首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
L A Witters  J M McDermott 《Biochemistry》1986,25(22):7216-7220
Because of certain similarities between acetyl-CoA carboxylase (ACC) and tubulin, and the recent demonstration of the ADP-ribosylation of tubulin by cholera toxin, we have investigated a potential role for ADP-ribosylation in the regulation of ACC activity. Incubation of purified rat liver ACC with cholera toxin in the presence of millimolar concentrations of [adenylate-32P]NAD results in a time-dependent incorporation of ADP-ribose into ACC of greater than 2 mol/mol of enzyme subunit, accompanied by a marked inactivation of enzyme activity. This effect is not mimicked by pertussis toxin, ADP-ribose, or ribose 5-phosphate. Incubation of labeled ACC with snake venom phosphodiesterase and alkaline hydrolysis release 32P-products tentatively identified by high-performance liquid chromatography as 5'-[32P]AMP and [32P]ADP-ribose, respectively. These data are consistent with a mono-ADP-ribosylation of ACC catalyzed by cholera toxin. Phosphodiesterase treatment of inactivated ACC partially restores enzyme activity. The effects of ADP-ribosylation of ACC are expressed both as a decrease in the enzyme Vmax and as an increase in the apparent Ka for citrate. These results suggest that ACC might be a substrate for endogenous ADP-ribosyltransferases and that this covalent modification could be an important regulatory mechanism for the modulation of fatty acid synthesis in vivo.  相似文献   

2.
3.
4.
The purpose of this study was to investigate the effects of long-chain fatty acids (LCFAs) on AMP-activated protein kinase (AMPK) and acetyl-coenzyme A carboxylase (ACC) phosphorylation and beta-oxidation in skeletal muscle. L6 rat skeletal muscle cells were exposed to various concentrations of palmitate (1-800 microM). Subsequently, ACC and AMPK phosphorylation and fatty acid oxidation were measured. A 2-fold increase in both AMPK and ACC phosphorylation was observed in the presence of palmitate concentrations as low as 10 microM, which was also accompanied by a significant increase in fatty acid oxidation. The effect of palmitate on AMPK and ACC phosphorylation was dose-dependent, reaching maximum increases of 3.5- and 4.5-fold, respectively. Interestingly, ACC phosphorylation was coupled with AMPK activation at palmitate concentrations ranging from 10 to 100 microM; however, at concentrations >200 microM, ACC phosphorylation and fatty acid oxidation remained high even after AMPK phosphorylation was completely prevented by the use of a selective AMPK inhibitor. This indicates that LCFAs regulate ACC activity by AMPK-dependent and -independent mechanisms, based on their abundance in skeletal muscle cells. Here, we provide novel evidence that the AMPK/ACC pathway may operate as a mechanism to sense and respond to the lipid energy charge of skeletal muscle cells.  相似文献   

5.
6.
7.
Plant acetyl-CoA carboxylase   总被引:4,自引:0,他引:4  
  相似文献   

8.
Wheat acetyl-CoA carboxylase   总被引:11,自引:0,他引:11  
The acetyl-CoA carboxylase present in both wheat germ and total wheat leaf protein contains ca. 220 kDa subunits. It is the major biotin-dependent carboxylase present in wheat chloroplasts. Active acetyl-CoA carboxylase purified from wheat germ is a homodimer with an apparent molecular mass of ca. 500 kDa. The enzyme from wheat germ or from wheat chloroplasts is sensitive to the herbicide haloxyfop at micromolar levels. The incorporation of 14C-acetate into fatty acids in freshly cut wheat seedling leaves provides a convenient in vivo assay for both acetyl-CoA carboxylase and haloxyfop.  相似文献   

9.
Acetyl-CoA carboxylase (ACC) catalyzes the formation of malonyl-CoA, an essential substrate for fatty acid biosynthesis and a potent inhibitor of fatty acid oxidation. Here, we provide evidence that glutamate may be a physiologically relevant activator of ACC. Glutamate induced the activation of both major isoforms of ACC, prepared from rat liver, heart, or white adipose tissue. In agreement with previous studies, a type 2A protein phosphatase contributed to the effects of glutamate on ACC. However, the protein phosphatase inhibitor microcystin LR did not abolish the effects of glutamate on ACC activity. Moreover, glutamate directly activated purified preparations of ACC when protein phosphatase activity was excluded. Phosphatase-independent ACC activation by glutamate was also reflected by polymerization of the enzyme as judged by size-exclusion chromatography. The sensitivity of ACC to direct activation by glutamate was diminished by treatment in vitro with AMP-activated protein kinase or cAMP-dependent protein kinase or by beta-adrenergic stimulation of intact adipose tissue. We conclude that glutamate, an abundant intracellular amino acid, induces ACC activation through complementary actions as a phosphatase activator and as a direct allosteric ligand for dephosphorylated ACC. This study supports the general hypothesis that amino acids fulfill important roles as signal molecules as well as intermediates in carbon and nitrogen metabolism.  相似文献   

10.
11.
Summary In this review, various experiments which establish the occurrence of covalent modification mechanisms, both in vivo and in vitro, in the control of acetyl-CoA carboxylase have been presented. It is interesting to note that phosphorylation of the carboxylase results in disaggregation of the active species. These studies indicate that aggregation and disaggregation of the enzyme are involved in the control of carboxylase activity. Our covalent modification mechanism and the allosteric control mechanism share a common ground in that both mechanisms affect the equilibrium between protomers and polymers of the enzyme. However, it is clear that the allosteric control mechanism cannot functon alone under normal physiological conditions. Covalent modification of the carboxylase is prerequiste for efficient functioning of the allosteric mechanism.There are many aspects of the regulation of acetyl-CoA carboxylase which require further clarification. However, it is now established that short-term control of acetyl-CoA carboxylase involves the covalent modification mechanism.This research was supported by a grant from National Institutes of Health (AM 12865).This is Journal Paper No. 7701 from Purdue Agriculture Experiment Station.  相似文献   

12.
In recent years the rapid regulation of acetyl-CoA (AcCoA) carboxylase (EC 6.4.1.2) has become of major interest because of the important role of malonyl-CoA in fatty acid synthesis, ketogenesis, and triglyceride production. AcCoA carboxylase is acutely regulated by two mechanisms: 1) phosphorylation-dephosphorylation and 2) polymer-protomer transition. Until recently polymer-protomer transition of AcCoA carboxylase in vivo has escaped detection. We developed a technique that estimates the intracellular proportion of polymer and protomer forms of AcCoA carboxylase based on the differential sensitivity of polymeric and protomeric AcCoA carboxylase to avidin inactivation. When the enzyme is in its highly aggregated conformation, the biotin prosthetic group of AcCoA carboxylase is protected from avidin binding. Thus the polymeric AcCoA carboxylase is more resistant than the protomeric conformation to avidin inactivation. Utilizing this technique with isolated liver cells we have been able to develop a model for the involvement of free fatty acids and glucagon in regulating polymer-protomer transition of AcCoA carboxylase, and the role of polymer as an intracellular determinant of AcCoA carboxylase activity. Our data suggest that the physiological regulation of AcCoA carboxylase involves the interaction of the phosphorylation mechanism with fatty acid-induced depolymerization. We propose that during periods of food deprivation the elevation in fatty acid-CoA esters promotes depolymerization of AcCoA carboxylase. In addition, glucagon induces phosphorylation of AcCoA carboxylase, which inhibits the enzyme's activity and facilitates acyl-CoA binding and depolymerization. The two separate mechanisms for regulating hepatic AcCoA carboxylase may work in concert to modulate the level of the regulatory metabolite malonyl-CoA.  相似文献   

13.
Mammalian isoforms of acetyl-CoA carboxylase (ACC-1 and ACC-2) play important roles in synthesis, elongation, and oxidation of long-chain fatty acids, and the possible significance of ACC in the development of obesity has led to interest in the development of inhibitors. Here, we demonstrate that pyridoxal phosphate (PLP) is a linear and reversible inhibitor of ACC-1 and ACC-2. ACC from rat liver and white adipose tissue (largely ACC-1) exhibited an IC50 of approximately 200 microm, whereas ACC-2 from heart or skeletal muscle exhibited an IC50 exceeding 500 microm. ACC from rat liver was equally sensitive to PLP following extensive purification by avidin affinity chromatography. When added before citrate, PLP inhibited ACC with a Ki of approximately 100 microm, reducing maximal activity >90% and increasing the Ka for citrate approximately 5-fold but having little effect on substrate Km values. Pre-treatment with citrate increased the apparent Ki for ACC inhibition by PLP by approximately 4-fold. Inhibition of ACC was reversed by removal of PLP, either by washing or by reaction with hydroxylamine or amino-oxyacetate. ACC was irreversibly inhibited and radiolabeled, to a stoichiometry of approximately 0.4 mol[H]/mol subunit, in the presence of PLP plus [3H]borohydride. Studies with structurally related compounds demonstrated that the reactive aldehyde and negatively charged substituents of PLP contribute importantly to ACC inhibition. The studies reported here suggest a rationale to develop ACC inhibitors that are not structurally related to the substrates or products of the reaction and an approach to probe the citrate-binding site of the enzyme.  相似文献   

14.
The polymerization of acetyl-CoA carboxylase   总被引:2,自引:0,他引:2  
Citrate, an allosteric activator of acetyl-CoA carboxylase, induces polymerization of an inactive protomeric form of the enzyme into an active filamentous form composed of 10-20 protomers. The light-scattering properties of the carboxylase were used to study the kinetics of its polymerization and depolymerization. From stopped flow kinetic studies, we have established that polymerization is a second order process, with a second order rate constant of 597,000 M-1 s-1. There appear to be two steps which limit polymerization of the inactive carboxylase protomer: 1) a rapid citrate-induced conformational change which is independent of enzyme concentration and leads to an active protomeric form of the enzyme (Beaty, N. B., and Lane, M. D. (1983) J. Biol. Chem. 258, 13043-13050, preceding paper) and 2) the dimerization of the active protomer, which constitutes the first step of polymerization and is enzyme concentration-dependent. Dimerization is the rate-limiting step of acetyl-CoA carboxylase polymerization. Depolymerization of fully polymerized acetyl-CoA carboxylase is caused by malonyl-CoA, ATP X Mg, and Mg2+. Both malonyl-CoA and ATP X Mg (and HCO-3) compete with citrate in the maintenance of a given state of the protomer-polymer equilibrium apparently by carboxylating the enzyme to form enzyme-biotin-CO-2 which destablizes the polymeric form. Free citrate is the species responsible for polymerizing the enzyme and Mg2+ causes depolymerization of the enzyme by lowering the concentration of free citrate.  相似文献   

15.
16.
The regulation of acetyl-CoA carboxylase (ACC) by glucose and other fuel molecules has been examined in Fao Reuber hepatoma cells and Syrian hamster insulin tumor (HIT) cells in order to determine whether lipogenic substrates acutely alter ACC activity and to examine the mechanism of such regulation. In Fao cells, preincubated in simple medium without substrates, glucose addition results in a rapid activation of ACC. This effect, mimicked by other fuels such as lactate, is characterized by an increase in enzyme Vmax and a decrease in the activation constant for citrate. Several lines of evidence indicate that this activation of ACC is due to enzyme dephosphorylation, including the kinetic changes observed, the persistence of enzyme activation through ACC isolation, the necessity of inclusion of sodium fluoride/EDTA in the cell lysis buffer for preservation of the glucose-induced change, and the direct demonstration of diminished 32P-labeling of ACC after glucose exposure. Identical effects of glucose are also observed in HIT cells, although the ACC activation is smaller in magnitude and less sensitive than that observed in Fao cells. Other insulin secretagogues such as glutamine, lactate, and isobutylmethylxanthine are also found to activate HIT ACC. Others have suggested that glucose-induced changes in malonyl-CoA in beta-cells may be linked to glucose-induced insulin secretion. However, studies conducted in late passage HIT cells, which fail to secrete insulin in response to glucose stimulation, reveal the same glucose-induced activation seen in early passages, secretion-competent HIT cells, suggesting that glucose-induced ACC activation is not by itself sufficient to provoke insulin secretion. Taken together, these findings indicate that glucose and other fuel molecules can play a major role in the rapid regulation of the fatty acid synthesis pathway. The activation of fatty acid synthesis by substrate-induced ACC dephosphorylation insures ultimate fuel storage of glucose-derived carbon as fatty acid, while substrate-induced increases in the ACC product, malonyl CoA, would serve to simultaneously limit the rate of fatty acid oxidation through its allosteric regulation of carnitine palmitoyltransferase I.  相似文献   

17.
The interaction of acetyl-CoA fragments with rat liver acetyl-CoA carboxylase has been studied. Dephosphorylated acetyl-CoA did not actually differ from acetyl-CoA in its substrate properties. Non-nucleotide analogues of the substrate, S-acetylpantatheine and it's 4'-phosphate, also possess substrate properties (Vmax = 1.5% and 15% of the maximal rate value of acetyl-CoA carboxylation, respectively). The nucleotide fragment in the acetyl-CoA molecule produces a marked effect on the thermodynamics of the substrate-enzyme interaction, and is apparently involved in activation and appropriate orientation of the acetyl group in the active site. The better substrate properties of S-acetylpantetheine 4'-phosphate and the inhibitory properties of pantetheine 4'-phosphate, compared to the unphosphorylated analogues, evidence an important role of the 5'-beta-phosphate of 3'-phosphorylated ADP residue in acetyl-CoA binding to the enzyme.  相似文献   

18.
Acetyl-CoA carboxylase, purified from rapidly freeze-clamped livers of rats maintained on a normal laboratory diet and given 0-5 units of insulin shortly before death, gives a major protein band (Mr 265,000) on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The carboxylase from untreated rats has relatively low activity (0.8 unit/mg protein when assayed in the absence of citrate) and high phosphate content (8.5 mol of Pi/mol of subunit), while the enzyme from livers of rats that received 5 units of insulin has higher activity (2.0 units/mg protein) and lower phosphate content (7.0 mol of Pi/mol of subunit). Addition of citrate activates both preparations with half-maximal activation (K0.5) at 1.0 and 0.6 mM citrate, respectively. The enzyme from rats that did not receive insulin is mainly in the octameric state (Mr approximately 2 x 10(6)), while that from rats that received insulin is mainly in the polymeric state (Mr approximately 10 x 10(6)). Thus, short-term administration of insulin results in activation of acetyl-CoA carboxylase, lowering of its citrate requirement, and dephosphorylation and polymerization of the protein. The insulin-induced changes in the carboxylase are probably due to dephosphorylation of the protein since similar changes are observed when the enzyme from rats that did not receive insulin is dephosphorylated by the Mn2(+)-dependent [acetyl-CoA carboxylase]-phosphatase 2. The effect of glucagon or epinephrine administration on acetyl-CoA carboxylase was also investigated. The carboxylase from fasted/refed rats has a relatively high specific activity (3.4 units/mg protein in the absence of citrate), lower phosphate content (4.9 mol of Pi/mol of subunit), and is present mainly in the polymeric state (Mr approximately 10 x 10(6)). Addition of citrate activates the enzyme with K0.5 = 0.2 mM citrate. Glucagon or epinephrine injection of fasted/refed rats yielded carboxylase with lower specific activity (1.4 or 1.9 units/mg, respectively, in the absence of citrate), higher phosphate content (6.4 or 6.7 mol of Pi/mol of subunit, respectively), and mainly in the octameric state (Mr approximately 2 x 10(6)). Treatment of these preparations with [acetyl-CoA carboxylase]-phosphatase 2 reactivated the enzyme (specific activity approximately 8 units/mg protein in the absence of citrate) and polymerized the protein (Mr approximately 10 x 10(6]. These observations indicate that insulin and glucagon, by altering the phosphorylation state of the acetyl-CoA carboxylase, play antagonistic roles in the acetyl-control of its activity and therefore in the regulation of fatty acid synthesis.  相似文献   

19.
Acetyl-CoA carboxylase from rat epididymal fat tissue is activated by phosphorylase phosphatase, a reaction which is inhibited by phosphatase inhibitor-1. This activation is accompanied by a corresponding loss of 32P from the labelled enzyme. These results establish that dephosphorylation of the enzyme causes its activation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号