首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Bone marrow from mature goats and sheep was cultured in plasma clots, and three erythropoietin (ESF)-dependent responses-growth (colony formation), differentiation (globin production), and initiation of hemoglobin C (alpha2beta2C) synthesis--were quantitated. ESF concentrations below 0.01 U/ml supported colony growth and adult hemoglobin production in cultures of goat marrow, while maximal hemoglobin C synthesis (70%), as measured between 72 and 96 h in culture, required a 100-fold higher ESF concentration. Sheep marrow was cultured in a medium enriched to enhance growth and to permit complete maturation of colonies. These colonies active in hemoglobin synthesis between 24 and 96 h produced mainly adult hemoglobin, and only between 96 and 120 h did sheep colonies develop which produced mainly hemoglobin C (up to 70%). A similar heterogeneity may exist among goat colonies. Thus, when goat bone marrow was fractionated by unit gravity sedimentation, more hemoglobin C synthesis was observed in colonies derived from cells of intermediate sedimentation velocity than in colonies derived from the most rapidly sedimenting cells. Brief exposure of sheep (in vivo) and goat (in vitro) bone marrow to a high ESF concentration committed precursor cells to the generation of colonies which, even at low ESF concentration, produced hemoglobin C. Committment to hemoglobin phenotype appears to be an early and probably irreversible event in the development of an erythroid cell.  相似文献   

2.
Preincubation of C57BL adult marrow cells or CBA fetal liver cells with a 250-fold excess concentration of purified GM-CSF failed to reduce the frequency of cells forming eosinophil, megakaryocyte or erythroid colonies in subsequent agar cultures. When excess concentrations of purified GM-CSF were added to agar cultures stimulated by pokeweed mitogen-stimulated spleen conditioned medium (SCM), no reduction was observed in the frequency of eosinophil, megakaryocyte or erythroid colonies. Addition of 4 units of purified erythropoietin (EPO) to cultures of fetal liver or adult marrow cells stimulated by SCM increased the number of erythroid colonies but did not reduce the number of non-erythroid colonies or the non-erythroid content of mixed erythroid colonies. Although neither GM-CSF nor EPO alone was able to stimulate erythroid colony formation in agar cultures of fetal liver cells, small numbers of large erythroid colonies were stimulated to develop in cultures containing both purified regulators. Purified GM-CSF was also able to support the survival in vitro of a small proportion of erythroid colony-forming cells in fetal liver populations cultured initially in the absence of SCM and the survival of some eosinophil and megakaryocyte colony-forming cells in similar cultures of adult marrow cells. The results do not support the hypothesis that GM-CSF and EPO compete for a common pool of uncommitted progenitor cells. On the contrary, the data indicate that GM-CSF und EPO are able to collaborate in stimulating the proliferation of some erythropoietic cells. Furthermore, purified GM-CSF appears to be able to support temporarily the survival and/or initial proliferation of at least some cells forming erythroid, eosinophil and megakaryocyte colonies, even though GM-CSF is unable to stimulate the formation of colonies of these types.  相似文献   

3.
Previous studies have shown that mouse fetal erythroid precursor cells isolated by an immunological technique synthesize little or no globin and contain little, if any, globin mRNA, as assayed in a cell-free system (translatable mRNA). After culture for 10 hours in the presence of erythropoietin, there is a marked increase in globin synthesis and in translatable globin mRNA. The present studies were designed to measure directly the content of globin mRNA sequences during erythroid cell differentiation, by molecular hybridization with 3H-labeled DNA complementary to globin mRNA. The results indicate that few, if any, globin mRNA sequences are present in the total RNA of erythroid precursor cells. There is little or no pool of untranslated globin mRNA in these cells. After 10 hours of culture with erythropoietin, there is an increase in globin mRNA content, as ;easured by a change in the Cot1/2 values obtained by cDNA: mRNA hybridization with (Co) representing the concentration of RNA. Between 0 and 22 hours of culture, there is a 250-fold rise, and between 22 and 44 hours, a further 2-fold increase in globin mRNA content. During the 44 hours in culture, the number of cells in culture increases 2- to 3-fold. The number of globin mRNA molecules rises in erythroid precursor cells to an average value of 1800 molecules/cell during 22 hours of culture. In cultures without added erythropoietin, the absolute number of cells decreases, however, cells presumably induced to differentiate by exposure to erythropoietin in vivo continue to differentiate in vitro, accumulating globin mRNA and initiating globin synthesis.  相似文献   

4.
When substituted steroids of several classes are added to cultures of rat bone marrow cells in the presence of erythropoietin a consistent enhancement of the number of colonies of hemoglobin synthesizing cells is obtained. Maximum steroid effectiveness was found to be between 10(-6) and 10(-7) M. Representative compounds of several classes of steroids were examined for their ability to enhance colony growth, including delta 4-estrenes, delta 4-androstenes, 5alpha-H androstanes and estranes, 5beta-H estranes, pregnanes and androstanes. While testosterone and its 5alpha-H derivatives had little or no activity, many synthetic derivatives of testosterone were highly active in increasing erythroid colony growth. All 5beta-H androstanes, estranes, and all but one 5beta-H pregnane were active. Cortisol consistently inhibited colony growth and estradiol and progesterone had no significant effect.  相似文献   

5.
A Kurtz  W Jelkmann  C Bauer 《FEBS letters》1982,149(1):105-108
The effect of pure human insulin-like growth factor I (IGF I) on the colony formation of late stage erythroid precursor cells (CFU-e) from fetal mouse liver and adult bone marrow was studied in a serum-free culture system. We found that IGF I in physiological concentrations stimulated erythroid colony formation. The combined effect of IGF I and erythropoietin was smaller than the sum of their single effects. The number of colonies induced by IGF I was linearly dependent on the number of plated cells. Our results indicate that IGF I is the first clearly defined mitogen that stimulates the late stages of erythroid differentiation independently of erythropoietin.  相似文献   

6.
Erythroid colony formation in agar cultures of CBA bone marrow cells was stimulated by the addition of pokeweed mitogen-stimulated spleen conditioned medium (SCM). Optimal colony numbers were obtained when cultures contained 20% fetal calf serum and concentrated spleen conditioned medium. By 7 days of incubation, large burst or unicentric erythroid colonies occurred at a maximum frequency of 40–50 per 105 bone marrow cells. In CBA mice the cells forming erythroid colonies were also present in the spleen, peripheral blood, and within individual spleen colonies. A marked strain variation was noted with CBA mice having the highest levels of erythroid colony-forming cells. In CBA mice erythroid colony-forming cells were mainly non-cycling (12.5% reduction in colony numbers after incubation with hydroxyurea or 3H-thymidine). Erythroid colony-forming cells sedimented with a peak of 4.5 mm/hr, compared with CFU-S, which sedimented at 4.25 mm/hr. The addition of erythropoietin (up to 4 units) to cultures containing SCM did not alter the number or degree of hemoglobinisation of erythroid colonies. Analysis of the total number of erythroid colony-forming cells and CFU-S in 90 individual spleen colonies gave a correlation coefficient of r = 0.93 for these two cell types. In addition to benzidine-positive erythroid cells, up to 40% of the colonies contained, in addition, varying proportions of neutrophils, macrophages, eosinophils, and megakaryocytes. Taken together with the close correlation between the numbers of CFU-S in different adult hemopoietic tissues, including individual spleen colonies, the data indicate that the erythroid colony-forming cells expressing multiple hemopoietic differentiation are members of the hemopoietic multipotential stem cell compartment.  相似文献   

7.
Androgenic steroids and their non-androgenic 5p-H metabolites enhance the number of colonies of hemoglobin synthesizing cells grown from rat bone marrow in response to a standard (0.25 unitlml) concentration of erythropoietin. The target cells for two steroids were found to be different. Cells influenced by the androgen, fluoxymesterone (fluoxy), resembled cells responding to erythropoietin in their cycle characteristics, as measured by tritiated thymidine suicide, and in their physical characteristics, as determined by velocity sedimentation gradient separation. Cells responding to etiocholanolone (etio) had a much lower tritiated thymidine suicide rate and different sedimentation velocities. Reincubation of marrow cells with etio for two hours was sufficient to enhance erythroid colony growth by 84%, whereas a similar incubation with fluoxy produced no increment. These studies demonstrate that different classes of steroids may influence in vitro erythropoiesis by acting on distinct populations of marrow cells. Fluoxymesterone appears to act through cells already committed to respond to erythropoietin, while etiocholanolone appears to act on a separate, perhaps more primitive population of marrow cells.  相似文献   

8.
Erythroid colony formation in agar cultures of CBA cells was stimulated by the addition of pokeweed mitogen-stimulated C57BL spleen conditioned medium. Both 48-hour colonies ("48-hour benzidine-positive aggregates") and day 7 large burst or unicentric erythroid colonies ("erythroid colonies") developed, together with many neutrophil and/or macrophage colonies. In CBA mice, the cells forming erythroid colonies occurred with maximum frequency (650/10(5) cells) in 10- to 11-day-old yolk sac and fetal liver but were present also in fetal blood, spleen and bone marrow. The frequency of these cells fell sharply with increasing age and only occasional cells (2/10(5) cells) were present in adult marrow. A marked strain variation was noted, CBA mice having the highest levels of erythroid colony-forming cells. The erythroid colony-forming cells in 12-day CBA fetal liver were radiosensitive (DO 110-125 rads), mainly in cycle and were non-adherent, light density, cells sedimenting with a peak velocity of 6-9 mm/hr. These properties are similar to those of other hemopoietic progenitor cells in fetal tissues. The relationship of these apparently erythropoietin-independent erythroid colony-forming cells to those forming similar colonies after stimulation by erythropoietin remains to be determined.  相似文献   

9.
Remarkable differences were found between late erythroid progenitors (CFU-e) in cultures of murine yolk sac cells and those of fetal liver cells with respect to frequency, erythropoietin responsiveness and colony size. Cultures of yolk sac on day 11 of gestation showed a CFU-e population of lower frequency, less sensitivity to erythropoietin and smaller colony size than those from cultures of day 14 fetal liver cells. As the proportion of CFU-e to BFU-e was much lower in yolk sac than that in fetal liver, 48-96 h liquid culture experiments were done with these cells to examine the capacity of their precursors to generate a certain amount of CFU-e subpopulations. The cultures of yolk sac cells produced large numbers of CFU-e which formed some large-sized colonies but those of fetal liver cells generated only a small amount of CFU-e.  相似文献   

10.
We report the effect of four sources of hemopoietic growth factors, alone or in combination, on colony growth in serum-free cultures of bone marrow from normal mice or marrow from mice pre-treated with 5-fluorouracil (5-FU-bm). The four supplements were: mouse spleen conditioned medium (SCM, a source of multi-lineage colony-stimulating activity, multi-CSA), human placental conditioned medium (HPCM, a source of synergistic activity), pregnant mouse uterus extract (PMUE, a source of M-CSA) and erythropoietin (Epo). First, in cultures of normal marrow, only PMUE and SCM induced significant colony growth when added alone. The majority of those colonies contained granulocytes and macrophages (myeloid colonies). In Epo-supplemented cultures, only SCM supported the growth of erythroid bursts and mixed erythroid-myeloid colonies. HPCM thus appears to be a poor source of multi-CSA. Second, in cultures of 5-FU-bm, few colonies developed if any of the above supplements were added alone. Only SCM + Epo together stimulated the formation of a low number of very large, mixed erythroid/myeloid/megakaryocyte colonies. HPCM, but not SCM, synergized with PMUE to augment myeloid colony numbers. Hence, SCM appears to be a poor source of synergistic activity (SA). In cultures of 5-FU-bm already supplemented with HPCM + PMUE, the addition of Epo did not change total colony numbers but did induce erythroid differentiation in one third of the colonies present. These data suggest that multi-CSA and SA may be expressed by different factors and that 5-FU pre-treated marrow contains: a population of primitive multipotential progenitors which form large, mixed colonies in the presence of SCM + Epo, and a larger Epo-sensitive population which also requires HPCM + PMUE to form mixed colonies.  相似文献   

11.
The effect of the hormone, erythropoietin, on cultures of erythroblasts derived from the livers of fetal C57BL/6J mice was examined. An increase both in the content and in the rate of synthesis of normal adult mouse globin chains was detected in hormone-treated cultures. The rate of protein synthesis by individual erythroblasts does not increase in response to the hormone, whereas the absolute number of hemoglobin-synthesizing cells does increase and accounts for the observed stimulation of hemoglobin synthesis. The principal effect of erythropoietin appears to be upon the population of immature erythroid precursor cells which persists in the presence of the hormone, the cells maintaining their ability to replicate, and their capacity to differentiate into hemoglobinizing erythroblasts. In the absence of hormone, already committed erythroblasts continue their development, but erythropoiesis is not sustained.  相似文献   

12.
The effect of various agents which are known to increase the differentiation of Friend erythroleukemia cells was investigated in cultures of mouse bone marrow cells. N,N-dimethylacetamide (5 and 15 mM) and acetamide (60 mM) significantly increased the number of erythroid colonies observed. Tetramethylurea, dimethylformamide, pyridine N-oxide, and butyric acid were ineffective. Dimethylsulfoxide at a concentration of 1% significantly increased colony number in cultures of marrow cells obtained from male mice, but had no effect in cultures of female bone marrow cells.  相似文献   

13.
Human marrow cells, suspended in methylcellulose medium containing erythropoietin, give rise to discrete colonies of hemoglobin synthesizing cells. The presumption that such colonies originate from single progenitor cells has been tested directly in females with X-chromosome inactivation mosaicism using glucose-6-phosphate dehydrogenase (G-6-PD) as a marker. When individual colonies were grown from marrow cells obtained from two black females heterozygous for G-6-PD, only one or the other isoenzyme type was observed, but not both. These results are most consistent with the interpretation that human erythroid colonies arise from single cells.  相似文献   

14.
Using long-term culture techniques, it has been shown that stromal cells in the marrow microenvironment are essential for the continued production and self-renewal of hematopoietic stem cells. We previously reported the development of a methylcellulose colony assay for a population of marrow stromal progenitors called CFU-RF. In this paper, a method is described for subculturing cells from individual CFU-RF-derived colonies to allow conditioned medium production (StCM). StCM, prepared in this way, was found to possess an erythroid lineage-specific activity that stimulated the formation of macroscopic erythroid colonies in cultures containing erythropoietin (epo). Using dose-response curves, the KG1 colony assay, and antibody neutralization, it was shown that the activity could not be attributed to interleukin 3 (IL3) or granulocyte-macrophage colony-stimulating factor (GM-CSF). However, it was further shown that a monolayer of stromal cells, which had earlier been producing the erythroid activity, could be stimulated by IL1 to produce granulocytic colony-stimulating activity, but only as long as IL1 was present in the culture medium. These findings indicate a mechanism whereby the same stromal population could be modulated to promote growth and differentiation of different hematopoietic lineages.  相似文献   

15.
In vitro suspension culture procedures for erythroid progenitor cells make it possible for us to obtain large cultures of erythrocyte populations for the investigation of globin gene switching. In this study we aimed to establish optimized culture systems for neonatal and adult erythroblasts and to explore the globin expression patterns in these culture systems. To culture CD34+ cells purified from human umbilical cord blood (CB) and adult bone marrow (BM), we respectively replaced the fetal bovine serum (FBS) with human cord serum and human adult serum. These CD34+ cells were then induced to erythroid differentiation. All the globin mRNA (including alpha-, zeta-, beta-, gamma-and epsilon-globin), the hemoglobin (Hb)-producing erythroid cells and the cellular distribution of fetal hemoglobin (Hb F) were identified during the culture process. The results showed that the globin expression pattern during erythroid differentiation in our culture systems closely recapitulated neonatal and adult patterns of globin expression in vivo, suggesting that our specially optimized culture systems not only overcame the higher Hb F levels in the BM-derived CD34+ culture in FBS-containing medium but also eliminated the disadvantages of low cell proliferation rate and low globin mRNA levels in serum-free medium.  相似文献   

16.
Normal human serum significantly increased the growth of erythroid colonies from bone marrow colony-forming units-erythroid (CFU-e) which were enriched by using a set of monoclonal antibodies in a panning technique. This activity was still observed in cultures of enriched CFU-e plated near the limiting cell dilution. When the addition of erythropoietin was delayed so that only early CFU-e could survive, we observed that the growth of erythroid colonies was less affected in cultures containing erythropoietin and normal serum than in those containing erythropoietin only. We have concluded from this study that normal human serum acts on in vitro erythropoiesis by directly stimulating the growth of a population of early CFU-e.  相似文献   

17.
Both murine and human bone marrow cells were cultured in plasma clots which were formed inside diffusion chambers implanted into cyclophosphamide- and saline-treated mice. After an initial fall, the number of mouse bone marrow cells and numbers of mouse myeloid stem cells (CFU-C) and agar cluster-forming units rose faster in the cyclophosphamide-treated animals. These hosts also favored formation of myeloid (CFU-D-G) and erythroid (CFR-D-E) colonies and myeloid higher than those of CFU-C from the same marrow population. These observations suggest the existence of humoral factors stimulating granulocyte progenitor cell replication and differentiation. At its best the increment of CFU-D-E number was equivalent to that caused by a single 0.1 unit erythropoietin dose. Culture of normal human marrow cells resulted in colonies in the plasma clot containing only granulocytes and macrophages. Cyclophosphamide-treated host animals were essential for human CFU-D-G development. Plating efficiency for human marrow myeloid colonies was better in the conventional in vitro agar cultures than in diffusion chambers.  相似文献   

18.
The effect of various agents which are known to increase the differentiation of Friend erythroleukemia cells was investigated in cultures of mouse bone marrow cells. N, N-dimethylacetamide (5 and 15 mM) and acetamide (60 mM) significantly increased the number of erythroid colonies observed. Tetramethylurea, dimethylformamide, pyridine N-oxide, and butyric acid were ineffective. Dimethylsulfoxide at a concentration of 1% significantly increased colony number in cultures of marrow cells obtained from male mice, but had no effect in cultures of female bone marrow cells.  相似文献   

19.
The cellular control of the switch from embryonic to fetal globin formation in man was investigated with studies of globin expression in erythroid cells of 35- to 56-day-old embryos. Analyses of globins synthesized in vivo and in cultures of erythroid progenitors (burst-forming units, BFUe) showed that cells of the yolk sac (primitive) erythropoiesis, in addition to embryonic chains, produced fetal and adult globins and that cells of the definitive (liver) erythropoiesis, in addition to fetal and adult globins, produce embryonic globins. That embryonic, fetal, and adult globins were coexpressed by cells of the same lineage was documented by analysis of globin chains in single BFUe colonies: all 67 yolk sac-origin BFUe colonies and 42 of 43 liver-origin BFUe colonies synthesized epsilon-, gamma-, and beta-chains. These data showed that during the switch from embryonic to adult globin formation, embryonic and definitive globin chains are coexpressed in the primitive, as well as in the definitive, erythroid cells. Such results are compatible with the postulate that the switch from embryonic to fetal globin synthesis represents a time-dependent change in programs of progenitor cells rather than a change in hemopoietic cell lineages.  相似文献   

20.
To examine the importance of topological constraints on DNA during erythroid development, we measured the effects of camptothecin and teniposide, two tumoricidal agents which are also specific inhibitors of type I and type II topoisomerases respectively, on the formation of hematopoietic colonies by cultured human bone marrow cells. When added to bone marrow culture, each inhibitor alone impairs the formation of early BFU-E-derived colonies, late CFU-E-derived colonies and mixed hematopoietic (CFU-GEMM-derived) colonies by up to 100%. Inhibition of colony formation is directly related to the time of inhibitor addition and the inhibitor concentration tested. Although either inhibitor alone reduces colony formation by 90%, when added together at a submaximal concentration, camptothecin and teniposide exert a synergistic suppressive effect. Furthermore, addition of topoisomerase inhibitors to culture impairs hemoglobinization of colony erythroblasts in a time-dependent fashion. In contrast to the effects of topoisomerase inhibitors, the antiproliferative agent aphidicolin reduces erythroid colony number and size without altering hemoglobinization of colony erythroblasts. Since neither topoisomerase inhibitor alters the morphology of cultured cells, the capacity of cells to exclude trypan blue or the potential to form erythroid colonies through the interval required for the first progenitor cell division, it is unlikely that camptothecin or teniposide are cytotoxic to hematopoietic cells. Human mononuclear cells enriched in bone marrow lymphocytes and nucleated erythroblasts from both human and mouse sources release DNA into the detergent soluble fraction. Release requires functional topoisomerases and is altered by acute exposure to topoisomerase inhibitors. Our results suggest that topoisomerases are critical not only to proliferation but also to differentiation of human marrow erythroid progenitor cells and stem cells in culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号