首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
4-Hydroxynonenal (HNE), a chemotactic aldehyde produced by lipid peroxidation, has been shown to trigger exocytosis in HL-60 cells induced to differentiate toward the granulocytic cell line by DMSO. In this work we studied HNE effects on the intracellular content of IL-8 and its release in DMSO-differentiated HL-60 cells. Cell incubation at 37 degrees C in the presence of 0.1 microM HNE induced a significant increase of IL-8 release after 30 min; the degree of HNE-induced IL-8 secretion became quite strong after 1 h, whereas the intracellular content showed no statistically significant changes. By contrast, 1 microM HNE induced a low decrease of the chemokine release; however, the used HNE concentrations failed to increase the release of lactate dehydrogenase (LDH), a test used to assay cell viability. The addition of 0.1 microM IL-8 to DMSO-differentiated HL-60 cells induced a strong increase of exocytosis, measured by beta-glucuronidase secretion. Exocytosis stimulation by IL-8 was much higher than that given by the aldehyde; the addition of various HNE concentrations to cells incubated in the presence of IL-8 decreased the secretion given by the cytokine alone. However, HNE-induced exocytosis was likely to be a direct action of the aldehyde and was not mediated through the stimulation of IL-8 release since HNE was unable to modify IL-8 secretion during the short time of 10 min used in the exocytosis assay.  相似文献   

2.
Human neutrophil elastase (HNE) is a serine protease that has been implicated in the abnormal turnover of connective tissue proteins and has been described as an important pathogenic factor in several inflammatory diseases such as rheumatoid arthritis or cystic fibrosis. Here we investigated 17 sesquiterpene lactones (SLs) for their ability to inhibit human neutrophil elastase in an in vitro assay. Podachaenin was the most active compound with an IC(50) value of 7 microM. SLs do not covalently bind to the amino acids of the catalytic triad, thus differing from other elastase inhibitors with a lactone moiety. In contrast to most other biological activities of SLs HNE inhibition is not mediated by alpha,beta-unsaturated carbonyl functions. Ligand binding calculations using the X-ray structure of HNE and the program FlexX revealed structural elements which are a prerequisite for their inhibitory activity.  相似文献   

3.
Oxidative damage accumulation in macromolecules has been considered as a cause of cellular damage and pathology. Rarely, the oxidative stress parameters in healthy humans related to the individual age have been reported. The purpose of this study was to examine the redox status in plasma and erythrocytes of healthy individuals and determine correlations between these parameters and the aging process. The following parameters were used: malondialdehyde (MDA), protein carbonyls (PCO), 4-hydroxy-2,3-trans-nonenal (HNE), reduced glutathione (GSH), glutathione disulfide (GSSG) and uric acid (UA) in blood and plasma samples of 194 healthy women and men of ages ranging from 18 to 84 years. The results indicate that the balance of oxidant and antioxidant systems in plasma shifts in favor of accelerated oxidation during ageing. That is demonstrated by increases of MDA, HNE, GSSG and by the slight decrease of erythrocytic GSH with age. As the content of UA is more determined by metabolic and nutritional influences than by the balance between prooxidants and antioxidants there was no significant age-related change observed. For plasma concentrations of HNE the first time age-dependent reference values for healthy humans are presented.  相似文献   

4.
Lipid peroxidation products, such as 4-hydroxy-trans-2-nonenal (HNE), cause endothelial activation, and they increase the adhesion of the endothelium to circulating leukocytes. Nevertheless, the mechanisms underlying these effects remain unclear. We observed that in HNE-treated human umbilical vein endothelial cells, some of the protein-HNE adducts colocalize with the endoplasmic reticulum (ER) and that HNE forms covalent adducts with several ER chaperones that assist in protein folding. We also found that at concentrations that did not induce apoptosis or necrosis, HNE activated the unfolded protein response, leading to an increase in XBP-1 splicing, phosphorylation of protein kinase-like ER kinase and eukaryotic translation initiation factor 2α, and the induction of ATF3 and ATF4. This increase in eukaryotic translation initiation factor 2α phosphorylation was prevented by transfection with protein kinase-like ER kinase siRNA. Treatment with HNE increased the expression of the ER chaperones, GRP78 and HERP. Exposure to HNE led to a depletion of reduced glutathione and an increase in the production of reactive oxygen species (ROS); however, glutathione depletion and ROS production by tert-butyl-hydroperoxide did not trigger the unfolded protein response. Pretreatment with a chemical chaperone, phenylbutyric acid, or adenoviral transfection with ATF6 attenuated HNE-induced monocyte adhesion and IL-8 induction. Moreover, phenylbutyric acid and taurine-conjugated ursodeoxycholic acid attenuated HNE-induced leukocyte rolling and their firm adhesion to the endothelium in rat cremaster muscle. These data suggest that endothelial activation by HNE is mediated in part by ER stress, induced by mechanisms independent of ROS production or glutathione depletion. The induction of ER stress may be a significant cause of vascular inflammation induced by products of oxidized lipids.  相似文献   

5.
Our work analysed the effect of 4-hydroxynonenal (HNE), a chemotactic aldehydic end-product of lipid peroxidation, on exocytosis in HL-60 cells. We measured the release of beta-glucuronidase, an enzyme of azurophil granules, from the cells incubated at 37 degrees C for 10 min in the presence of HNE concentrations ranging between 10(-8) and 10(-5) M. The release of lactate dehydrogenase was assayed to test cell viability. HNE (1 microM) was able to induce a significant and strong stimulation of beta-glucuronidase secretion without leading to cytotoxic effects. The finding that HNE could increase the exocytotic secretion from HL-60 cells together with its known chemotactic property supports the hypothesis that this lipid peroxidation product may play an important role as a chemical mediator of inflammation; moreover it is noteworthy that micromolar concentrations of HNE have actually been found in exudates from acute and chronic inflammations.  相似文献   

6.
Lipolytic products of triglyceride-rich lipoproteins, i.e., free fatty acids, may cause activation and dysfunction of the vascular endothelium. Mechanisms of these effects may include lipid peroxidation. One of the major and biologically active products of peroxidation of n-6 fatty acids, such as linoleic acid or arachidonic acid, is the aldehyde 4-hydroxynonenal (HNE). To study the hypothesis that HNE may be a critical factor in endothelial cell dysfunction caused by free fatty acids, human umbilical endothelial cells (HUVEC) were treated with up to160 microM of linoleic or arachidonic acid. HNE formation was detected by immunocytochemistry in cells treated for 24 h with either fatty acid, but more markedly with arachidonic acid. To study the cellulareffects of HNE, HUVEC were treated with different concentrations of this aldehyde, and several markers of endothelial cell dysfunction were determined. Exposure to HNE for 6 and 9 h resulted in increased cellular oxidative stress. However, short time treatment with HNE did not cause activation of nuclear factor-kappaB (NF-kappaB). In addition, HUVEC exposure to HNE caused a dose-dependent decrease in production of both interleukin-8 (IL-8) and intercellular adhesion molecule-1 (ICAM-1). On the other hand, HNE exerted prominent cytotoxic effects in cultured HUVEC, manifested by morphological changes, diminished cellular viability, and impaired endothelial barrier function. Furthermore, HNE treatment induced apoptosis of HUVEC. These data provide evidence that HNE does not contribute to NF-kappaB-related mechanisms of the inflammatory response in HUVEC, but rather to endothelial dysfunction, cytotoxicity, and apoptotic cell death.  相似文献   

7.
During acute myocardial ischemia, granulocytes accumulate and obstruct the microcirculation. Granulocytes remain plugged in individual myocardial capillaries on reperfusion and are the major cause of the no-reflow phenomenon. During 3 h of ischemia, the granulocyte content of myocardium measured by 111In labeling increases from 1.0 X 10(6) to 1.5 X 10(6) cells/g, and after 5 min of reperfusion increases to 2.4 X 10(6) cells/g. The effects of granulocytes during 1 h of acute ischemia were determined by comparing agranulocytic to whole blood perfusion. With whole blood collateral flow decreased, water content increased (edema), ventricular fibrillation was common, and 27% of capillaries had no-reflow, whereas in the absence of granulocytes, collateral flow increased, there was no edema, arrhythmias were rare, and the no-reflow phenomenon was completely prevented. It is unfortunate that the inflammatory signals triggered by ischemia remain active on acute reperfusion, limit tissue salvage, and perhaps cause reperfusion injury. Several activating stimuli for granulocytes are known, but what inhibits them? Adenosine is known to inhibit superoxide radical formation by granulocytes, and 5-amino-4-imidazole carboxamide-riboside (AICA-riboside) augments adenosine release from energy-deprived cells. In dogs subjected to 1 h of ischemia, AICA-riboside pretreatment augmented adenosine release by nearly 10-fold, which was accompanied by a significant increase in collateral blood flow and decreased arrhythmias. We propose a new hypothesis: adenosine acts as a natural antiinflammatory autacoid during transient injury linking the ability to catabolize ATP (an indicator of viability) to granulocyte inhibition, thus preventing premature activation of the inflammatory response to cell death. Granulocytes are active participants in acute myocardial ischemia and means to prevent their activation, remove them from the reperfusate, or inhibit them will be necessary for optimum reperfusion salvage.  相似文献   

8.
We studied the regulation of arachidonic acid (AA) release by guanosine 5'-O-(3-thiotriphosphate (GTP gamma S) and Ca2+ in electropermeabilized HL60 granulocytes. Stimulation of AA release by GTP gamma S and Ca2+ was mediated by phospholipase A2 (PLA2) and required the presence of MgATP (EC50: 100-250 microM). The nucleotide effects were Ca(2+)-dependent (maximal effects detected at 1 microM free cation). UTP and ATP gamma S, which stimulate AA release in intact HL60 granulocytes with potencies and efficacies similar to those of ATP, were ineffective in supporting the effects of GTP gamma S in electropermeabilized cells. Pretreatment with pertussis toxin affected stimulation of AA release by ATP in intact cell, without altering the nucleotide effects in permeabilized cells. We observed the protein kinase C-dependent phosphorylation of PLA2 in permeabilized HL60 granulocytes, together with a correlation between the effects of phorbol esters and staurosporine on this reaction and on AA release. ATP-independent activation of PLA2 by GTP gamma S and/or Ca2+ was measured in subcellular fractions prepared from HL60 granulocytes. These data appear consistent with a model in which PLA2 activity in resting HL60 granulocytes is subjected to an inhibitory constraint that prevents its activation by Ca2+ and G-proteins. Removal of this constraint, either by the protein kinase C-dependent phosphorylation of the enzyme in vivo or physical disruption of the regulatory assembly (e.g. by N2 cavitation), allows its activation by Ca2+ and G-proteins.  相似文献   

9.
4-hydroxynonenal (HNE), a lipid peroxidation end product, is produced abundantly in osteoarthritic (OA) articular tissues and was recently identified as a potent catabolic factor in OA cartilage. In this study, we provide additional evidence that HNE acts as an inflammatory mediator by elucidating the signaling cascades targeted in OA chondrocytes leading to cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) gene expression. HNE induced COX-2 protein and mRNA levels with accompanying increases in prostaglandin E2 (PGE(2)) production. In contrast, HNE had no effect on basal iNOS expression or nitric oxide (NO) release. However, HNE strongly inhibited IL-1beta-induced iNOS or NO production. Transient transfection experiments revealed that the ATF/CRE site (-58/-53) is essential for HNE-induced COX-2 promoter activation and indeed HNE induced ATF-2 and CREB-1 phosphorylation as well as ATF/CRE binding activity. Overexpression of p38 MAPK enhanced the HNE-induced ATF/CRE luciferase reporter plasmid activation, COX-2 synthesis and promoter activity. HNE abrogated IL-1beta-induced iNOS expression and promoter activity mainly through NF-kappaB site (-5,817/-5,808) possibly via suppression of IKKalpha-induced IkappaBalpha phosphorylation and NF-kappaB/p65 nuclear translocation. Upon examination of upstream signaling components, we found that IKKalpha was inactivated through HNE/IKKalpha adduct formation. Taken together, these findings illustrate the central role played by HNE in the regulation of COX-2 and iNOS in OA. The aldehyde induced selectively COX-2 expression via ATF/CRE activation and inhibited iNOS via IKKalpha inactivation.  相似文献   

10.
The aim of this study was to provide information concerning the mechanism of exercise-induced stimulation of growth hormone (GH) release in human subjects. For this reason serum GH as well as some hemodynamic variables and blood concentrations of noradrenaline (NA), insulin (IRI), lactate (LA), glucose (BG), and free fatty acids (FFA) were determined in seven healthy male subjects exercising on a bicycle ergometer with arms or legs and running on a treadmill at equivalent oxygen consumption levels. Significantly greater increases in serum GH concentration accompanied arm exercises than those observed during the leg exercises. This was accompanied by greater increases in heart rate, blood pressure, and plasma NA and blood lactate concentrations. Serum IRI decreased during both leg exercises and did not change during the arm exercise. There were no differences in BG and plasma FFA concentrations between the three types of exercise. The role of humoral and neural signals responsible for the greater GH response to arm exercise is discussed. The findings are consistent with the hypothesis that neural afferent signals sent by muscle "metabolic receptors" participate in the activation of GH release during physical exercise. It seems likely that the stimulation of these chemoreceptors is more pronounced when smaller muscle groups are engaged at a given work load. However, a contribution of efferent impulses derived from the brain motor centres to the control system of GH secretion during exercise is also possible.  相似文献   

11.
In dimethylsulfoxide-differentiated HL60 granulocytes, the chemotactic peptide N-formyl-Met-Leu-Phe (FMLP) augments arachidonic acid (AA) release via phospholipase A2 activity induced by the Ca2+-ionophore, A23187. Evidence indicates that this augmentation is mediated by diacylglycerols formed endogenously during FMLP receptor activation: The augmentation is mimicked by the synthetic diglyceride 1-oleoyl-2-acetyl-glycerol (OAG) and the tumor promoting phorbol ester 12-O-tetradecanoylphorbol-13-acetate; Pertussis toxin inhibits FMLP-induced augmentation but not OAG-induced augmentation: At suboptimal concentrations FMLP and OAG act cooperatively to augment ionophore A23187-induced AA release but not at optimal concentrations. These data indicate that phospholipase A2 activation in FMLP-stimulated HL60 granulocytes involves cooperative interactions between diacylglycerol formed endogenously and Ca2+. Interestingly, this effect of diacylglycerol appears not to be mediated by protein kinase C, since a specific protein kinase C inhibitor, 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H7) does not inhibit receptor-mediated release of AA by stimulated HL60 granulocytes.  相似文献   

12.
The effects of TA-3090 (clentiazem) and nifedipine on basal sympathoadrenal activity and on the adrenal medullary response during splanchnic nerve stimulation were studied in dogs anesthetized with sodium pentobarbital. Plasma concentrations of epinephrine and norepinephrine were measured in aortic and adrenal venous blood before and after acute administration of the drugs, as well as during left splanchnic nerve stimulation before and after administration of drugs. Following intravenous injections, TA-3090 (30, 100, and 300 micrograms/kg) did not affect basal circulating catecholamine levels, whereas nifedipine (10, 30, and 100 micrograms/kg) markedly increased aortic epinephrine and norepinephrine concentrations in a dose-dependent manner in correlation with progressive decreases in mean arterial pressure. The changes in aortic epinephrine and norepinephrine concentrations were inversely related to those in mean arterial pressure (r = 0.603, p < 0.01; r = 0.536, p < 0.01; respectively). In response to direct splanchnic nerve stimulation (2 Hz, 2 ms, 1 min, 12 V), adrenal venous epinephrine and norepinephrine concentrations significantly increased, with a high degree of reproducibility. The catecholamine responses to splanchnic nerve stimulation were not affected by either TA-3090 or nifedipine at any dose tested. The present results suggest that the increases in circulating catecholamine levels following nifedipine administration are due to baroreflex activation secondary to the drug-induced hypotension. The study indicates that both TA-3090 and nifedipine did not significantly affect L-type Ca2+ channels related to catecholamine release in the adrenal medulla under the present experimental conditions.  相似文献   

13.
Reactive alpha,beta-unsaturated aldehydes are major components of common environmental pollutants and are products of lipid oxidation. Although these aldehydes have been demonstrated to induce apoptotic cell death in various cell types, we recently observed that the alpha,beta-unsaturated aldehyde acrolein (ACR) can inhibit constitutive apoptosis of polymorphonuclear neutrophils and thus potentially contribute to chronic inflammation. The present study was designed to investigate the biochemical mechanisms by which two representative alpha,beta-unsaturated aldehydes, ACR and 4-hydroxynonenal (HNE), regulate neutrophil apoptosis. Whereas low concentrations of either aldehyde (<10 microM) mildly promoted apoptosis in neutrophils (reflected by increased phosphatidylserine exposure, caspase-3 activation, and mitochondrial cytochrome c release), higher concentrations prevented critical features of apoptosis (caspase-3 activation, phosphatidylserine exposure) and caused delayed neutrophil cell death with characteristics of necrosis/oncosis. Inhibition of caspase-3 activation by either aldehyde occurred despite increases in mitochondrial cytochrome c release and occurred in close association with depletion of cellular GSH and with cysteine modifications within caspase-3. However, procaspase-3 processing was also prevented, because of inhibited activation of caspases-9 and -8 under similar conditions, suggesting that ACR (and to a lesser extent HNE) can inhibit both intrinsic (mitochondria dependent) and extrinsic mechanisms of neutrophil apoptosis at initial stages. Collectively, our results indicate that alpha,beta-unsaturated aldehydes can inhibit constitutive neutrophil apoptosis by common mechanisms, involving changes in cellular GSH status resulting in reduced activation of initiator caspases as well as inactivation of caspase-3 by modification of its critical cysteine residue.  相似文献   

14.
15.
Neurotransmitter release from rat brain synaptosomes was measured following pretreatment with various phorbol esters. Ca2+-dependent, evoked neurotransmitter release was increased by phorbol esters that were active in stimulating protein kinase C. Protein kinase C activation was demonstrated by increased incorporation of 32P into 87-kilodalton phosphoprotein, a specific substrate for that kinase. Inactive phorbol esters had no effect on neurotransmitter release or on the phosphorylation of 87-kilodalton phosphoprotein. The increased release was observed in either crude cortical synaptosomal fractions (P2) or purified cortical synaptosomal fractions. The enhancement was found for all neurotransmitters (norepinephrine, acetylcholine, gamma-aminobutyric acid, serotonin, dopamine, and aspartate), all brain regions (cerebral cortex, hippocampus, and corpus striatum), and all secretagogues (elevated extracellular K+ level, veratridine, or A23187) examined. It was also observed at all calcium concentrations present during stimulation of release. The phorbol ester enhancement of Ca2+-dependent release occurred whether or not calcium was present during pretreatment. These results indicate that stimulation of protein kinase C leads to an enhanced sensitivity of the stimulus-secretion coupling processes to calcium within the nerve terminal. The results support the possibility that presynaptic activation of protein kinase C modulates nerve terminal neurotransmitter release in the CNS.  相似文献   

16.
The action of 4-hydroxynonenal (HNE), a chemotactic aldehyde produced by lipid peroxidation, was analysed on exocytosis in parallel with its effects on phosphoinositide-specific phospholipase C (PLC) both in undifferentiated HL-60 cells and in cells induced to differentiate toward the granulocytic cell line by 1.25% DMSO. Exocytosis was evaluated by the secretion of beta-glucuronidase from cells incubated at 37 degrees C for 10 min in the presence of various aldehyde concentrations. HNE action was more pronounced in DMSO-differentiated cells, where concentrations between 10(-8) and 10(-6) m were able both to trigger exocytosis and to strongly activate PLC; in both processes maximal stimulation was given by 10(-7) m. HNE-induced exocytosis was completely prevented by pertussis toxin and by the PLC inhibitor U73122. The comparison between HNE and formyl-methionyl-leucyl-phenylalanine (fMLP), used as a positive control, showed that the tripeptide produced an higher stimulation of exocytosis than the aldehyde; by contrast HNE induced a stronger increase of PLC activity. Wortmannin, an inhibitor of phosphatidylinositol-3-kinase (PI3K), strongly inhibited the exocytosis induced by fMLP, while it failed to induce a statistically significant inhibition of HNE action. We conclude that both compounds trigger exocytosis through a Ptx-sensitive G protein; the present data support the hypothesis that the lower ability of the aldehyde to trigger exocytosis as compared to fMLP might depend upon a low ability to activate PI3K, while PLC activation appears to play a key role in HNE-induced exocytosis.  相似文献   

17.
4-Hydroxynonenal (HNE), a major aidchydic product of lipid peroxidation, is a chemoattractant for neutrophilic polymorphonuclear granulocytes in vitro. The question was studied, whether HNE is formed during the ingress of neutrophils in the Sephadex model of inflammation. The polydextrane Sephadex G-200, which causes an acute aseptic traumatic inflammation, was injected subcutaneously into rats. The implants were excised 6-36 hours later, and the neutrophils separated from the exsudate by centrifugation. After extraction with dichloromethane HNE was identified in the exsudate by non-derivative reversed phase HPLC in combination with on-line uv-spectroscopy. The concentration of HNE in the inflammatory focus did not correlate with the number of neutrophils present. While the peak of HNE coincided with the time point of the highest turnover rate of neutrophils (0.13 μM at 6 hrs after implantation), the highest number of neutrophils (about 100 million cells) occurred not earlier than 18 hrs later (24 hrs after onset of inflammation).

When neutrophils were isolated from the inflammatory focus and stimulated with Zymosan, they were able to produce HNE in vitro depending on the time of isolation. The highest production of HNE (0.17 μM) by phagocyting neutrophils was observed at the shortest inflammation time studied (3 hrs). In order to compare these results with the oxidative burst of neutrophils the formation of superoxide was also measured by the cytochrome c reduction assay in vitro. The maximum of the production rate of superoxide anion was observed at the same inflammation time (6 hrs), when the HNE maximum occurred. Cells which ingressed earliest (at 3 hrs) showed the highest production rate of superoxide per cell (307 × 10-18 moles per cell and 30min).

The ability of HNE to attract neutrophils in vivo was studied by adding synthetic HNE to the Sephadex gel and measuring the ingression of neutrophils afterwards. The application of 1 μM HNE in the focus did not change the number of neutrophils but 10 μM HNE increased the cell number by a factor of 3.

The results indicate that HNE is not only a chemoattractant for rat neutrophils in vitro but also in vivo. It is suggested that HNE is produced by selfdestruction of neutrophils during a traumatic inflammation and its production seems to be tightly connected to the oxidative burst of neutrophils. The idea of HNE as part of an autocatalytic cycle is supported whereby neutrophils which immigrate into an inflammatory focus produce HNE which stimulates the ingress of new neutrophils.  相似文献   

18.
Perspectives of leukocyte activation in the microcirculation   总被引:3,自引:0,他引:3  
Recent evidence for a role of granulocytes in ischemic organ injury and in hemorrhagic shock is provided. Compared to red cell, granulocytes are large cells and have a stiff cytoplasm, making them prone to entrapment in the microcirculation. After activation, granulocytes become adhesive, they can elaborate superoxide radicals and release proteolytic enzymes. In the circulation a subgroup of granulocytes are in a spontaneously activated state. If during shock such cells become trapped in the microcirculation they impose a risk for organ injury. In a short term shock protocol, the group of surviving and non-surviving animals can be sharply distinguished by the number of activated granulocytes before shock. Experimental forms of granulocyte activation in the coronary circulation cause temporary trapping of cells, an increase in vascular resistance, and a transient reduction of muscle contraction even in the presence of a normal perfusion pressure. Detection of spontaneous granulocyte activation requires the development of new tests which can be carried out on fresh unseparated blood samples. We provide here also a critical evaluation of experimental neutropenia as a test for granulocyte related hypotheses.  相似文献   

19.
The physiological activity and effect on lipid metabolism of four types of structured lipids (SLs), that contain caprylic acid (C8) and either eicosapentaenoic (EPA) or docosahesaenoic acid (DHA), were evaluated in male Wistar rats fed experimental diets containing 7% (wt %) of each SL and 3% (wt %) soybean oil for 28 days. Control rats were fed a diet containing 10% (wt %) soybean oil. The relative perirenal adipose tissue weights of rats fed D-8-8 and 8-D-8 diets were significantly lower than those of other groups. We observed significantly lower serum cholesterol concentrations in rats fed SLs than those of control group over experimental period. The serum lipids concentrations in rats fed diets containing SLs were significantly lower P < 0.05) than those of soybean oil group. The fatty acid compositions of WAT did not reflect the structural differences in the triglyceride. These results suggest that the physiological effects of the SLs used in this study were due to the fatty acids rather than the structural specificity. Therefore, further study will be needed to ascertain the most desirable structural configuration.  相似文献   

20.
Our previous work in perfused rat livers has demonstrated that 4-hydroxynonenal (HNE) is catabolized predominantly via β oxidation. Therefore, we hypothesized that perturbations in β oxidation, such as diet-altered fatty acid oxidation activity, could lead to changes in HNE levels. To test our hypothesis, we (i) developed a simple and sensitive GC/MS method combined with mass isotopomer analysis to measure HNE and HNE analogs, 4-oxononenal (ONE) and 1,4-dihydroxynonene (DHN), and (ii) investigated the effects of four diets (standard, low-fat, ketogenic, and high-fat mix) on HNE, ONE, and DHN concentrations in rat livers. Our results showed that livers from rats fed the ketogenic diet or high-fat mix diet had high ω-6 polyunsaturated fatty acid concentrations and markers of oxidative stress. However, high concentrations of HNE (1.6 ± 0.5 nmol/g) and ONE (0.9 ± 0.2 nmol/g) were found only in livers from rats fed the high-fat mix diet. Livers from rats fed the ketogenic diet had low HNE (0.8 ± 0.1 nmol/g) and ONE (0.4 ± 0.07 nmol/g), similar to rats fed the standard diet. A possible explanation is that the predominant pathway of HNE catabolism (i.e., β oxidation) is activated in the liver by the ketogenic diet. This is consistent with a 10-fold decrease in malonyl-CoA in livers from rats fed a ketogenic diet compared to a standard diet. The accelerated catabolism of HNE lowers HNE and HNE analog concentrations in livers from rats fed the ketogenic diet. On the other hand, rats fed the high-fat mix diet had high rates of lipid synthesis and low rates of fatty acid oxidation, resulting in the slowing down of the catabolic disposal of HNE and HNE analogs. Thus, decreased HNE catabolism from a high-fat mix diet induces high concentrations of HNE and HNE analogs. The results of this work suggest a potential causal relationship to metabolic syndrome induced by Western diets (i.e., high-fat mix), as well as the effects of a ketogenic diet on the catabolism of lipid peroxidation products in liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号