首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Site-specific induction of lipid peroxidation by iron in charged micelles   总被引:1,自引:0,他引:1  
Generation of hydroxyl radicals by the Fenton reaction resulted in lipid peroxidation of linoleic acid (LA) (H2O2-Fe2+-induced lipid peroxidation) in positively charged tetradecyltrimethylammonium bromide (TTAB) micelles, but not in negatively charged sodium dodecyl sulfate (SDS) micelles. However, more OH radicals formed via the Fenton reaction were trapped by N-t-butyl-alpha-phenylnitrone (PBN) in SDS micelles than in TTAB micelles. When detergent-dispersed LA was contaminated with linoleic acid hydroperoxide (LOOH), lipid peroxidation was catalyzed by Fe2+ via reductive cleavage of LOOH (LOOH-Fe2+-induced lipid peroxidation), and Fe2+ was oxidized simultaneously in SDS micelles, even when H2O2 was not present. In contrast, LOOH-Fe2+-induced lipid peroxidation and simultaneous oxidation of Fe2+ were not observed in TTAB micelles. An ESR spectrum presumed to be due to an alkoxy radical trapped by PBN was also detected in SDS micelles, but not in TTAB micelles in the LOOH-Fe2+-induced lipid peroxidation system. The results are discussed in the light of the localization of iron, the unsaturated bonding moiety of LA, the OOH-group of LOOH, and the trapping site of PBN in different charged micelles.  相似文献   

2.
Treatment with FeSO(4)/EDTA (0.2 micromol Fe(II) per mg of protein) was used to study the effect of oxidative stress on lipid peroxidation and structural properties of endoplasmic reticulum (ER) membranes isolated from rabbit brain. Oxidative stress resulted in conjugated diene formation and a decrease of 1-anilino-8-naphthalenesulfonate (ANS) fluorescence in a time-dependent manner. In contrast, fluorescence anisotropy of 1, 6-diphenyl-1,3,5-hexatriene was increased early after the initiation of lipid peroxidation and no further increase was observed after 1, 2 and 3 h of peroxidation. FeSO(4)/EDTA treatment was accompanied by formation of conjugates of lipid peroxidation products with membrane proteins, as detected by the increase in fluorescence excitation (350-360 nm) and emission (440-450 nm) maximum. Oxidative stress also induced a marked decrease of the intrinsic fluorescence of aromatic amino acids, suggesting modification or changes in the environment of these amino acid residue(s). The lipid antioxidant, stobadine, completely prevented the changes of ANS fluorescence and production of peroxidized lipid-protein conjugates whereas tryptophan fluorescence was only partially protected. These results suggest that Fe(II) induces both lipid-mediated- and lipid peroxidation independent-modification of ER membrane proteins. The study also demonstrates that stobadine is a potent inhibitor of Fe(II)-induced protein modification.  相似文献   

3.
Fe(II)- and Fe(III)-induced lipid peroxidation of rabbit small intestinal microvillus membrane vesicles was studied. Ferrous ammonium sulphate, ferrous ascorbate at a molar ratio of 10:1, and ferric citrate, at molar ratios of 1:1 and 1:20, did not stimulate lipid peroxidation. Ferrous ascorbate, 1:1, induced low stimulation, while ferrous ascorbate, 1:20 gave higher stimulation of lipid peroxidation. These results show that in our experimental system, ascorbate is a promotor rather than an inhibitor of lipid peroxidation. Ferric nitrilotriacetate (at molar ratios of 1:2 and 1:10), at an iron concentration of 200 microM, was by far the most effective in inducing lipid peroxidation. Superoxide dismutase, mannitol and glutathione had no effect, while catalase, thiourea and vitamin E markedly decreased ferrous ascorbate 1:20-induced lipid peroxidation. Ferric nitrilotriacetate-induced lipid peroxidation was slightly reduced by catalase and mannitol, significantly reduced by superoxide dismutase, and completely inhibited by thiourea. Glutathione caused a 100% increase in the ferric nitrilotriacetate-induced lipid peroxidation. These results suggest that Fe(II) in the presence of trace amounts of Fe(III), or an oxidizing agent and Fe(III) in the presence of Fe(II) or a reducing agent, are potent stimulators of lipid peroxidation of microvillus membrane vesicles. Addition of deferoxamine completely inhibited both ferrous ascorbate, 1:20 and ferric nitrilotriacetate-induced lipid peroxidation, demonstrating the requirement for iron for its stimulation. Iron-induced peroxidation of microvillus membrane may have physiological significance because it could already be demonstrated at 2 microM iron concentration.  相似文献   

4.
Lipid peroxidation in isolated rat liver mitochondria, mitoplast, and mitochondrial inner membrane fragments was induced either by ferrous ions, or in an NADPH-dependent process by complexing with adenine nucleotides (ADP or ATP) iron. The Fe2+-induced lipid peroxidation is nonenzymic when inner membrane fragments are used, while the differences in the inhibitory effect of Mn2+ ions and the stimulatory effect of the ionophore A-23187 in mitochondria and inner membrane fragments suggest an enzymic mechanism for ferrous ion-induced lipid peroxidation in intact mitochondria. Contrary to this the ADP/Fe/NADPH-dependent lipid peroxidation is an enzymic process both in mitochondria and inner membrane preparations. We have shown that cytochrome P450 is involved in the ADP/Fe/NADPH-induced lipid peroxidation. Succinate, a known inhibitor of NADPH-dependent lipid peroxidation, inhibited the Fe2+-induced process also, and there was no difference in this effect when inner membrane preparations, mitochondria, or mitoplasts were used.  相似文献   

5.
The effects of alpha-tocopherol (C16) and its homologues with different chain length (6-hydroxychromanes-C1, C6, C11) on lipid peroxidation induced luminol-dependent chemiluminescence in rat liver microsomal suspensions were studied. It was shown that C1, C6 and C11 inhibited the (Fe(2+) + ascorbate)-and (Fe(2+) + NADP.H)-induced chemiluminescence. The inhibitory effect was decreased in the order: C1 C6 C11, C16 was not influenced chemiluminescence. The possible reason underlying these differences was discussed: different efficiency of interaction of C16 and its homologues with hydroxyl and superoxide radicals, which initiate the luminol-dependent chemiluminescence. It was concluded that C16 (in concentration below 0.5 mM) was not interacted with hydroxyl and superoxide free radicals, generated in microsomal suspensions under (Fe(2+) + ascorbate)- and (Fe(2+) + NADP.H)-dependent lipid peroxidation.  相似文献   

6.
alpha-Tocopherol inhibited H2O2-Fe2+-induced lipid peroxidation of linoleic acid (LA) by scavenging OH radicals in tetradecyltrimethylammonium bromide (TTAB) micelles. The inhibiting ability of alpha-tocopherol was much greater than that of OH-radical scavengers mannitol and t-butanol. In contrast, alpha-tocopherol enhanced linoleic acid hydroperoxide (LOOH)-Fe2+-induced lipid peroxidation through regeneration of Fe2+ in sodium dodecyl sulfate (SDS) micelles containing LA. alpha-Tocopherol was oxidized by Fenton's reagent (FeSO4 + H2O2) at a higher rate in SDS micelles than in TTAB micelles. The likely oxidants were OH radicals in the former and Fe3+ in the latter. Both reagents formed in the Fenton reaction. Ferrous ion catalyzed in a dose-dependent manner the decomposition of LOOH and conjugated diene compounds in SDS but not in TTAB micelles. alpha-Tocopherol and Fe3+ individually had no effect on the decomposition of LOOH, but together were quite effective. The rate of the decomposition was a function of the concentration of alpha-tocopherol. The mechanism of "site-specific" antioxidant action of alpha-tocopherol in charged micelles is discussed.  相似文献   

7.
The processes of lipid peroxidation have been studied in bovine adrenal cortex in vitro. The lipid peroxidation rate in this tissue is shown to be dependent on the content of metal ions. EDTA, deferroxamine and penicyllamine inhibit spontaneous lipid peroxidation by 25, 50 and 42%, respectively. The ability to activate the process permits arranging metal ions in the following sequence: Fe2+ greater than Fe3+ greater than Cu2+ greater than Mg2+ greater than Mn2+. The maximum activation of lipid peroxidation is observed at Fe2+ and Fe3+ concentrations within the range of 5 x 10(-6) x 10(-4) M.  相似文献   

8.
Intense lipid peroxidation of brain synaptosomes initiated with Fenton's reagent (H2O2 + Fe2+) began instantly upon addition of Fe2+ and preceded detectable OH. formation. Although mannitol or Tris partially blocked peroxidation, concentrations required were 10(3)-fold in excess of OH. actually formed, and inhibition by Tris was pH dependent. Lipid peroxidation also was initiated by either Fe2+ or Fe3+ alone, although significant lag phases (minutes) and slowed reaction rates were observed. Lag phases were dramatically reduced or nearly eliminated, and reaction rates were increased by a combination of Fe3+ and Fe2+. In this instance, lipid peroxidation initiated by optimal concentrations of H2O2 and Fe2+ could be mimicked or even surpassed by providing optimal ratios of Fe3+ to Fe2+. Peroxidation observed with Fe3+ alone was dependent upon trace amounts of contaminating Fe2+ in Fe3+ preparations. Optimal ratios of Fe3+:Fe2+ for the rapid initiation of lipid peroxidation were on order of 1:1 to 7:1. No OH. formation could be detected with this system. Although low concentrations of H2O2 or ascorbate increased lipid peroxidation by Fe2+ or Fe3+, respectively, high concentrations of H2O2 or ascorbate (in excess of iron) inhibited lipid peroxidation due to oxidative or reductive maintenance of iron exclusively in Fe2+ or Fe3+ form. Stimulation of lipid peroxidation by low concentrations of H2O2 or ascorbate was due to the oxidative or reductive creation of Fe3+:Fe2+ ratios. The data suggest that the absolute ratio of Fe3+ to Fe2+ was the primary determining factor for the initiation of lipid peroxidation reactions.  相似文献   

9.
The effects of lipid peroxidation on ADP-induced aggregation of washed rat platelets were examined using a oxygen-radical-generating system consisting of H2O2 and ferrous ion. Lipid peroxidation was assessed by measurement of thiobarbituric acid-reactive substances (TBARS). Incubation of the platelets with various concentrations of H2O2 (2-10 mM) in the presence of 10 microM Fe2+ resulted in a decrease of the aggregating capacity and an increase of TBARS value, depending on the concentrations of H2O2. Addition of catalase (0.1 mg/ml) to the incubation medium containing 10 microM Fe2+ and 10 mM H2O2 effectively protected the aggregating capacity, but superoxide dismutase (0.1 mg/ml) did not protect H2O2/Fe(2+)-induced inhibition of the platelet aggregation. The results of kinetic studies on the platelet aggregation with varying ADP and Ca2+ concentrations suggested that treatment of the platelets with H2O2/Fe2+ causes decreases in the binding affinities of ADP and Ca2+ for the platelets. On the basis of these results, change in the aggregating capacity of the platelets by treatment with H2O2/Fe2+ is discussed in relation to lipid peroxidation.  相似文献   

10.
In a previous study (Minotti, G., 1989, Arch. Biochem. Biophys. 268, 398-403) NADPH-supplemented microsomes were found to reduce adriamycin (ADR) to semiquinone free radical (ADR-.), which in turn autoxidized at the expense of oxygen to regenerate ADR and form O2-. Redox cycling of ADR was paralleled by reductive release of membrane-bound nonheme iron, as evidenced by mobilization of bathophenanthroline-chelatable Fe2+. In the present study, iron release was found to increase with concentration of ADR in a superoxide dismutase- and catalase-insensitive manner. This suggested that membrane-bound iron was reduced by ADR-. with negligible contribution by O2-. or interference by its dismutation product H2O2. Following release from microsomes, Fe2+ was reconverted to Fe3+ via two distinct mechanisms: (i) catalase-inhibitable oxidation by H2O2 and (ii) catalase-insensitive autoxidation at the expense of oxygen, which occurred upon chelation by ADR and increased with the ADR:Fe2+ molar ratio. Malondialdehyde formation, indicative of membrane lipid peroxidation, was observed when approximately 50% of Fe2+ was converted to Fe3+. This occurred in presence of catalase and low concentrations of ADR, which prevented Fe2+ oxidation and favored only partial Fe2+ autoxidation, respectively. Lipid peroxidation was inhibited by superoxide dismutase via increased formation of H2O2 from O2-. and excessive Fe2+ oxidation. Lipid peroxidation was also inhibited by high concentrations of ADR, which favored maximum Fe2+ release but also caused excessive Fe2+ autoxidation via formation of very high ADR:Fe2+ molar ratios. These results highlighted multiple and diverging effects of ADR, O2-., and H2O2 on iron release, iron (auto-)oxidation and lipid peroxidation. Stimulation of malondialdehyde formation by catalase suggested that lipid peroxidation was not promoted by reaction of Fe2+ with H2O2 and formation of hydroxyl radical. The requirement for both Fe2+ and Fe3+ was indicative of initiation by some type of Fe2+/Fe3+ complex.  相似文献   

11.
Free radicals and reactive oxygen species (ROS) participate in physiological and pathological processes in the thyroid gland. Bivalent iron cation (ferrous, Fe(2+)), which initiates the Fenton reaction (Fe(2+) + H2O2 --> Fe(3+) + *OH + OH(-)) is frequently used to experimentally induce oxidative damage, including that caused by lipid peroxidation. Lipid peroxidation is involved in DNA damage, thus indirectly participating in the early steps of carcinogenesis. In turn, melatonin is a well-known antioxidant and free radical scavenger. The aim of the study was to estimate the effect of melatonin on basal and iron-induced lipid peroxidation in homogenates of the porcine thyroid gland. In order to determine the effect of melatonin on the auto-oxidation of lipids, thyroid homogenates were incubated in the presence of that indoleamine in concentrations of 0.0, 0.00001, 0.0001, 0.001, 0.01, 0.1, 0.25, 0.5, 1.0, 2.5, or 5.0 mM. To study melatonin effects on iron-induced lipid peroxidation, the homogenates were incubated in the presence of FeSO(4) (40 microM) plus H2O2 (0.5 mM), and, additionally, in the presence of melatonin in the same concentrations as above. The degree of lipid peroxidation was expressed as the concentration of malondialdehyde + 4-hydroxyalkenals (MDA + 4-HDA) per mg protein. Melatonin, in a concentration-dependent manner, decreased lipid peroxidation induced by Fenton reaction, without affecting the basal MDA + 4-HDA levels. In conclusion, melatonin protects against iron + H2O2-induced peroxidation of lipids in the porcine thyroid. Thus, the indoleamine would be expected to prevent pathological processes related to oxidative damage in the thyroid, cancer initiation included.  相似文献   

12.
1. A study was made of the effect of hypolipidemic drug clofibrate on the level of lipid peroxidation in homogenates and subcellular fractions of rat liver. The intensity of lipid peroxidation was measured using chemiluminescence technique and malondialdehyde formation. 2. It was shown that under the action of clofibrate the levels of Fe/ADP-ascorbate-, as well as t-butyl hydroperoxide (Bu'OOH)-induced lipid peroxidation were decreased in the whole and "post-nuclear" liver homogenates. Dilution of the homogenates prevented depressing effect of clofibrate on lipid peroxidation. 3. Clofibrate significantly decreased the level of the Bu'OOH-dependent lipid peroxidation, but did not affect the activity of the Fe/ADP-ascorbate-induced reaction in rat liver mitochondria and microsomes. 4. Peroxidative alteration of membrane lipids in vivo was evaluated by determining the extent of conjugated dienes formation (absorption at 233 nm). It was shown that clofibrate did not increase the level of ultraviolet absorption of lipids from rat liver subcellular fractions. 5. The data obtained indicate that cytosol from the clofibrate treated rat liver contains a factor(s) which prevents lipid peroxidation in the mitochondria and microsomes.  相似文献   

13.
Mechanisms underlying Ca2+ effects on lipid peroxidation (LPO) induced in liposomes (from egg yolk lecithin) and UFsomes (from linolenic acid, methyl linolenate) with the aid of O2- -system (Fe2+ + ascorbate) were studied. It was shown that stimulation of lipid peroxidation by low Ca2+ concentrations (10(-6)-10(-5) M) was due to its ability to release Fe2+-ions bound to negatively charged (phosphate, carboxylic) lipid groups (of licethin, linolenic acid), thus increasing the concentration of catalytically active Fe2+. The inhibitory effect of high Ca2+ concentrations was caused by its interaction with superoxide anion-radicals and was not observed in LPO-systems, independent of O2- generation (e. g. Fe2+ + cumol hydroperoxide).  相似文献   

14.
The redox cycle of 2,5-dimethoxybenzoquinone (2,5-DMBQ) is proposed as a source of reducing equivalent for the regeneration of Fe2+ and H2O2 in brown rot fungal decay of wood. Oxalate has also been proposed to be the physiological iron reductant. We characterized the effect of pH and oxalate on the 2,5-DMBQ-driven Fenton chemistry and on Fe3+ reduction and oxidation. Hydroxyl radical formation was assessed by lipid peroxidation. We found that hydroquinone (2,5-DMHQ) is very stable in the absence of iron at pH 2 to 4, the pH of degraded wood. 2,5-DMHQ readily reduces Fe3+ at a rate constant of 4.5 x 10(3) M(-1)s(-1) at pH 4.0. Fe2+ is also very stable at a low pH. H2O2 generation results from the autoxidation of the semiquinone radical and was observed only when 2,5-DMHQ was incubated with Fe3+. Consistent with this conclusion, lipid peroxidation occurred only in incubation mixtures containing both 2,5-DMHQ and Fe3+. Catalase and hydroxyl radical scavengers were effective inhibitors of lipid peroxidation, whereas superoxide dismutase caused no inhibition. At a low concentration of oxalate (50 micro M), ferric ion reduction and lipid peroxidation are enhanced. Thus, the enhancement of both ferric ion reduction and lipid peroxidation may be due to oxalate increasing the solubility of the ferric ion. Increasing the oxalate concentration such that the oxalate/ferric ion ratio favored formation of the 2:1 and 3:1 complexes resulted in inhibition of iron reduction and lipid peroxidation. Our results confirm that hydroxyl radical formation occurs via the 2,5-DMBQ redox cycle.  相似文献   

15.
The effect of zinc on FeSO4/ascorbic acid-induced lipid peroxidation was measured by the thiobarbituric acid assay in various lipid systems including small unilamellar liposomes prepared from egg phosphatidylcholine (EPC), ionic micelles prepared from arachidonic acid (C20:4), non-ionic monocomponent micelles prepared from EPC-derived, methylated fatty acids, and an eicosatetrene emulsion. With the exception of C20:4 micelles, zinc inhibited lipid peroxidation in each of the above systems in a similar dose-related fashion, with 0.5 mM zinc having maximal effect. Gas-chromatographic fatty acid analysis too indicated a protective effect of zinc against FeCl3-induced lipid peroxidation in soybean PC vesicles, which do not contain C20:4 moieties. These findings, in particular the inhibition of lipid peroxidation in eicosatetrene emulsion, suggest that the presence of uncharged polar head groups, or packing of lipid molecules into ordered self-assemblages (membranes and micelles) have no critical influence on the antioxidant effect of zinc. The results with Fe2+ are compatible with the concept that zinc interferes with the formation of Fe2+-oxygen-enoic complexes. This mechanism, however, cannot account for the inhibition by zinc of the Fe#+-induced lipid peroxidation, suggesting the involvement of other types of zinc effects in these systems.  相似文献   

16.
Peroxidation of rat brain synaptosomes was assessed by the formation of thiobarbituric acid reactive products in either 50 mM potassium phosphate buffer (pH 7.4) or pH adjusted saline. In phosphate, addition of Fe2+ resulted in a dose-related increase in lipid peroxidation. In saline, stimulation of lipid peroxidation by Fe2+ was maximal at 30 uM, and was less at concentrations of 100 uM and above. Whereas desferrioxamine caused a dose-related inhibition of iron-dependent lipid peroxidation in phosphate, it stimulated lipid peroxidation with Fe2+ by as much as 7-fold in saline. The effects of desferrioxamine depended upon the oxidation state of iron, and the concentration of desferrioxamine and lipid. The results suggest that lipid and desferrioxamine compete for available iron. The data are consistent with the hypothesis that either phosphate or desferrioxamine may stimulate iron-dependent lipid peroxidation under certain circumstances by favoring formation of Fe2+/Fe3+ ratios.  相似文献   

17.
The rate of phospholipid hydrolysis in rat liver microsomal and mitochondrial membranes catalyzed by phospholipase A2 was shown to decrease after ascorbate + Fe2+-induced lipid peroxidation. The degree of inhibition was linearly dependent on the amount of lipid peroxidation products (malonyl dialdehyde) accumulated in the membrane. The decreased phospholipid hydrolysis rate in membranes after lipid peroxidation was registered using phospholipases A2 from two sources: porcine pancreas and bee venom. It was established that the inhibitory action of phospholipid peroxidation products was not linked with a direct effect on the enzyme and was not caused by depletion of phospholipase reaction substrates (as a result of lipid peroxidation). A possible role of lateral separation of oxidized and non-oxidized lipid phases in the mechanisms of inhibition of phospholipid hydrolysis by phospholipase A2 is discussed.  相似文献   

18.
The antioxidative effect of rutin (vitamin P) on Fe2+-induced lipid peroxidation (LPO) in bovine heart microsomes and lecithin liposomes was studied. It was shown that the LPO-induced inhibition of microsomes and liposomes in the presence of rutin occurs via two mechanisms, i.e., association of Fe2+ ions to form an inactive complex and a direct interaction between rutin and free radicals. The contribution of these mechanisms depends on the composition of the reaction mixture. In bovine heart microsomes and liposomes, ascorbic acid has a dual activity towards LPO. At high concentrations of Fe2+ necessary for LPO induction (approximately 1 x 10(-3) M), ascorbic acid blocks LPO, whereas at low Fe2+ concentrations (less than 1 x 10(-4) M) it has a prooxidative effect. A combined use of ascorbic acid and rutin results in an additive antioxidative effect at high Fe2+ concentrations (approximately 1.10(-3) M). However, at low Fe2+ concentrations rutin acts as an antagonist of the prooxidative effect of ascorbic acid.  相似文献   

19.
The mechanism of mitomycin C-induced lipid peroxidation has been studied at pH 7.5, using systems containing phospholipid membranes (liposomes) and an Fe3+-ADP complex with purified NADPH-cytochrome P-450 reductase. Both O2- and H2O2 are generated during the aerobic enzyme-catalyzed reaction in the presence of mitomycin C. Hydroxyl radical is formed in the reaction by the reduction of H2O2. This is catalyzed by the Fe2+-ADP complex in a phosphate buffer or to a lesser extent when in a Tris-HCl buffer. The reduction of Fe3+-ADP to Fe2+-ADP is mainly achieved by O2-. The resulting Fe2+-ADP in the presence of O2 forms a perferryl ion complex which is a powerful stimulator of lipid peroxidation. However, the formation of such an iron-oxygen complex is strongly inhibited by phosphate ions, which do not interfere with the generation of OH radicals. These findings suggest that, since lipid peroxidation occurs in a Tris-HCl buffer (but not in a phosphate buffer), the OH radical is unlikely to be involved in the observed lipid peroxidation process.  相似文献   

20.
The in vitro effects of alloxan and the product of its reduction dialuric acid (alone or in combination with copper ions) on lipid peroxidation, carbonyl content, GSH level and antioxidant enzyme activities in rat liver and kidney have been studied. The effects of Cu2+/alloxan and Cu2+/dialuric acid were compared with those of Fe3+/alloxan and Fe3+/dialuric acid. Unlike alloxan, dialuric acid increased liver and kidney lipid peroxidation; similar effects were registered in the presence of Fe3+. In the presence of Cu2+/dialuric acid, the lipid peroxidation was strongly inhibited and vice versa--the liver protein oxidation was increased. Alloxan and dialuric acid, as well as their combinations with Fe3+ had no effect on the total GSH level. Both substances did not affect the Cu2+-induced changes in GSH level, glucose-6-phosphate dehydrogenase and gluthatione reductase activities. In contrast, Cu2+ had no effect on dialuric-acid induced changes in gluthatione peroxidase and superoxide dismutase activities. The present in vitro results, concerning the metal dependence of the effects of alloxan and dialuric acid, are a premise for in vivo study of alloxan effects in metal-loaded animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号