首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study we propose a model-building approach based on the hierarchical integration of the main environmental factors (climate, topography/lithology, and land uses) determining the distribution of the spur-thighed tortoise in south-east Spain. Data on the presence/absence of the species were primarily based on information derived from interviews to shepherds. The hierarchical modelling exercise consisted of three steps. First, we constructed a model for the entire region using climate variables, thus obtaining a potential climatical model. Second, we introduced variables referring to topography and lithology that fall within the climatic distribution range ( potential model). Third, by using this second model as a starting point, we included land use variables to obtain the actual distribution model.
We analysed the changes in the values of probability of the presence of this species for a given cell between the potential and the actual model, assessing areas where habitat quality has decreased, been maintained or increased. The spatial representation of these changes was highly coherent. A discriminant analysis linked areas where habitat quality has dropped with agriculture landscapes, whereas those areas where habitat quality has been maintained or increased were located mainly in shrublands. Twenty-five per cent (479 km2) of the potential distribution of the species became suboptimal when land use was included, which emphasizes the importance of land use changes in both the range dynamics and the conservation of the spur-thighed tortoise in south-east Spain.  相似文献   

2.
The selection of relevant factors and appropriate spatial scale(s) is fundamental when modelling species response to climate change. We evaluated whether the effects of climate factors on species distribution/occurrence are consistently modelled over different spatial scales in birds, and used a two‐scale approach to identify species–climate correlations unlikely to represent causal effects. We used passerine birds inhabiting mountain grassland in the Apennines (Italy) as a model. We surveyed four grassland species at 400 sampling points, and built habitat selection models (territory scale) and distribution models (seven algorithms, landscape scale). We compared the effect of climatic predictors on occurrence/distribution highlighted by models over the two spatial scales, and with the effects supposed a priori based on the climatic niche of each species. Models at the territory level included at least one climatic predictor for three species; the observed effect of climatic predictors was seldom consistent with supposed effects. At the broadest scale, distribution models for all species included climatic predictors, with varying consistence with supposed effects and findings at the finer scale. Despite the importance of climate for species distribution, occurrence could be more directly related to other factors, with important implications for understanding/predicting the impacts of climate/environmental changes. Our approach revealed key variables for grassland birds, and highlighted the scale‐dependent perceived importance of climate. At the local scale, climate effects were weak or hard to interpret. We found a general lack of consistence between supposed and observed effects at the territory level, and between landscape and territory models. Our results show the importance of predicting the potential effect of climatic factors prior to the analyses, carefully selecting ecologically meaningful variables and scales, and evaluating the nature and scale of climate–species links. We call for caution when predicting under future climates, especially when mechanistic effects and consistency across scales are lacking.  相似文献   

3.
The effects of land-use management and environmental features at different scales on carabid beetle diversity and trait structure were assessed across olive groves in northeastern Portugal. We selected organic and integrated olive groves that were distinct in terms of specific management practices, local linear features and landscape configurations. Besides the management intensification levels, differences in carabid diversity and community traits were mainly due to local habitat and ecological linear structures at a finer spatial scale. Carabid community traits related to disturbance, namely traits of body size and species dispersal ability, responded to land-use intensity and particular olive grove features were influencing diversity patterns. Within the olive grove patches, larger and brachypterous species were associated to plots with more dense vegetation cover while macropterous and small-sized species were more associated to open areas. Also, larger carabid species benefitted from higher patch size heterogeneity within the landscape mosaics. Our findings indicate that the effects of farming system is contingent on the specific management practices, local and linear features present in agroecosystems such as olive groves. Particularly, the influence of local features on carabid diversity patterns and community traits linked to dispersal and movement may be crucial in maintaining pest control at a landscape scale.  相似文献   

4.
Characterizing the effects of landscape features on genetic variation is essential for understanding how landscapes shape patterns of gene flow and spatial genetic structure of populations. Most landscape genetics studies have focused on patterns of gene flow at a regional scale. However, the genetic structure of populations at a local scale may be influenced by a unique suite of landscape variables that have little bearing on connectivity patterns observed at broader spatial scales. We investigated fine-scale spatial patterns of genetic variation and gene flow in relation to features of the landscape in desert tortoise (Gopherus agassizii), using 859 tortoises genotyped at 16 microsatellite loci with associated data on geographic location, sex, elevation, slope, and soil type, and spatial relationship to putative barriers (power lines, roads). We used spatially explicit and non-explicit Bayesian clustering algorithms to partition the sample into discrete clusters, and characterize the relationships between genetic distance and ecological variables to identify factors with the greatest influence on gene flow at a local scale. Desert tortoises exhibit weak genetic structure at a local scale, and we identified two subpopulations across the study area. Although genetic differentiation between the subpopulations was low, our landscape genetic analysis identified both natural (slope) and anthropogenic (roads) landscape variables that have significantly influenced gene flow within this local population. We show that desert tortoise movements at a local scale are influenced by features of the landscape, and that these features are different than those that influence gene flow at larger scales. Our findings are important for desert tortoise conservation and management, particularly in light of recent translocation efforts in the region. More generally, our results indicate that recent landscape changes can affect gene flow at a local scale and that their effects can be detected almost immediately.  相似文献   

5.
Habitat invasion by alien plants is strongly modulated by environmental and landscape factors. However, the effect of landscape history remains largely unknown, despite the fact that it could play an important role in many stages of invasion processes, even long after land-use changes have occurred determining invasion debts. We analysed the effects of past landscape and recent changes therein, together with habitat type and current context (i.e. climate, topography and landscape), on three components of the invasion process at habitat scale: alien species presence (i.e. at least one alien species occurring), richness (number of species found) and abundance (mean species cover). We selected 531 plots in nine habitat types in Barcelona province (7725 km2) and recorded alien (neophyte) species cover. We performed Generalized Linear Models on these invasion components using the generated data and a set of predictors of habitat, context and landscape factors obtained from plot sampling and digital cartography. The results show that invasion components are affected by diverse habitat and context factors and, in some cases, by landscape history. Alien species presence is influenced by habitat type and the current environmental context, and by the number of habitat changes in the adjacent landscape; on the other hand, species richness is only associated with the current context and species abundance is only influenced by historical cropland cover. The association between alien species presence and abundance and past and recent landscape changes suggests the existence of accumulated invasion debts at habitat scale that might be relevant to habitat management.  相似文献   

6.
Aim We tested whether the distribution and cover of alien plant species in Europe was related to human disturbance and microclimate. Location Surveys were conducted at 13 sites across Europe, each containing a pair of landscapes with different land‐use intensities. Methods Sampling locations were chosen based on land use and microclimate at two scales: land use was characterized at the patch and landscape scale; climate was expressed as regional and local temperature. The slope of each sample location was derived from a digital elevation model. Cover of plant species was measured using point counts and analysed using mixed effect models. Species were classified as native, archaeophytes and neophytes (pre‐ versus post‐ad 1500 immigrants). Due to the zero inflation observed in the alien groups, their cover was analysed conditional on their presence. Results Anthropogenic disturbance was a significant explanatory variable, increasing the presence and cover of alien species and decreasing the cover of native species. Alien presence was increased in sites under agricultural management, while their cover responded to land use at both local and landscape scales (and to their interaction), such that only natural habitats in semi‐natural landscapes had low alien cover. Microclimate was important for neophytes, with presence concentrated around mesic conditions. Slope was relevant for archaeophytes and native species, suppressing the former group and promoting the latter one. Main conclusions We found that, at the European scale, the distribution of alien plants is related to anthropogenic disturbance more than to microclimatic differences. The presence of neophytes, however, was influenced by climate at local and regional scales, with the highest incidence under mesic conditions. The different patterns observed for the presence and cover of alien species suggest different mechanisms acting during their establishment and spread. They also suggest that to counteract the expansion of alien species natural habitats may need to be maintained at landscape scales.  相似文献   

7.
曹铭昌  刘高焕  徐海根 《生态学报》2011,31(21):6344-6352
生境在鸟类生活史中发挥着重要的作用,关系到鸟类的生存和繁衍。由于鸟类对环境变化的响应发生在等级序列空间尺度上,基于多尺度的研究更能深入刻画鸟类-环境之间关系。以丹顶鹤(Grus japonensis)为研究对象,以其迁徙和越冬的重要地区-黄河三角洲自然保护区为研究区域,应用等级方差分解法和等级划分法,分析丹顶鹤与微生境、斑块、景观尺度因子之间的关系,探求丹顶鹤生境选择的主要影响因素和尺度。等级方差分解结果表明,在第1等级水平,景观尺度因子与微生境、斑块尺度因子之间的联合效应大于独立效应,景观尺度因子的独立效应大于微生境和斑块尺度因子;在第2等级水平,景观尺度上的景观组成因子重要性大于景观结构因子,微生境尺度上的植被和水分因子为重要影响因素。等级划分结果表明,景观尺度上,翅碱蓬滩涂、水体面积大小是主要影响因素;微生境尺度上,植被盖度和水深为主要限制因子;在斑块尺度上,斑块类型对丹顶鹤生境选择最为重要。研究认为,在黄河三角洲自然保护区,景观尺度是影响丹顶鹤生境选择的主要尺度,景观尺度因子通过与微生境和斑块尺度因子的独立和联合作用制约着丹顶鹤在保护区的生境选择和空间分布格局。建议加强对翅碱蓬滩涂、芦苇沼泽、水体等湿地生境的保护和管理,规范和控制保护区内人类活动强度。  相似文献   

8.

Background  

To help conservation programs of the endangered spur-thighed tortoise and to gain better insight into its systematics, genetic variation and evolution in the tortoise species Testudo graeca (Testudines: Testudinidae) was investigated by sequence analysis of a 394-nucleotide fragment of the mitochondrial 12S rRNA gene for 158 tortoise specimens belonging to the subspecies Testudo graeca graeca, Testudo graeca ibera, Testudo graeca terrestris, and a newly recognized subspecies Testudo graeca whitei. A 411-nucleotide fragment of the mitochondrial D-loop was additionally sequenced for a subset of 22 T. graeca, chosen because of their 12S gene haplotype and/or geographical origin.  相似文献   

9.
Aim We investigated the roles of lithology and climate in constraining the ranges of four co‐distributed species of Iberian saline‐habitat specialist water beetles (Ochthebius glaber, Ochthebius notabilis, Enochrus falcarius and Nebrioporus baeticus) across the late Quaternary and in shaping their geographical genetic structure. The aim was to improve our understanding of the effects of past climate changes on the biota of arid Mediterranean environments and of the relative importance of history and landscape on phylogeographical patterns. Location Iberian Peninsula, Mediterranean. Methods We combined species distribution modelling (SDM) and comparative phylogeography. We used a multi‐model inference and model‐averaging approach both for assessment of range determinants (climate and lithology) and for provision of spatially explicit estimates of the species current and Last Glacial Maximum (LGM) potential ranges. Potential LGM distributions were then contrasted with the phylogeographical and population expansion patterns as assessed using mitochondrial DNA sequence data. We also evaluated the relative importance of geographical distance, habitat resistance and historical isolation for genetic structure in a causal modelling framework. Results Lithology poses a strong constraint on the distribution of Iberian saline‐habitat specialist water beetles, with a variable, but generally moderate, additional influence by climate. The degree to which potential LGM distributions were reduced and fragmented decreased with increasing importance of lithology. These SDM‐based suitability predictions were mostly congruent with phylogeographical and population genetic patterns across the study species, with stronger geographical structure in the genetic diversity of the more temperature‐sensitive species (O. glaber and E. falcarius). Furthermore, while historical isolation was the only factor explaining genetic structure in the more temperature‐sensitive species, lithology‐controlled landscape configuration also played an important role for those species with more lithology‐determined ranges (O. notabilis and N. baeticus). Main conclusions Our data show that lithology is an important constraint on the distribution and range dynamics of endemic Iberian saline‐habitat water beetles, in interaction with climate and long‐term climate change, and overrides the latter in importance for some species. Hence, geological landscape structure and long‐term history may codetermine the overall range and the distribution of genetic lineages in endemic species with specialized edaphic requirements.  相似文献   

10.
Species often respond to human‐caused climate change by shifting where they occur on the landscape. To anticipate these shifts, we need to understand the forces that determine where species currently occur. We tested whether a long‐hypothesised trade‐off between climate and competitive constraints explains where tree species grow on mountain slopes. Using tree rings, we reconstructed growth sensitivity to climate and competition in range centre and range margin tree populations in three climatically distinct regions. We found that climate often constrains growth at environmentally harsh elevational range boundaries, and that climatic and competitive constraints trade‐off at large spatial scales. However, there was less evidence that competition consistently constrained growth at benign elevational range boundaries; thus, local‐scale climate‐competition trade‐offs were infrequent. Our work underscores the difficulty of predicting local‐scale range dynamics, but suggests that the constraints on tree performance at a large‐scale (e.g. latitudinal) may be predicted from ecological theory.  相似文献   

11.
Aim  Habitat and climate heterogeneity may affect patterns of species diversity from the relatively local scale of communities to the broad biogeographical scale of continents. However, the effects of heterogeneity on species diversity have not been studied as widely at intermediate scales although differences among landscapes in local climate and habitat should maintain beta-diversity.
Location  Bailey ecoregions in the USA.
Methods  Using a geographically extensive dataset on bird distribution and abundance in 35 ecoregions, we tested for the effects of habitat and climate heterogeneity on beta-diversity at two discrete spatial scales: among sample points within landscapes, and among landscapes within ecoregions.
Results  Landscape-level beta-diversity typically accounted for 50% or more of gamma-diversity and was significantly and positively related to habitat heterogeneity (elevational range within an ecoregion) and climate heterogeneity (variation in potential evapotranspiration). Contrary to predictions, point-level beta-diversity was negatively related to habitat and climate heterogeneity, perhaps because heterogeneity constrains alpha-diversity at the landscape level. The geographical spatial separation of landscapes within an ecoregion did not significantly affect beta-diversity at either scale.
Main conclusions  Our results suggest that habitat selection and adaptation to local climate may be the primary processes structuring bird diversity among landscapes within ecoregions, and that dispersal limitation has a lesser role in influencing beta-diversity among landscapes.  相似文献   

12.
The aims of this study were to test the influence of grazing intensity, effects of local and landscape parameters, and regional effects on orthopteran assemblages. We made our investigations on extensively and intensively grazed cattle pastures in three regions of the Hungarian Great Plain. The regions differed in landscape complexity; one region was situated in a structurally simple landscape with large landscape units, one in a structurally complex landscape with marshy patches and trees in the grasslands and one in a landscape with intermediate structural complexity. In each region we had seven pairs of differently managed grasslands, which differed in grazing intensity. Grasshoppers were recorded once in July 2003 using sweepnet catches and visual and acoustic observations in two 95 m long transects at each site (84 transects in total). Botanical surveys and measurements of other local factors were also made for each transect. After samplings, we digitised the most important land-use types using aerial photographs to produce landscape scale parameters within 100 and 500 m circles around every site. Analysing the management, regional, landscape and local effects on species richness with linear mixed models, we showed only strong significant regional differences. Linear mixed models for Orthoptera abundance yielded significant regional effects and marginal management effects. However, after including local and landscape parameters in a separate model a marginal local effect was found instead of a management effect in addition to the significant regional effect. Logistic regression models of 15 species also revealed the importance of local factors, particularly the importance of grass height, which is highly dependent on grazing intensity. We conclude that management intensity has indirect effects on Orthoptera species richness and abundance. Landscape scale parameters are also important, at least for some species.  相似文献   

13.

Background

The palm family occurs in all tropical and sub-tropical regions of the world. Palms are of high ecological and economical importance, and display complex spatial patterns of species distributions and diversity.

Scope

This review summarizes empirical evidence for factors that determine palm species distributions, community composition and species richness such as the abiotic environment (climate, soil chemistry, hydrology and topography), the biotic environment (vegetation structure and species interactions) and dispersal. The importance of contemporary vs. historical impacts of these factors and the scale at which they function is discussed. Finally a hierarchical scale framework is developed to guide predictor selection for future studies.

Conclusions

Determinants of palm distributions, composition and richness vary with spatial scale. For species distributions, climate appears to be important at landscape and broader scales, soil, topography and vegetation at landscape and local scales, hydrology at local scales, and dispersal at all scales. For community composition, soil appears important at regional and finer scales, hydrology, topography and vegetation at landscape and local scales, and dispersal again at all scales. For species richness, climate and dispersal appear to be important at continental to global scales, soil at landscape and broader scales, and topography at landscape and finer scales. Some scale–predictor combinations have not been studied or deserve further attention, e.g. climate on regional to finer scales, and hydrology and topography on landscape and broader scales. The importance of biotic interactions – apart from general vegetation structure effects – for the geographic ecology of palms is generally underexplored. Future studies should target scale–predictor combinations and geographic domains not studied yet. To avoid biased inference, one should ideally include at least all predictors previously found important at the spatial scale of investigation.  相似文献   

14.
Northeast (NE) China covers three climatic zones and contains all the major forest types of NE Asia. We sampled 108 forest plots in six nature reserves across NE China to examine the influence of climate and local factors (canopy seasonality, successional stage, topography and forest structure) on geographic patterns of plant richness. We analyzed the relative effects of different factors at two spatial scales: the regional scale (across both latitude and altitude) and the local scale (along the altitudinal gradient within site). Our results showed that the relative importance of climate vs local factors differed remarkably depending on scale and functional group. While total and tree species richness were mainly limited by climate, herb and shrub richness was more related to local factors (especially at the local scale). In the climatic factors, heat sum was the major correlate of tree, shrub and total species richness, while herb richness was more associated with winter coldness. Precipitation was not a limiting factor for forest plant richness in NE China. Climate accounted for 34–76% of variation in richness at the regional scale, but explained only 0–44% at the local scale. Among the local factors, shrub species richness was sensitive to seasonal canopy openness, with higher richness in deciduous forests than in the evergreen needle-leaf forest. On the other hand, herb richness was sensitive to forest successional stage, with higher richness in middle- successional forests than in the early and late-sucessional forests. Local topography (aspect and position on slope) and forest structure (tree density) also showed remarkable influence on species richness. Our results suggest the importance of including local factors when examining large scale diversity gradient (especially for understory species), and the necessity of comparing diversity patterns among functional groups at different spatial scales.  相似文献   

15.
The nuthatch, Sitta europaea L., is a small (23 g), cavity-nesting woodland bird which, since the 1970s, has been expanding its range in Britain. However, within this range, the species is notably scarce in an area of eastern England. This gap in the species distribution could arise for several reasons including habitat quality, local landscape structure, regional landscape structure and climate. Field surveys and logistic models of breeding nuthatch presence/absence were used to investigate the relative influences of habitat quality, landscape structure and climate on the prevalence of nuthatches in eastern England. Field surveys of woods in the study area indicated that habitat quality was sufficient to support a nuthatch population. A model of habitat occupancy in relation to local landscape structure, developed in the Netherlands, was applied to the study area. The number of breeding pairs predicted for the study area by the model was lower than expected from habitat area alone, suggesting an additional effect of isolation. However, observed numbers were even lower than those predicted by the model. To evaluate the possible roles of climate and large-scale landscape structure on distribution, presence/absence data of breeding nuthatches at the 10-km grid square scale were related to variables describing climate and the amount and dispersion of broadleaved woodland. While climate in the study area appeared suitable, models including landscape variables suggested that the study area as a whole was unlikely to support nuthatches. Although suitable habitat was available, woodland in the study area appeared to be too isolated from surrounding nuthatch populations for colonisation to be successful. This situation may change if current increases in both national and regional populations continue, thus increasing the number of potential colonists reaching the study area. Received: 3 November 1997 / 22 January 1998  相似文献   

16.
Aim We consider three questions. (1) How different are the predicted distribution maps when climate‐only and climate‐plus‐terrain models are developed from high‐resolution data? (2) What are the implications of differences between the models when predicting future distributions under climate change scenarios, particularly for climate‐only models at coarse resolution? (3) Does the use of high‐resolution data and climate‐plus‐terrain models predict an increase in the number of local refugia? Location South‐eastern New South Wales, Australia. Methods We developed two species distribution models for Eucalyptus fastigata under current climate conditions using generalized additive modelling. One used only climate variables as predictors (mean annual temperature, mean annual rainfall, mean summer rainfall); the other used both climate and landscape (June daily radiation, topographic position, lithology, nutrients) variables as predictors. Predictions of the distribution under current climate and climate change were then made for both models at a pixel resolution of 100 m. Results The model using climate and landscape variables as predictors explained a significantly greater proportion of the deviance than the climate‐only model. Inclusion of landscape variables resulted in the prediction of much larger areas of existing optimal habitat. An overlay of predicted future climate on the current climate space indicated that extrapolation of the statistical models was not occurring and models were therefore more robust. Under climate change, landscape‐defined refugia persisted in areas where the climate‐only model predicted major declines. In areas where expansion was predicted, the increase in optimal habitat was always greater with landscape predictors. Recognition of extensive optimal habitat conditions and potential refugia was dependent on the use of high‐resolution landscape data. Main conclusions Using only climate variables as predictors for assessing species responses to climate change ignores the accepted conceptual model of plant species distribution. Explicit statements justifying the selection of predictors based on ecological principles are needed. Models using only climate variables overestimate range reduction under climate change and fail to predict potential refugia. Fine‐scale‐resolution data are required to capture important climate/landscape interactions. Extrapolation of statistical models to regions in climate space outside the region where they were fitted is risky.  相似文献   

17.
18.
Conservation biologists need to effectively monitor species given resource limitations and the inherent challenges of assessing long-term demographic processes. We assessed gopher tortoise (Gopherus polyphemus) abundance at a landscape scale and at the scale of 3 local populations within the Conecuh National Forest (CNF), Alabama, USA, between 1991 and 2017. We collected landscape-level data from line transect distance sampling arranged uniformly across the CNF during a single season (2011); we obtained data for local populations from long-term mark-recapture of individuals at 3 sites selected based on prior knowledge of high density at each. At a landscape scale, we estimated 5,242 (95% CI = 3,538–7,768) tortoises occurred across the approximately 34,000-ha forest, yielding a density of 0.14–0.32 tortoises/ha. These low densities across the landscape suggest that, on average, management activities across the property have not allowed tortoise populations to retain the social structure needed for long-term persistence. The 3 local populations, however, contained 25–60 individuals and densities of 1.9–6.9 tortoises/ha. Over the study period, populations at 2 sites were stable and the third experienced significant population growth. Mean annual survival of individuals was 0.89 and invariant across size classes. Overall, line transect distance sampling is important for assessing landscape-scale abundance of tortoises but may fail to detect local clusters of high-density sites important for population persistence. Our mark-recapture efforts at the local scale revealed that small populations on these high-density sites can exhibit long-term stability or growth even though they do not meet current established criteria for viability. Improved models that incorporate immigration and emigration and better reflect the dynamics of peripheral populations would assist in determining how such populations best contribute to species recovery and regional conservation targets. © 2020 The Wildlife Society.  相似文献   

19.
Question: What is the relative importance of national‐, regional‐ and within‐beach‐scale influences on vegetation composition and floristic affinities of New Zealand gravel beaches? Location: Coastal New Zealand. Methods: We sampled vegetation composition at 61 gravel beaches, quantifying site factors and adjacent landscape characteristics. Site, climate and geographic relationships between gravel beaches and related ecosystems were inferred using GIS data layers. To simultaneously investigate influences at different spatial scales, we used ordination and variation partitioning to examine relationships between composition and environment, and hierarchical models to understand floristic affinities with related ecosystems. Results: At a national scale, compositional variation among beaches reflects mean annual temperature and spring vapour pressure deficit; within regions, proximity of native woody vegetation and coastal turfs are important; within‐beach variation is related to substrate stability and particle size distribution. The gravel beach flora is 50% exotic, reflecting the highly modified nearby landscapes; 30% of species are characteristic of coastal sands, 20% of braided riverbeds and 8% of coastal turfs. Affinities with coastal sand communities are unrelated to microsite sandiness or area of sand dunes within 50 km. Affinities with braided riverbeds are related to the bed area of those rivers draining within 200 km and proportion of gravel in the substrate. Affinities with coastal turfs are related to proximity to the nearest turf and the proportion of humus in the substrate. Conclusions: Examining multiple scales of influence in a landscape context is essential to understand composition of naturally discrete ecosystems that span wide geographic ranges and to underpin their conservation management.  相似文献   

20.
Aim To examine the role of multiple landscape factors on the species richness patterns of native and introduced freshwater fish. Location Mediterranean streams, south‐western Iberian Peninsula, Europe (c. 87,000 km2). Methods We used a dataset of fish occurrences from 436 stream sites. We quantified the incremental explanatory power of multiple landscape factors in native, introduced, and overall local species richness using regression analysis. First, we related variation in local species richness across river basins to regional species richness (here, the basin species pool), area and factors of climate and topography. Second, we related within‐river basin local species richness to site’s climate and topography, and spatial structure derived from Principal Coordinates of Neighbour Matrices approach, after testing for species richness spatial autocorrelation; predicted local richness was mapped. Results Patterns of local species richness across river basins were strongly associated with regional species richness for overall, native and introduced species; annual rainfall showed a significant incremental contribution to variation in introduced species richness only. Within river basins, environmental factors were associated with local richness for the three species groups, though their contributions to the total explained variation were inferior to those of spatial factors; rainfall seasonality and stream slope were the most consistent environmental correlates for all species groups, while the influence of spatial factors was most prevalent for native species. Main conclusions Landscape factors operating among and within river basins seem to play a relevant role in shaping local species richness of both native and introduced species, and may be contingent on basin‐specific contexts. Nevertheless, local factors, such as habitat characteristics and biotic interactions and human‐induced disturbances may also be at play. Multiscale approaches incorporating a multitude of factors are strongly encouraged to facilitate a deeper understanding of the biodiversity patterns of Mediterranean streams, and to promote more effective conservation and management strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号