accumulated in the phloem parenchyma, the inner cortex adjacent to the phloem, and in cells surrounding ducts. Cell division was not required for PRP gene expression since both auxin-treated and non-treated juvenile and mature petioles had expression. Steady state levels of PRP mRNA were much lower in juvenile relative to mature petioles cultured in vitro. Auxin treatment reduced the steady state levels of PRP mRNA in My petioles but not in mature or juvenile petioles. These data are consistent with an inverse relationship between competence to form adventitious roots and PRP mRNA levels in the specific cell types from which root primordia form. Alternatively, the PRP mRNA level may serve as a molecular marker for developmental plasticity for root initiation.  相似文献   

2.
3.
4.
5.
The heat shock protein Hsp104 of the yeast Saccharomyces cerevisiae plays a key role in promoting survival at extreme temperatures. We found that when diverse higher plant species are exposed to high temperatures they accumulate proteins that are antigenically related to Hsp104. We isolated a cDNA corresponding to one of these proteins from Arabidopsis. The protein, AtHSP101, is 43% identical to yeast Hsp104. DNA gel blot analysis indicated that AtHSP101 is encoded by a single- or low-copy number gene. AtHsp101 mRNA was undetectable in the absence of stress but accumulated to high levels during exposure to high temperatures. When AtHSP101 was expressed in yeast, it complemented the thermotolerance defect caused by a deletion of the HSP104 gene. The ability of AtHSP101 to protect yeast from severe heat stress strongly suggests that this HSP plays an important role in thermotolerance in higher plants.  相似文献   

6.
7.
The juvenile-to-adult transition is a complex and poorly understood process in plant development required to reach reproductive competence. For woody plants, knowledge of this transition is even scantier and no genes have been definitively identified as involved in this transition. To search for genes involved in the juvenile-to-adult transition in olive, we constructed juvenile and adult subtractive cDNA gene libraries and identified genes that were differentially expressed in the juvenile and adult phases. In the analysis of theses libraries, we found 13 differentially expressed genes. One of these genes designated as juvenile to adult transition (JAT) was of special interest because it was highly expressed at the mRNA level in the early developmental phases but repressed in the adult phase. The analysis of mutant trees altered in the juvenile-to-adult transition, as well as a segregating progeny of 31 trees from a “Picual” x “Jabaluna” cross, support the contention that its activity might be required for a non-delayed transition. The study of an Arabidopsis thaliana JAT mutant strain confirmed this hypothesis as it showed a delayed flowering phenotype. JAT is expressed in different parts of the plant, showing an unexpectedly high level of mRNA in the roots. However, the JAT expression level is not determined by the distance to the roots, but rather depends on the developmental stage of the branch meristems. JAT is a widely represented gene in plants that appears to be involved in the control of the juvenile-to-adult transition in olive.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
16.
Dendritic cells (DCs) are potent antigen-presenting cells (APCs). Among so-called professional APCs, only DCs can activate naive T cells to initiate immune response. To better understand molecular mechanisms underlying unique functions of DCs, we searched for genes specifically expressed in human DCs, using PCR-based cDNA subtraction in conjunction with differential screening. cDNAs generated from CD34(+) stem cell-derived CD1a(+) DC were subtracted with cDNA from monocytes and used for generation of a cDNA library. The cDNA library was differentially screened to select genes expressed in DCs more abundantly than in monocytes. We identified a gene encoding a protein composed of 244 amino acids, which we designated as DCNP1 (dendritic cell nuclear protein 1). In Northern blot analysis, DCNP1 mRNA was highly expressed in mature DCs and at a lower level in immature DCs. In contrast, monocytes and B cells do not express the gene. In multiple human tissue Northern blot analysis, expression of DCNP1 was detected in brain and skeletal muscle. To examine subcellular localization of DCNP1, we performed immunofluorescence analysis using an anti-DCNP1 polyclonal antibody and found the molecule to be localized mainly in the perinucleus. In an immunohistochemical analysis, we compared the expression of DCNP1 with CD68, a marker for DCs and macrophages, in spleen, lymph node, liver, and brain. While DCNP1-positive cells showed a similar tissue distribution to CD68-positive cells, the number of DCNP1-positive cells was much smaller than that of CD68-positive cells. Our findings are consistent with the proposal that DCNP1 is specifically expressed in DCs.  相似文献   

17.
18.
A cDNA encoding a predicted 15-kDa protein was earlier isolated from sugar-induced genes in rice embryos (Oryza sativa L.) by cDNA microarray analysis. Here we report that this cDNA encodes a novel Ca2+-binding protein, named OsSUR1 (for Oryza sativa sugar-up-regulated-1). The recombinant OsSUR1 protein expressed in Escherichia coli had 45Ca2+-binding activity. Northern analysis showed that the OsSUR1 gene was expressed mainly in the internodes of mature plants and in embryos at an early stage of germination. Expression of the OsSUR1 gene was induced by sugars that could serve as substrates of hexokinase, but expression was not repressed by Ca2+ signaling inhibitors, calmodulin antagonists and inhibitors of protein kinase or protein phosphatase. These results suggested that Os-SUR1 gene expression was stimulated by a hexokinase-dependent pathway not mediated by Ca2+.  相似文献   

19.
Tomatoes (Lycopersicon esculentum Mill cv. Ailsa Craig) were transformed with a gene construct having 244 bp of the 5 end of a polygalacturonase (PG) cDNA, coding for a 71 amino acid N-terminal extension to the mature protein, fused to 1320 bp of a pectinesterase (PE) cDNA encoding the full sequence of the mature PE protein. This chimaeric gene was inserted in a sense orientation between a CaMV 35S promoter and terminator for constitutive expression. In transformed tomato plants expression of the endogenous PG and PE genes in the fruit was inhibited; there was little or no observable PG and PE mRNA and a substantial reduction in the level of PG and PE enzyme activity. The transgene was expressed in the leaves of the transformed plants as demonstrated by the accumulation of mRNA, but no protein product could be identified. However, no transgene mRNA or protein were observed in the transgenic fruit.This paper represents the first report of the down-regulation of two non-homologous endogenous genes using a single gene construct. A sense gene construct was responsible for these effects. These findings are discussed in relation to possible mechanisms of action of co-suppression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号