首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Cells from patients with the genetic disease ataxia telangiectasia are hypersensitive to the DNA-breaking agents X-rays, bleomycin and neocarzinostatin, and show reduced inhibition of DNA synthesis after treatment with these agents, as compared to normal cells. The rate of replicon initiation and chain elongation was measured shortly after brief exposure of two normal and two ataxia telangiectasia fibroblast strains to low doses (0.10-0.30 microgram/ml) of neocarzinostatin, by means of alkaline sucrose gradient analysis. Neocarzinostatin was found to inhibit both initiation and elongation, and both components of DNA synthesis were more resistant to this inhibition in the A-T strains.  相似文献   

2.
L F Povirk  I H Goldberg 《Biochemistry》1982,21(23):5857-5862
Treatment of CHO cells with low doses of the protein antibiotic neocarzinostatin severely inhibited DNA replicon initiation but had no effect on chain elongation. The selectivity of the effect on initiation, which was greater than that seen with other chemical agents and comparable to that seen with X-rays, explains the biphasic dose response seen for DNA synthesis inhibition by this drug. Parallel experiments employing the nucleoid sedimentation technique indicated that half-maximal relaxation of domains of DNA supercoiling and half-maximal inhibition of replicon initiation required the same dose of neocarzinostatin, approximately 0.03 micrograms/mL. These results, similar results obtained with the protein antibiotic auromomycin, and previous results obtained with X-rays suggest a quantitative correlation between inhibition of replicon initiation and induction of sufficient strand breakage to relax domains of supercoiling in DNA of mammalian cells. Results in human ataxia telangiectasia fibroblasts indicated that neocarzinostatin, like X-rays, is much less effective in inhibiting DNA synthesis in these cells than in normal human fibroblasts. This finding is consistent with the hypothesis that the genetic defect in ataxia telangiectasia involves a failure to recognize the presence of strand breaks in cellular DNA.  相似文献   

3.
Diploid human fibroblast strains were treated for 10 min with inhibitors of type I and type II DNA topoisomerases, and after removal of the inhibitors, the rate of initiation of DNA synthesis at replicon origins was determined. By alkaline elution chromatography, 4'-(9-acridinylamino)methanesulfon-m-anisidide (amsacrine), an inhibitor of DNA topoisomerase II, was shown to produce DNA strand breaks. These strand breaks are thought to reflect drug-induced stabilization of topoisomerase-DNA cleavable complexes. Removal of the drug led to a rapid resealing of the strand breaks by dissociation of the complexes. Velocity sedimentation analysis was used to quantify the effects of amsacrine treatment on DNA replication. It was demonstrated that transient exposure to low concentrations of amsacrine inhibited replicon initiation but did not substantially affect DNA chainelongation within operating replicons. Maximal inhibition of replicon initiation occurred 20 to 30 min after drug treatment, and the initiation rate recovered 30 to 90 min later. Ataxia telangiectasia cells displayed normal levels of amsacrine-induced DNA strand breaks during stabilization of cleavable complexes but failed to downregulate replicon initiation after exposure to the topoisomerase inhibitor. Thus, inhibition of replicon initiation in response to DNA damage appears to be an active process which requires a gene product which is defective or missing in ataxia telangiectasia cells. In normal human fibroblasts, the inhibition of DNA topoisomerase I by camptothecin produced reversible DNA strand breaks. Transient exposure to this drug also inhibited replicon initiation. These results suggest that the cellular response pathway which downregulates replicon initiation following genotoxic damage may respond to perturbations of chromatin structure which accompany stabilization of topoisomerase-DNA cleavable complexes.  相似文献   

4.
Cells from patients with the genetic disease ataxia telangiectasia are hypersensitive to the DNA-breaking agents X-rays, bleomycin and neocarzinostatin, and show reduced inhibition of DNA synthesis after treatment with these agents, as compared to normal cells. The rate of replicon initiation and chain elongation was measured shortly after brief exposure of two normal and two ataxia telangiectasia fibroblast strains to low doses (0.10–0.30 μg/ml) of neocarzinostatin, by means of alkaline sucrose gradient analysis. Neocarzinostatin was found to inhibit both initiation and elongation, and both components of DNA synthesis were more resistant to this inhibition in the A-T strains.  相似文献   

5.
The inhibition of DNA replication in ultraviolet-irradiated human fibroblasts was characterized by quantitative analysis of radiation-induced alterations in the steady-state distribution of sizes of pulse-labeled, nascent DNA. Low, noncytotoxic fluences (<1 J/m2, producing less than one pyrimidine dimer per replicon) rapidly produced an inhibition of DNA synthesis in half-replicon-size replication intermediates without noticeably affecting synthesis in multi-repliconsize intermediates. With time, the inhibition produced by low fluences spread progressively to include multi-replicon-size intermediates. The results indicate that ultraviolet radiation inhibits the initiation of DNA synthesis in replicons. Higher (>1 J/m2, producing more than one dimer per replicon) cytotoxic fluences inhibited DNA synthesis in operating replicons presumably because the elongation of nascent strands was blocked where pyrimidine dimers were present in template strands. Xeroderma pigmentosum fibroblasts with deficiencies in DNA excision repair exhibited an inhibition of replicon initiation after low radiation fluences. indicating the effect was not solely dependent upon operation of the nucleotidyl excision repair pathway. Owing to their inability to remove pyrimidine dimers ahead of DNA growing points, the repair-deficient cells also were more sensitive than normal cells to the ultraviolet-induced inhibition of chain elongation. Xeroderma pigmentosum cells belonging to the variant class were even more sensitive to inhibition of chain elongation than the repair-deficient strains despite their ability to remove pyrimidine dimers. This analysis suggests that normal and repair-deficient human fibroblasts either are able to rapidly bypass certain dimers or these dimers are not recognized by the chain elongation machinery.  相似文献   

6.
The extent of the deficiency in γ-ray induced DNA repair synthesis in an ataxia telangiectasia (AT) human fibroblast strain was found to show no oxygen enhancement, consistent with a defect in the repair of base damage. Repair deficiency, but not repair proficiency, in AT cells were accompanied by a lack of inhibition of DNA synthesis (replicon initiation) neither γ-rays or the radiomimetic drug bleomycin. Experiments with 4-nitroquinoline 1-oxide indicated that lack of inhibition was specific for radiogenic type damage. Thus excision repair, perhaps by DNA strand incision or chromatin modification, appears to halt replicon initiation in irradiated repair proficient cells whereas in repair defective AT strains this putatively important biological function is inoperative.  相似文献   

7.
The effect of bleomycin (Blm) on DNA synthesis has been studied in a synchronous culture of human embryonic lung cells. The data obtained suggest that in the Blm presence in a medium (20 micrograms/ml) DNA synthesis initiation in new replicons is suppressed. The Blm action at different S-phase intervals has been shown to inhibit DNA synthesis unequally. Four discrete time intervals have been singled out in the course of the 10-hr S-phase in which a grouped initiation of replicon portions can be supposed. Together with the data on DNA replication in large-size replicon units (50-500 microns), the obtained results account well for the uneven DNA synthesis in S-phase, manifested by 3 or 4 peaks of [3H]-thymidine incorporation in pulse-labelled cells.  相似文献   

8.
DNA repair and replication were examined in diploid human fibroblasts after treatment with (+/-)-r-7,t-8-dihydroxy-t-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE-I). Unscheduled DNA synthesis exhibited a linear response to BPDE-I concentrations up to 1.5 microM and a saturation plateau after higher concentrations. Maximal unscheduled DNA synthesis was observed in the first hour after treatment with synthesis diminishing progressively thereafter. Half-maximal unscheduled DNA synthesis was seen within 4-6 h after treatment with 0.7 microM BPDE-I. DNA replication was inhibited by BPDE-I in a dose- and time-dependent fashion. The mechanisms of this inhibition were characterized by velocity sedimentation of pulse-labeled nascent DNA in alkaline sucrose gradients. Very low concentrations of BPDE-I (0.03 and 0.07 microM) were found to inhibit replicon initiation by up to 50% within 30-60 min after treatment. Recovery of initiation following these low concentrations was evident within 3 h after treatment. Higher concentrations of carcinogen inhibited DNA synthesis in active replicons. This effect was manifested by a reduction in incorporation of precursor into replication intermediates of greater than 1 X 10(7) Da with the concurrent production of abnormally small nascent DNA. When viewed 45 min after treatment with 0.17 microM BPDE-I the combination of these two effects partially masked the inhibition of replicon initiation. However, even after treatment with 0.33 microM BPDE-I an effect on initiation was evident. These results reveal a pattern of response to BPDE-I that is quite similar to that produced by 254 nm radiation.  相似文献   

9.
The rate of DNA synthesis after γ-irradiation was studied either by analysis of the steady-state distribution of daughter [3H]DNA in alkaline sucrose gradients or by direct assay of the amount of [3H]thymidine incorporated into DNA of fibroblasts derived from a normal donor (LCH882) and from Down's syndrome (LCH944), Werner's syndrome (WS1LE) and xeroderma pigmentosum (XP2LE) patients with chromosomal sensitivity to ionizing radiation. Doses of γ-irradiation that markedly inhibited the rate of DNA synthesis in normal human cells caused almost no inhibition of DNA synthesis in the cells from the affected individuals. The radioresistant DNA synthesis in Down's syndrome cells was mainly due to a much lower inhibition of replicon initiation than that in normal cells; these cells were also more resistant to damage that inhibited replicon elongation. Our data suggest that radioresistant DNA synthesis may be an intrinsic feature of all genetic disorders showing increased radiosensitivity in terms of chromosome aberrations.  相似文献   

10.
Inhibition of replicon initiation is a stereotypic DNA damage response mediated through S checkpoint mechanisms not yet fully understood. Studies were undertaken to elucidate the function of checkpoint proteins in the inhibition of replicon initiation following irradiation with 254 nm UV light (UVC) of diploid human fibroblasts immortalized by the ectopic expression of telomerase. Velocity sedimentation analysis of nascent DNA molecules revealed a 50% inhibition of replicon initiation when normal human fibroblasts were treated with a low dose of UVC (1 J/m(2)). Ataxia telangiectasia (AT), Nijmegen breakage syndrome (NBS), and AT-like disorder fibroblasts, which lack an S checkpoint response when exposed to ionizing radiation, responded normally when exposed to UVC and inhibited replicon initiation. Pretreatment of normal and AT fibroblasts with caffeine or UCN-01, inhibitors of ATR (AT mutated and Rad3 related) and Chk1, respectively, abolished the S checkpoint response to UVC. Moreover, overexpression of kinase-inactive ATR in U2OS cells severely attenuated UVC-induced Chk1 phosphorylation and reversed the UVC-induced inhibition of replicon initiation, as did overexpression of kinase-inactive Chk1. Taken together, these data suggest that the UVC-induced S checkpoint response of inhibition of replicon initiation is mediated by ATR signaling through Chk-1 and is independent of ATM, Nbs1, and Mre11.  相似文献   

11.
DNA repair and replication were examined in diploid human fibroblasts after treatment with (±)-r-7,t-8-dihydroxy-t-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE-I). Unscheduled DNA synthesis exhibited a linear response to BPDE-I concentrations up to 1.5 μM and a saturation plateau after higher concentrations. Maximal unscheduled DNA synthesis was observed in the first hour after treatment with synthesis diminishing progressively thereafter. Half-maximal unscheduled DNA synthesis was seen within 4–6 h after treatment with 0.7 μM BPDE-I. DNA replication was inhibited by BPDE-I in a dose- and time-dependent fashion. The mechanisms of this inhibition were characterized by velocity sedimentation of pulse-labeled nascent DNA in alkaline sucrose gradients. Very low concentrations of BPDE-I (0.03 and 0.07 μM) were found to inhibit replicon initiation by up to 50% within 30–60 min after treatment. Recovery of initiation following these low concentrations was evident within 3 h after treatment. Higher concentrations of carcinogen inhibited DNA synthesis in active replicons. This effect was manifested by a reduction in incorporation of precursor into replication intermediates of greater than 1·107 Da with the concurrent production of abnormally small nascent DNA. When viewed 45 min after treatment with 0.17 μM BPDE-I the combination of these two effects partially masked the inhibition of replicon initiation. However, even after treatment with 0.33 μM BPDE-I an effect on initiation was evident. These results reveal a pattern of response to BPDE-I that is quite similar to that produced by 254 nm radiation.  相似文献   

12.
Caffeine increased the availability of replication origins, and consequently the number of growing points, in the DNA of Chinese hamster V79 and human (HeLa) cells. Caffeine also prevented the inhibition of replicon initiation normally caused by X-radiation and exposure to low doses of ultraviolet light. When caffeine was removed from the medium after irradiation, replicon initiation was inhibited. Caffeine also reversed the inhibition of replicon initiation caused by novobiocin, which is not a DNA-damaging agent. Because caffeine increases the number of growing points, it also partially reversed the inhibition of total DNA synthesis induced by hydroxyurea. It is proposed that caffeine alters the conformation of intracellular chromatin in such a way that the conformation usually induced by DNA-damaging agents is prevented.  相似文献   

13.
Inhibition of mammalian cell DNA synthesis by ionizing radiation   总被引:4,自引:0,他引:4  
A semi-log plot of the inhibitory effect of ionizing radiation on the rate of DNA synthesis in normal mammalian cells yields a two-component curve. The steep component, at low doses, has a D0 of about 5 Gy and is the result of blocks to initiation of DNA replicons. The shallow component, at high doses, has a D0 of greater than or equal to 100 Gy and is the result of blocks to DNA chain elongation. The target size for the inhibition of DNA replicon initiation is about 1000 kb, and the target size for inhibition of DNA chain elongation is about 50 kb. There is evidence that the target for both components is DNA alone. Therefore, the target size for inhibition of DNA chain elongation is consistent with the idea that an effective radiation-induced lesion in front of the DNA growing point somehow blocks its advance. The target size for inhibition of DNA replicon initiation is so large that it must include many replicons, which is consistent with the concept that a single lesion anywhere within a large group (cluster) of replicons is sufficient to block the initiation of replication of all replicons within that cluster. Studies with radiosensitive human cell mutants suggest that there is an intermediary factor whose normal function is necessary for radiation-induced lesions to cause the inhibition of replicon initiation in clusters and to block chain elongation; this factor is not related to poly(ADP-ribose) synthesis. Studies with radiosensitive Chinese hamster cell mutants suggest that double-strand breaks and their repair are important in regulating the duration of radiation-induced inhibition of replicon initiation but have little to do with effects on chain elongation. There is no simple correlation between inhibition of DNA synthesis and cell killing by ionizing radiation.  相似文献   

14.
Twelve-hour exposure of G1 Ehrlich ascites cells to controlled hypoxia (200 ppm of O2 at 1 bar) suppressed replicon initiation. Synchronous cycling, beginning with a normal S phase, was released by reoxygenation immediately. The addition of cycloheximide at reoxygenation largely resuppressed, after a short initial burst, succeeding replicon initiations. Alkaline sedimentation analysis of growing daughter strand DNA, DNA fiber autoradiography, and analysis of the newly formed DNA demonstrated that normal chain growth and DNA maturation (replicon termination) in the initially activated replicons continued in the presence of cycloheximide. After 2 to 3 h, a low level of cycloheximide-insensitive background replication emerged out of the then-ebbing single surge of activity of the initially released replicons.  相似文献   

15.
DNA synthesis after gamma-irradiation was analysed either by direct assay of the amount of 3H-Td incorporated into DNA of fibroblasts derived from normal donor and from a patient with Down's syndrome, or by analysis of the steady-state distribution of 3H-DNA in alkaline sucrose gradients. Doses of gamma-radiation that markedly inhibited the rate of DNA synthesis in normal human cells caused almost no inhibition in fibroblasts of the patient with Down's syndrome. The radioresistant DNA synthesis in cells of this patient was mainly due to a much less inhibition of replicon initiation than that in normal cells. Thus, in the case of Down's syndrome, the cells fail to go through the delays during which DNA lesions can be repaired, unlike the situation being the case in normal cells.  相似文献   

16.
The effects of inhibition of protein synthesis by the antibiotics cycloheximide and puromycin on the initiation of DNA replication in mouse L cells were studied. Cellular DNA was pulse labeled with [3H]thymidine of high, then of low specific activity and prepared for fiber autoradiography. Autoradiograms containing multiple (up to four) replication units were analyzed. In control cells, the proportion of replication units that initiated during a 10-min, high specific activity pulse was approximately equal to the proportion initiating immediately before the pulse. The addition of cycloheximide or puromycin at the start of the pulse inhibited the frequency of initiation in that there was a decrease by up to one-third of units initiating during the pulse relative to controls. Replication direction was also altered. Addition of the antibiotics 2 h before the pulse reduced the proportion of bidirectional units observed from 0.98 to 0.70. Antibiotic treatment for 2 h also decreased initiation synchrony in that the proportion of multiunit autoradiograms on which neighboring units showed similar replication patterns (indicating temporally coordinated initiation) was reduced by one-half. These observations indicate that inhibition of protein synthesis alters the normal pattern of DNA initiation.  相似文献   

17.
The rate of DNA synthesis after gamma-irradiation was studied either by analysis of the steady-state distribution of daughter [3H]DNA in alkaline sucrose gradients or by direct assay of the amount of [3H]thymidine incorporated into DNA of fibroblasts derived from a normal donor (LCH882) and from Down's syndrome (LCH944), Werner's syndrome (WS1LE) and xeroderma pigmentosum (XP2LE) patients with chromosomal sensitivity to ionizing radiation. Doses of gamma-irradiation that markedly inhibited the rate of DNA synthesis in normal human cells caused almost no inhibition of DNA synthesis in the cells from the affected individuals. The radioresistant DNA synthesis in Down's syndrome cells was mainly due to a much lower inhibition of replicon initiation than that in normal cells; these cells were also more resistant to damage that inhibited replicon elongation. Our data suggest that radioresistant DNA synthesis may be an intrinsic feature of all genetic disorders showing increased radiosensitivity in terms of chromosome aberrations.  相似文献   

18.
The macromolecular reguirements for the initiation and maintenance of macronuclear DNA replication were studied in heat synchronized Tetrahymena pyriformis GL-C. Previous work had established that macronuclear S periods could occur in a consecutive fashion without intervening cell divisions during a multiple heat shock treatment, as well as immediately following the synchronized cell divisions. Cycloheximide treatment prior to or during the S period which follows the first synchronized cell division resulted in abolition of the initiation of DNA synthesis or an almost immediate cessation of DNA synthesis in progress. Temporary inhibition of DNA synthesis occurred when cycloheximide was added late in the S period. Treatment with actinomycin D was found to block the initiation of DNA synthesis but did not appreciably affect the continuation of the S period. It was concluded that RNA synthesis was required for the initiation but not the maintenance of DNA replication, whereas protein synthesis was necessary for both processes. The dependency of the initiation of an S period on prior RNA and protein synthesis was also shown to exist when a second consecutive S period was initiated without a preceding cell division. Treatment with actinomycin or cycloheximide prior to a supernumerary S period during a multiple heat shock treatment completely abolished the initiation of DNA synthesis. In T. pyriformis the synthesis of RNA and protein related to the initiation of the S period is tightly coupled to each cycle of DNA replication.  相似文献   

19.
D Suciu 《Mutation research》1990,243(3):213-218
In this study, some DNA topoisomerase II and gyrase inhibitors have been identified as inhibitors of polymerization of deoxyribonucleotides [novobiocin (NVB), nalidixic acid (NDA), oxolinic acid (OXA)], or inhibitors of replicon initiation and DNA-chain elongation [etoposide (VP-16), teniposide (VM-26), 4'-(9-acridinylamino)methansulfon-m-anisidine (m-AMSA), ellipticine (ELT)]. The inhibitors of deoxyribonucleotide polymerization produced a significant (greater than 85%) suppression of [3H]thymidine incorporation into V79 cells within 20 min of treatment, followed by a rapid recovery of DNA synthesis, and reduced cell killing. In contrast, the inhibitors of replicon initiation and DNA-chain elongation needed about 60 min to induce a partial, but irreversible inhibition of DNA replication, associated with extensive cell killing.  相似文献   

20.
DNA synthesis in 6 ataxia langiectasia (AT) cell strains was much more resistant to X-irradiation than was DNA synthesis in normal human diploid cells. 3 of the cell strains tested have been classified as proficient in repair replication. These data, along with those reported elsewhere, strongly suggest that radioresistant DNA synthesis is an intrinsic feature of this disease.The radioresistance of DNA synthesis in AT cells is primarily due to a reduced inhibition of replicon initiation compared to that occuring in normal cells, but DNA chain elongation is also more radioresistant in AT cells. The small inhibition of DNA synthesis that does occur in AT cells at doses up to 2000 rad is almost exclusively due to inhibition of replicon initiation and not to inhibition of chain elongation, as would be expected from results with normal human cells or from previous studies with established cell lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号