首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Myogenic differentiation in vitro involves at least three events at the cell surface: binding of prostaglandin to cells, cell-cell adhesion, and fusion of the myoblast membranes into syncytia. Previous work has suggested that binding of prostaglandin is causal to the change in cell-cell adhesion and that both are accompanied by a characteristic reorganization of the myoblast membrane detected as a transient increase in membrane order by electron paramagnetic resonance. We show here that this membrane order change, which reaches a maximum at 38 h of development in vitro, was the last membrane order change before bilayer fusion which begins several hours later. This membrane order change, which accompanies the change in cell-cell adhesion, was dependent on the availability of prostaglandin. In myoblasts maintained in indomethacin, where further differentiation is known to be blocked at the prostaglandin binding step, the membrane order change did not occur. However, if myoblasts are provided with exogenous prostaglandin, the membrane order change occurred and differentiation proceeded. The results indicate that the basis of the membrane order change was the reorganization of myoblast membranes to allow increased adhesion and prepare the membrane for bilayer fusion. They also demonstrate that, like the increase in myoblast adhesion, the membrane order change was dependent on prostaglandin being available to bind to its receptor.  相似文献   

2.
We have shown that aq. 100% (w/v) chloral hydrate (2,2,2-trichloroethane-1,1-diol) dissociates bovine heart cytochrome c oxidase. We have developed new procedures of polyacrylamide-gel electrophoresis in the presence of chloral hydrate that permit variation in the pH of the separation, and, by using these procedures, we have observed 15 components in preparations of the enzyme. This number contrasts with the eight bands that were seen on electrophoresis in the presence of SDS (sodium dodecyl sulphate) and urea. We have isolated material from these eight bands and have characterized each by electrophoresis in the presence of chloral hydrate. Twelve of the fifteen components that were seen by electrophoresis in chloral hydrate were identified as constituents of the eight bands seen by electrophoresis in the presence of SDS and urea. Two-dimensional electrophoretic separations confirmed these identifications ans showed that the other three components which were resolved as discrete bands by electrophoresis in the presence of chloral hydrate appeared to be diffusely present in the electrophoretic separations performed in the presence of SDS and urea, which suggested anomalous behaviour in that detergent. Trypsin treatment of cytochrome c oxidase caused total loss, as observed by electrophoretic separations in the presence of chloral hydrate, of a number of components. The trypsin-sensitive components included all of those that behaved anomalously in the presence of SDS and urea. Chloral hydrate is a potent non-ionic dissociating agent for cytochrome c oxidase and its use in polyacrylamide-gel electrophoresis, with variation in the pH of the gel, permits charge-dependent separations that should have general application in the analysis of membrane proteins.  相似文献   

3.
Intracellular potentials are recorded from photoreceptors in a superfused preparation of the retina of a locust compound eye. Chloral hydrate and alkyl alcohols induce a rapid, superfusing reversible depolarization of these photoreceptors when dissolved in the saline. Analysis of voltage noise accompanying depolarization by chloral hydrate suggests that depolarizing ionic pathways are opened briefly and randomly in time in the photoreceptor membranes. This conclusion is supported by measurements of the cell resistance and of voltage noise amplitude as a function of membrane potential. Replacement of superfusate sodium by choline reversibly reduces the effects of chloral hydrate, suggesting that the ionic pathways opened are permeable by sodium. The voltage noise induced by chloral hydrate is compared to that during depolarization by steady illumination of the same cell. As the illumination intensity is increased, the amplitude and the shape of the power spectrum of light-induced voltage noise approach those of drug-induced noise at the same depolarization level. The possibility that these phenomena represent alterations in the mechanism of phototransduction is discussed.  相似文献   

4.
Signaling between embryonic myoblasts to coordinate gene expression is part of normal skeletal muscle development in the embryo. An unanswered question is the nature of the second messengers carrying the information to the nucleus. We have investigated the cell membrane events associated with the binding of prostaglandin to a transient receptor on the embryonic chick myoblast membrane in vitro. The membrane events include a transient change in membrane order seen by electron paramagnetic resonance (EPR), a change in cell-cell adhesion, a rapid decrease in membrane permeability and fusion of the membrane bilayers. The addition of 20 mM Li+, an inhibitor of inositol phosphate phosphatase, perturbed the transient change in membrane order and delayed the change in cell-cell adhesion and conductivity for 2-6 h. Other alkali metal ions had no such effects. The addition of inositol to the culture medium in the continued presence of Li+ restored the normal timing of the two latter events. We interpret this as evidence for an inositol phosphate second messenger system which might connect the activation of the prostaglandin receptor with the change in cell-cell adhesion, the changes in membrane conductivity and perhaps bilayer fusion. We suggest that Li+, by blocking the regeneration of polyphosphatidylinositol from inositol phosphate, reduced the efficiency of the second messenger system such that further differentiation of the myoblast membrane was delayed. The exogenous inositol provided an alternative source and membrane differentiation was unaffected.  相似文献   

5.
The function of membrane receptors in the nervous system depends on physicochemical characteristics of neuronal membranes such as membrane order and phase. In this work, we have monitored the changes in hippocampal membrane order and related parameters by cholesterol and protein content utilizing a Nile Red-based phase-sensitive fluorescent membrane probe NR12S. Since alteration of membrane cholesterol is often associated with membrane phase change, the phase-sensitive nature of NR12S fluorescence becomes useful in these experiments. Our results show that fluorescence spectroscopic parameters such as emission maximum, anisotropy, and lifetime of NR12S display characteristic dependence on membrane cholesterol content. Interestingly, cholesterol-dependent red edge excitation shift is displayed by NR12S under these conditions. Hippocampal membranes exhibited reduction in liquid-ordered phase upon cholesterol depletion. These results provide insight into changes in hippocampal membrane order in the overall context of cholesterol and protein modulation.  相似文献   

6.
In previous work we have shown that aq. 100% (w/v) chloral hydrate (2,2,2-trichloroethane-1,1-diol) is a potent non-ionic protein dissociating agent. We have employed it in systems of polyacrylamide-gel electrophoresis and have demonstrated the presence of 15 components in a preparation of bovine heart cytochrome c oxidase [Griffin & Landon (1981) Biochem. J. 197, 333-344]. Here we describe the use of solutions containing aq. 100% (w/v) chloral hydrate in the ion-exchange column chromatographic separation on CM-cellulose of the alpha- and beta-chains of human haemoglobin, which we have employed as a model protein of known structure. We also describe the use of similar procedures in order to fractionate the polypeptide components of bovine heart cytochrome c oxidase. An effective separation has been obtained and we suggest that chloral hydrate-containing solutions could have general application in the ion-exchange-chromatographic analysis of membrane proteins, a procedure that has had restricted use owing to the inadequacy of non-ionic dissociating agents available previously.  相似文献   

7.
By the methods of EPR spinal probes, energy migration of triplet excitation and NMR spectroscopy, the structural changes on hydrocarbon region of membranes, the changes in dynamic state of water of lipid hydrate jacket, the intermembrane lipid material exchange and fusion of membranes induced by cytotoxins of cobra venom have been studied. The sequence of events preceded the membrane fusion is suggested. The probability of membrane fusion has been shown not to be determined by fusogenic agent structure only, but much it depends on lipid composition of membranes.  相似文献   

8.
膜脂状态在Mg~2+对线粒体H~+-ATP酶影响中的作用   总被引:2,自引:1,他引:1  
对猪心线粒体H-ATP酶体系中膜脂在Mg~(2 )的激活功能中起极重要的作用。通过DPH外源荧光探针和5-NSESR探针测膜脂表层Mg~(2 )作用影响的研究表明Mg~(2 )首先对膜脂作用,增加膜脂的有序性。TU颗粒和复合体的酶、色氨酸残基内源荧光偏振度测定的结果表明Mg~(2 )可进而影响内嵌蛋Fo,最终导致F_1上功能位点的构象和功能的变化。但膜脂的原始状态对Mg~(2 )起作用是重要的。  相似文献   

9.
Yeast cytosine deaminase (EC 3.5.4.1) is inhibited by 5-bromo-2-pyrimidinone. In aqueous solution at neutral pH three forms of this compound (the anion, the parent, and the covalent hydrate) are in equilibrium. Experiments were undertaken in order to determine the relative contributions of these three forms to the observed inhibition. The anion makes little or no contribution. Both the parent and the covalent hydrate inhibit the enzyme, with the Ki for the hydrate being 0.2-0.02 times that of the parent. In the presence of stoichiometric concentrations of the enzyme, the equilibrium between parent and hydrate is displaced towards the hydrate; however, the hydration is not catalyzed by cytosine deaminase.  相似文献   

10.
Cerebral forebrain arterioles and neuropil were analyzed histochemically to determine the effects of chloral hydrate anesthesia on key enzymes of aerobic and anaerobic metabolism, as well as the hexose monophosphate shunt in rats. Significant decreases were observed in cytochrome oxidase, and beta-hydroxybutyrate dehydrogenase in arterioles, while glucose-6-phosphate dehydrogenase and isocitric dehydrogenase showed a significant increase and lactate dehydrogenase showed no significant change. In the neuropil, cytochrome oxidase, isocitrate dehydrogenase and glucose-6-phosphate dehydrogenase showed significant increases following chloral hydrate administration, while beta-hydroxybutyrate dehydrogenase and lactate dehydrogenase showed no significant changes. These data suggest that surgical anesthetic levels of chloral hydrate can impair forebrain metabolism which may lead to altered electrophysiological responses.  相似文献   

11.
Voltage noise, generator potentials, and hair movements in the Hermissenda statocyst were analyzed. Motile hairs on the cyst's luminal surface moved as rods through +/- 10 degrees Hz when free and at 7 Hz when loaded with the weight of the statoconia (at 120 degrees C). For hair cells oriented opposite to a centrifugal force vector, rotation caused depolarization and increase of voltage noise variance. The depolarizing generator potential and the increase in voltage noise variance were similarly reduced by perfusion with zero external sodium or chloral hydrate. Cooling, perfusion with zero external sodium or chloral hydrate reduced the movement frequencies of the hairs but increased their range of motion. The same treatments reduced voltage noise variance and increased input resistance of the hair cell membrane. The results indicate that voltage noise and hair cell generator potential have a common origin: exertion of force on statocyst hairs by the weight of statoconia. The collision of statoconia with the motile hairs, not the hairs' bending, produces most of the voltage noise.  相似文献   

12.
The cryoprotective action of synthetic glycolipids   总被引:1,自引:0,他引:1  
Egg PC vesicles frozen and thawed in the presence of carbohydrate derivatives do not incur damage normally associated with freeze thawing. Treated vesicles maintain membrane integrity as evidenced by the lack of lipid intermixing and maintenance of vesicle size following freezing and thawing. This protection is conferred at a derivative:lipid ratio of 0.4 mol/mol, significantly lower than the amount of carbohydrate required when not attached directly to the vesicle. This result indicates that only the carbohydrate at the vesicle surface is responsible for imparting stability to the membrane. This effect can be modulated by variations in the nature of the surrounding medium or alterations in the structure of the carbohydrate, suggesting that direct interactions between the carbohydrate and membrane occur at the membrane interface which are sensitive to bulk phase properties.  相似文献   

13.
The membranes of healthy lymphocytes normally resist hydrolysis by secretory phospholipase A2. However, they become susceptible during the process of apoptosis. Previous experiments have demonstrated the importance of certain physical changes to the membrane during cell death such as a reduction in membrane lipid order and exposure of phosphatidylserine on the membrane surface. Nevertheless, those investigations also showed that at least one additional factor was required for rapid hydrolysis by the human group IIa phospholipase isozyme. This study was designed to test the possibility that oxidation of membrane lipids is the additional factor. Flow cytometry and confocal microscopy with a fluorescent probe of oxidative potential suggested that oxidation of the plasma membrane occurs during apoptosis stimulated by thapsigargin. When oxidative potential was high, the activity of human group IIa secretory phospholipase A2 was enhanced 30- to 100-fold compared to that observed with conditions sufficient for maximal hydrolysis by other secretory phospholipase A2 isoforms. Direct oxidation of cell membranes with either of two oxidizing agents also stimulated hydrolysis by secretory phospholipase A2. Both oxidizers caused externalization of phosphatidylserine, but a change in lipid order did not always occur. These results demonstrated that membrane oxidation strongly stimulates human group IIa secretory phospholipase A2 activity toward apoptotic cells. Interestingly, the change in membrane order, previously thought to be imperative for high rates of hydrolysis, was not required when membrane lipids were oxidized. Whether phosphatidylserine exposure is still necessary with oxidation remains unresolved since the two events could not be deconvoluted.  相似文献   

14.
Geobacter sulfurreducens is a delta-proteobacterium bacteria that has biotechnological applications in bioremediation and as biofuel cells. Development of these applications requires stabilization and preservation of the bacteria in thin porous coatings on electrode surfaces and in flow-through bioreactors. During the manufacturing of these coatings the bacteria are exposed to hyperosmotic stresses due to dehydration and the presence of carbohydrates in the medium. In this study we focused on quantifying the response of G. sulfurreducens to hyperosmotic shock and slow dehydration to understand the hyperosmotic damage mechanisms and to develop the methodology to maximize the survival of the bacteria. We employed FTIR spectroscopy to determine the changes in the structure and the phase transition behavior of the cell membrane. Hyperosmotic shock resulted in greatly decreased membrane lipid order in the gel phase and a less cooperative membrane phase transition. On the other hand, slow dehydration resulted in increased membrane phase transition temperature, less cooperative membrane phase transition and a small decrease in the gel phase lipid order. Both hyperosmotic shock and slow dehydration were accompanied by a decrease in viability. However, we identified that in each case the membrane damage mechanism was different. We have also shown that the post-rehydration viability could be maximized if the lyotropic phase change of the cell membrane was eliminated during dehydration. On the other hand, lyotropic phase change during re-hydration did not affect the viability of G. sulfurreducens. This study conclusively shows that the cell membrane is the primary site of injury during hyperosmotic stress, and by detailed analysis of the membrane structure as well as its thermodynamic transitions it is indeed possible to develop methods in a rational fashion to maximize the survival of the bacteria during hyperosmotic stress.  相似文献   

15.
cholesterol depletion alters the apparent affinity of the internal cationic sites and the maximal translocation rate but not the affinity of the external cationic sites of the Na+-K+ pump in human erythrocytes. To test whether these effects were mediated by a direct cholesterol-internal site interaction or by a change in membrane lipid order, the effects of five fluidizing amphiphiles (chlorpromazine, imipramine, benzyl alcohol, sodium oleate and sodium benzenesulphonate) on the kinetic parameters of the Na+-K+ pump were determined. The cholesterol removal and all the agents used induced dose-response decreases in membrane lipid order as measured by fluorescence polarization or ESR. Positive and neutral amphiphiles mimicked the effects of cholesterol removal on the affinity of the internal sites of the pump and to a lesser extent on the maximal translocation rate. Anionic amphiphiles had no effect on internal sites, probably because they distributed preferentially within the outer leaflet on the membrane. These results indicate that cholesterol controls the affinity of the internal sites of the Na+-K+ pump by altering the membrane lipid order. In contrast, neither cholesterol depletion nor the agents used altered the affinity of the external sites of the Na+-K+ pump. This difference in sensitivity to membrane lipids order suggests that internal and external cationic sites, although borne by the same protein, are in different lipid environments.  相似文献   

16.
《BBA》1985,806(1):161-167
The change in surface potential induced by addition of mono- or divalent cations to a chromatophore suspension was monitored by carotenoid absorbance changes (a probe which is intrinsic to the membrane). The change in carotenoid absorbance elicited by an alteration of the surface potential is strongly dependent on the presence of ionophores; the absorbance changes (due to addition of MgCl2) in the presence of valinomycin or gramicidin are larger than those in the presence of carbonyl cyanide m-chlorophenylhydrazone or cabonyl cyanide p-trifluoromethoxyphenylhydrazone. These differences in carotenoid absorbance change reflect the degree in which the membrane resistance has been shunted. Gramicidin or high concentrations of valinomycin (10−6 M) appear to be sufficiently effective as shunt in order that the totality of the change in external surface potential is seen as an intramembrane potential difference as sensed by the carotenoids. It is also shown that the decay of the carotenoid changes induced by the addition of salt to the medium is a measure of the intrinsic permeability of the chromatophore membrane for the added cation.  相似文献   

17.
The effect of global cerebral ischemia and reperfusion on cerebral capillary endothelial cell membrane fluidity was examined using electron paramagnetic resonance techniques following 8 minutes of global ischemia and 15 minutes of blood reperfusion. The luminal surface of the cerebral vasculature was perfused with a series of doxyl stearic acid reporters (5-, 12-, 16-doxyl stearic acid) which differ in the site of attachment of the nitroxide free radical on the fatty acid chain. Each doxyl stearic acid reports on membrane fluidity characteristics from different depths within the membrane. Ischemia/reperfusion produced a membrane ordering that was markedly dependent on intramembrane location, and was consistent with changes previously associated with lipid peroxidation. The effect of ischemia/reperfusion on membrane fluidity was maximal in the membrane environment reported by 12-doxyl stearic acid (12-DS). The utilization of a liposomal system was shown to enhance superoxide dismutase delivery to cerebral tissues as well as attenuating the change in membrane order seen following reperfusion-induced lipid peroxidation.  相似文献   

18.
Geobacter sulfurreducens is a δ-proteobacterium bacteria that has biotechnological applications in bioremediation and as biofuel cells. Development of these applications requires stabilization and preservation of the bacteria in thin porous coatings on electrode surfaces and in flow-through bioreactors. During the manufacturing of these coatings the bacteria are exposed to hyperosmotic stresses due to dehydration and the presence of carbohydrates in the medium. In this study we focused on quantifying the response of G. sulfurreducens to hyperosmotic shock and slow dehydration to understand the hyperosmotic damage mechanisms and to develop the methodology to maximize the survival of the bacteria. We employed FTIR spectroscopy to determine the changes in the structure and the phase transition behavior of the cell membrane. Hyperosmotic shock resulted in greatly decreased membrane lipid order in the gel phase and a less cooperative membrane phase transition. On the other hand, slow dehydration resulted in increased membrane phase transition temperature, less cooperative membrane phase transition and a small decrease in the gel phase lipid order. Both hyperosmotic shock and slow dehydration were accompanied by a decrease in viability. However, we identified that in each case the membrane damage mechanism was different. We have also shown that the post-rehydration viability could be maximized if the lyotropic phase change of the cell membrane was eliminated during dehydration. On the other hand, lyotropic phase change during re-hydration did not affect the viability of G. sulfurreducens. This study conclusively shows that the cell membrane is the primary site of injury during hyperosmotic stress, and by detailed analysis of the membrane structure as well as its thermodynamic transitions it is indeed possible to develop methods in a rational fashion to maximize the survival of the bacteria during hyperosmotic stress.  相似文献   

19.
Murine leukemia EL4 cells were modified by supplementation of culture media with fatty acids for 24 h. A plasma membrane-enriched fraction was prepared from substituted and normal cells. Analyses were performed to determine fatty acyl composition, phospholipid headgroup composition and cholesterol content. The two major membrane phospholipids, phosphatidylethanolamine (PE) and phosphatidylcholine (PC) were isolated by thin-layer chromatography and ESR measurements were done on liposomes prepared from these lipids as well as on the intact plasma membrane preparations. Slight perturbations in overall plasma membrane lipid composition were observed when EL4 cells were supplemented with a single exogenous fatty acid. This may be consistent with the idea that the incorporation of exogenous fatty acid induces compensatory changes in membrane lipid composition. On the other hand, we observed no significant difference in two ESR motional parameters between the unsubstituted control and various fatty acid-substituted plasma membranes. ESR measurements carried out on PE and PC liposomes derived from 17:0- and 18:2c-substituted membranes also failed to detect major differences between these liposomes and those made from normal EL4 phospholipids. In the case of liposomes prepared from 18:2t,-substituted membranes, the order parameter was significantly changed from the normal. However, the change was in opposite directions in PE and PC, perhaps accounting for the fact that no change parameter is seen in intact 18:2t-substituted plasma membrane. Measurements of order parameter (S) in mixed lipid vesicles showed that at up to 50 mol% mixture of a synthetic PC with plasma membrane PC, the value of S was only marginally different from that of the plasma membrane PC vesicles. We interpret these data as an indication that the two ESR parameters used are not sufficiently sensitive to detect changes due to modifications of the acyl chain composition of a complex biological membrane.  相似文献   

20.
DNA packaging orders the membrane of bacteriophage PRD1.   总被引:11,自引:0,他引:11       下载免费PDF全文
S J Butcher  D H Bamford    S D Fuller 《The EMBO journal》1995,14(24):6078-6086
Bacteriophage PRD1 contains a linear dsDNA genome enclosed by a lipid membrane lying within a protein coat. Determination of the structure of the detergent-treated particle to 2 nm by cryo-electron microscopy and three-dimensional reconstruction has defined the position of the major coat protein P3. The coat contains 240 copies of trimeric P3 packed into positions of local 6-fold symmetry on a T = 25 lattice. The three-dimensional structures of the PRD1 virion and a DNA packaging mutant to a resolution of 2.8 nm have revealed specific interactions between the coat and the underlying membrane. The membrane is clearly visible as two leaflets separated by 2 nm and spanned by transmembrane density. The size of the coat does not change upon DNA packaging. Instead, the number of interactions seen between the protein shell and the membrane and the order of the membrane components increase. Thus the membrane of PRD1 plays a role in assembly which is akin to that played by the nucleocapsid in other membrane viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号