首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Soils contain two different activities for oxidation of hydrogen   总被引:1,自引:0,他引:1  
Abstract Hydrogen oxidation rates were measured in a neutral compost soil and an acidic sandy loam at H2 mixing ratios of 0.01 to 5000 ppmv. The kinetics were biphasic showing two different K m values for H2, one at about 10–40 nM dissolved H2, the other at about 1.2–1.4 μM H2. The low- K m activity was less sensitive to chloroform fumigation than the high- K m activity. If sterile soil was amended with Paracoccus denitrificans or a H2-oxidizing strain isolated from compost soil, it exhibited only a high- K m (0.7–0.9 μM) activity. It also failed to utilize H2 mixing ratios below a threshold of 1.6–3.0 ppmv H2 (160–300 mPa). A similar result was obtained when fresh soil samples were suspended in water, and H2 oxidation was determined from the decrease of dissolved H2. However, H2 was again utilized to mixing ratios lower than 0.05 ppmv, if the supernatant of the soil suspension or the settled soil particles were dried onto sterile soil or purified quarz sand. Obviously, soils contain two different activities for oxidation of H2: (1) a high- K m, high-threshold activity which apparently is due to aerobic H2-oxidizing bacteria, and (2) a low- K m, low-threshold activity whose origin is unknown but presumably is due to soil enzymes.  相似文献   

2.
Metabolism of nitric oxide in soil and denitrifying bacteria   总被引:1,自引:0,他引:1  
Abstract Production and consumption of NO was measured under anaerobic conditions in a slightly alkaline and an acidic soil as well as in pure cultures of denitrifying Pseudomonas aeruginosa, P. stutzeri, P. fluorescens, Paracoccus denitrificans, Azospirillum brasilense , and A. lipoferum . Growing bacterial cultures reduced nitrate and intermediately accumulated nitrite, NO, N2O, but not NO2. Addition of formaldehyde inhibited NO production and NO consumption. In the presence of acetylene NO was reduced to N2O. Net NO release rates in denitrifying bacterial suspensions and in soil samples decreased hyperbolically with increasing NO up to mixing ratios of about 5 ppmv NO. This behaviour could be modelled by assuming a constant rate of NO production simultaneously with a NO consumption activity that increased with NO until V max was reached. The data allowed calculation of the gross rates ( P ) of NO production, of the rate constants ( k ), V max and K m of NO consumption, and of the NO compensation mixing ratio ( m c). In soil, P was larger than V max resulting in net NO release even at high NO mixing ratios unless P was selectively inhibited by chlorate + chlorite or by aerobic incubation conditions. In bacteria, V max was somewhat larger than P resulting in net NO uptake at high NO mixing ratios. Both P and V max were dependent on the supply of electron donor (e.g. glucose). Both in soil (aerobic or anaerobic) and in pure culture, the K m values of NO consumption were in a similar low range of about 0.5–6.0 nM. Anaerobic soil and denitrifying bacteria exhibited m c values of 1.6–2.1 ppmv NO and 0.2–4.0 ppmv NO, respectively.  相似文献   

3.
Abstract— A method is described for large scale isolation of glomerular complexes from rabbit cerebellum. The purity of the fraction is 90–95%, measured by quantitative electron microscopy. In addition biochemical markers indicate a high degree of particle integrity. The glomeruli occur as mechanically separable units at 20–40 days of animal age and the amount of protein per particle is 15–20 × 10−11 g. The glomeruli accumulate [3H]GABA, and exhibit both high ( K m 15μM) and low ( K m 0.5 mM) affinity uptake properties. Glomeruli oxidize α-glycerophosphate and succinate particularly well, while glutamate, pyruvate and α-ketoglutarate are less effective as respiratory substrates.  相似文献   

4.
Abstract A glycerol:NADP+ 2-oxidoreductase was purified to homogeneity from Phycomyces blakesleeanus sporangiospores. The enzyme had an M r of 34 000–39 000 and consisted of a single polypeptide. It had a pH optimum between 6–6.5 and a K m of 3.9 mM for dihydroxyacetone. The reverse reaction had a pH optimum of 9.4 and a K m for glycerol of more than 2 M. The enzyme was completely specific for NADPH ( K m= 0.01 mM) or NADP+ ( K m= 0.17 mM) and greatly preferred dihydroxyacetone over glyceraldehyde as substrate. Besides glycerol, l -arabitol and mesoerythritol were also oxidized by the enzyme. It was inhibited by ionic strengths in excess of 100 mM and is probably involved in the synthesis of glycerol during early spore germination.  相似文献   

5.
In the early postnatal period, energy metabolism in the suckling rodent brain relies to a large extent on metabolic pathways alternate to glucose such as the utilization of ketone bodies (KBs). However, how KBs affect neuronal excitability is not known. Using recordings of single NMDA and GABA-activated channels in neocortical pyramidal cells we studied the effects of KBs on the resting membrane potential ( E m) and reversal potential of GABA-induced anionic currents ( E GABA), respectively. We show that during postnatal development (P3–P19) if neocortical brain slices are adequately supplied with KBs, E m and E GABA are both maintained at negative levels of about −83 and −80 mV, respectively. Conversely, a KB deficiency causes a significant depolarization of both E m (>5 mV) and E GABA (>15 mV). The KB-mediated shift in E GABA is largely determined by the interaction of the NKCC1 cotransporter and Cl/HCO3 transporter(s). Therefore, by inducing a hyperpolarizing shift in E m and modulating GABA signaling mode, KBs can efficiently control the excitability of neonatal cortical neurons.  相似文献   

6.
Abstract: We have carried out assays for glutamic acid decarboxylase (GAD) in homogenates of brain and spinal cord from larval and adult sea lamprey ( Petromyzon marinus ). The enzyme had similar characteristics in both stages. Optimal pH was 6.8; optimal temperature was 27–30° C; K m at 27°C was 5 mM. GAD activity was distributed uniformly along the length of the spinal cord. Specific activities for the larval cord and brain were 26 and 63 nm CO2/mg protein/h. respectively. The specific activities for the adult cord and brain were 29 and 236 nm CO2/mg protein/h, respectively. Thus, the activity of cord homogenates did not change significantly between larval and adult stages, but that of the brain increased about fourfold.  相似文献   

7.
Abstract The presence of cytochrome P-450 and P-450-mediated benzo(a)pyrene hydroxylase activity in both microsomal and soluble fractions of the white rot fungus Phanerochaete chrysosporium was shown. The reduced carbon monoxide difference spectrum showed maxima at 448–450 and 452–454 nm for microsomal and cytosolic fractions, respectively. Both P-450 fractions produced a Type I substrate binding spectrum on addition of benzo(a)pyrene. Activity for benzo(a)pyrene hydroxylation was NADPH-dependent and inhibited by carbon monoxide. K m values for activity showed a difference between the cellular fractions with a K m of 89 μM for microsomal P-450 and 400 μM for cytosolic P-450. The V max values observed were 0.83 nmol min (nmol microsomal P-450) −1 and 0.4 nmol min−1 (nmol cytosolic P-450)−1. The results indicate that P-450-mediated benzo(a)pyrene hydroxylase activity could play a role in xenobiotic transformation by this fungus beside the known ligninolytic exocellular enzymes.  相似文献   

8.
Abstract: Kinetic studies suggested the presence of several forms of NAD-dependent aldehyde dehydrogenase (ALDH) in rat brain. A subcellular distribution study showed that low- and high- K m activities with acetaldehyde as well as the substrate-specific enzyme succinate semialdehyde dehydrogenase were located mainly in the mitochondrial compartment. The low- K m activity was also present in the cytosol (<20%). The low- K m activity in the homogenate was only 10–15% of the total activity with acetaldehyde as the substrate. Two K m values were obtained with both acetaldehyde (0.2 and 2000 μ m ) and 3,4-dihydroxyphenylacetaldehyde (DOPAL) (0.3 and 31 μ m ), and one K m value with succinate semialdehyde (5 μ m ). The main part of the aldehyde dehydrogenase activities with acetaldehyde, DOPAL, and succinate semialdehyde, but only little activity of the marker enzyme for the outer membrane (monoamine oxidase, MAO), was released from a purified mitochondrial fraction subjected to sonication. Only small amounts of the ALDH activities were released from mitochondria subjected to swelling in a hypotonic buffer, whereas the main part of the marker enzyme for the intermembrane space (adenylate kinase) was released. These results indicate that the ALDH activities with acetaldehyde, DOPAL and succinate semialdehyde are located in the matrix compartment. The low- K m activity with acetaldehyde and DOPAL, but not the high- K m activities and succinate semialdehyde dehydrogenase, was markedly stimulated by Mg2+ and Ca2+ in phosphate buffer. The low- and high- K m activities with acetaldehyde showed different pH optima in pyrophosphate buffer.  相似文献   

9.
Abstract Bacteria isolated from sea-water grew on putrescine and spermidine as the sole carbon and nitrogen source, but not on cadaverine. Cell suspensions of one isolate (PU-8) produced gamma aminobutyric acid (GABA) from putrescine in 0.02 M phosphate buffer (pH 7.6) containing 0.33 M NaCl and 15 mM MgCl2, and three other isolates produced the inducer when gabaculine (a natural inhibitor of GABA metabolism) was added. None of the isolates produced GABA from spermidine either in the absence or presence of gabaculine. Yields of GABA from putrescine were low in the suspension fluid and near stoichiometric quantities could only be obtained by extraction of incubations with methanol. Decreased NaCl (< 0.05 M) or increased pH resulted in an increase of GABA released into the suspension fluid during incubations, although in growth cultures only pH appeared to have a substantial effect. GABA release was not influenced by temperature in the range 17 to 32°C. Replacement of the normal concentration of NaCl (0.33 M) with equivalent LiCl, sodium glucuronate, or sucrose in cell suspensions did not result in increased GABA in the suspension fluid, indicating non-involvement of a sodium or chloride ion-dependent transport system in GABA release. The results show that marine bacteria can produce GABA, an inducer of marine invertebrate larval settlement, and indicate that extenal changes in osmotic pressure and pH which influence GABA release may be important factors to consider in the production of this inducer.  相似文献   

10.
Abstract: The relationship between the transport of thyroid hormones and that of amino acids was examined by measuring the uptake of amino acids that are characteristic substrates of systems L, A, and N, and the effect of 3,3',5-triiodo-L-thyronine (T3) on this uptake, in cultured astrocytes. Tryptophan and leucine uptakes were rapid, Na+-independent, and efficiently inhibited by T3 (half-inhibition at ∼ 2 μ M ). Two Na+-independent L-like systems (L1 and L2), common to leucine and aromatic amino acids, were characterized kinetically. System L2 had a low affinity for leucine and tryptophan ( K m= 0.3–0.9 m M ). The high-affinity system L1 ( K m∼ 10 μ M for both amino acids) was competitively inhibited by T3 with a K i of 2–3 μ M (close to the T3 transport K m). Several T3 analogues inhibited system L1 and the T3 transport system similarly. Glutamine uptake and α-(methylamino)isobutyric acid uptake were, respectively, two and 200 times lower than tryptophan and leucine uptakes. T3 had little effect on the uptakes of glutamine and α-(methylamino)isobutyric acid. The results indicate that the T3 transport system and system L1 are related.  相似文献   

11.
Abstract The minimum threshold concentrations of acetate utilization and the enzymes responsible for acetate activation of several methanogenic bacteria were investigated and compared with literature data. The minimum acetate concentrations reached by hydrogenotrophic methane bacteria, which require acetate as carbon source, were between 0.4 and 0.6 mM. The acetoclastic Methanosarcina achieves acetate concentrations between 0.2 and 1.2 mM and Methanothrix between 7 and 70 μM. For the activation of acetate most of the hydrogenotrophic methane bacteria investigated use an acetyl-CoA synthetase with a relatively low K m (40–90 μM) for acetate. although the affinity for acetate was high, the hydrogenotrophic methane bacteria were not able to remove acetate to lower concentrations than the acetoclastic methane bacteria, neither in pure cultures nor in anaerobic granular sludge samples. Based on these observations, it is not likely that hydrogenotrophic methanogens compete strongly for acetate with the acetoclastic methane bacteria.  相似文献   

12.
Reaction of Muscimol with 4-Aminobutyrate Aminotransferase   总被引:1,自引:1,他引:0  
Abstract: The reaction of muscimol as amino donor substrate for GABA transaminase (GABA-T) has been studied using enzyme purified from rabbit brain. Enzyme activity was assayed by measuring the glutamate produced using glutamate dehydrogenase. Kinetic parameters determined at 37°C were for GABA, K m (app) = 1.92 ± 0.24 m M , specific activity = 7.33 ± 0.27 μmol/min/mg ( k cat= 13.7s−1), and for muscimol, K m (app) = 1.27 ± 0.15 m M , specific activity = 0.101 ± 0.009 μmol/min/mg ( k cat= 0.19s−1). Addition of muscimol to the enzyme caused the spectral changes associated with conversion of the pyridoxaldimine form to the pyridoxamine form, and the first-order rate constant for the reaction showed a dependence on muscimol concentration that followed saturation kinetics, with a K = 1.1 ±0.18 m M and k max= 0.065 ± 0.004 s−1 (19°C). The rate of spectral change observed on addition of muscimol to ornithine transaminase was extremely slow—at least an order of magnitude slower than that seen with GABA-T.  相似文献   

13.
Three exo-glucanases, two endo-glucanases and two β-glucosidases were separated and purified from the culture medium of Aspergillus nidulans. The optimal assay conditions for all forms of cellulase components ranged from pH 5.0 to 6.0 and 50°C and 65°C for exo-glucanases and endo-glucanases but 35°C and 65°C for β-glucosidases. A close relation of enzyme stability to their optimal pH range was observed. All the cellulase components were stable for 10 min at 40–50°C. Exo-II and Exo-III ( K m, 38.46 and 37.71 mg/ml) had greater affinity for the substrate than Exo-I ( K m, 50.00 mg/ml). The K m values of Endo-I and Endo-II (5.0 and 4.0 mg/ml) and their maximum reaction velocities ( V max, 12.0 and 10.0 IU/mg protein) were comparable. β-Glucosidases exhibited K m values of 0.24 and 0.12 mmol and V max values of 8.00 and 0.67 IU/mg protein. The molecular weights recorded for various enzyme forms were: Exo-I, 29000; Exo-II, 72500; Exo-III, 138000; Endo-I, 25000; Endo-II, 32500; β-Gluco-I, 14000 and β-Gluco-II, 26000. Exo- and endo-glucanases were found to require some metal ions as co-factors for their catalytic activities whereas β-glucosidases did not. Hg2+ inhibited the activity of all the cellulase components. The saccharification studies demonstrated a high degree of synergism among all the three cellulase components for hydrolysis of dewaxed cotton.  相似文献   

14.
Abstract— The uptake and binding of [3H]GABA and the binding of [3H]muscimol were measured in cell-free fractions of crayfish muscle. The uptake of GABA was saturable, of high affinity ( K m= 0.5μ m ), and inhibited by low concentrations of compounds believed to block GABA uptake specifically, such as nipecotic acid and 2,4,diaminobutyric acid. The GABA uptake activity was localized to sucrose gradient fractions enriched in sarcolemma as demonstrated by marker enzymes and electron microscopy. The binding of the potent GABAergic agonist muscimol was also localized to the sarcolemma. The binding was saturable, of high affinity (K D = 9 n m ), and inhibited by GABA (K 1 = 125 n m ) and by low concentrations of receptor-specific GABA analogues, such as isoguvacine, imidazole acetic acid, and 3-aminopropane sulfonic acid. The rank order for inhibition by GABA analogues of [3H]muscimol binding sites correlated very well with activity on GABA synapses in invertebrates, consistent with specific postsynaptic receptor labeling.  相似文献   

15.
A range of marine photosynthetic picoeukaryote phytoplankton species grown in culture were screened for the presence of extracellular carbonic anhydrase (CAext), a key enzyme in inorganic carbon acquisition under carbon- limiting conditions in some larger marine phytoplankton species. Of the species tested, extracellular carbonic anhydrase was detected only in Micromonas pusilla Butcher. The rapid, light-dependent development of CAext when cells were transferred from carbon-replete to carbon-limiting conditions was regulated by the available free- CO2 concentration and not by total dissolved inorganic carbon. Kinetic studies provided support for a CO2- concentrating mechanism in that the K 0.5[CO2] (i.e. the CO2 concentration required for the half-maximal rate of photosynthesis) was substantially lower than the K m[CO2] of Rubisco from related taxa, whilst the intracellular carbon pool was at least seven fold greater than the extracellular DIC concentration, for extracellular DIC values 1.0 m m .
It is proposed that when the flux of CO2 into the cell is insufficient to support the photosynthetic rate at an optimum photon irradiance, the development of CAext increases the availability of CO2 at the plasma membrane. This ensures rapid acclimation to environmental change and provides an explanation for the central role of M. pusilla as a carbon sink in oligotrophic environments.  相似文献   

16.
Abstract— The activity of 4-aminobutyric-2-oxoglutaric acid transaminase (GABA transaminase) and succinic semialdehyde dehydrogenase was determined in total rat brain homogenate. GABA transaminase activity was measured using a coupled enzyme method which utilizes endogenous succinic semialdehyde dehydrogenase to convert the formed succinic semialdehyde into succinate. The concurrently produced NADH was used as an estimate of GABA transaminase activity. This method could be used since it was shown that the dehydrogenase was about twice as active as the transaminase and because no significant accumulation of the intermediate succinic semialdehyde could be detected. GABA transaminase was inhibited by high ionic strength. In contrast NaCl decreased the apparent K m and increased V max for succinic semialdehyde dehydrogenase at high but not al low tissue concentrations. Increasing tissue concentration also resulted in a decrease of the apparent K m, but did not change the Vmax of succinic semialdehyde dehydrogenase and it is suggested that this enzyme can exist in two distinct states of aggregation, one with a high and one with a low affinity for succinic semialdehyde. The high affinity form of the enzyme is thought to prevent succinic semialdehyde from accumulation in the GABA transaminase assay. It is concluded that within certain limits the coupled enzyme method described here can be used for the assay of GABA transaminase activity.  相似文献   

17.
This paper is concerned with the bionomics and demography of Pediculaster fletchmanni Wicht (Acari: Siteroptidae) under controlled conditions (20 ± l, 22 ± 1 and 25 ± 1℃, 70% ± 5% relative humidity and a photoperiod of 16L : 8D hours). Glass Petri dishes inoculated with Trichoderma sp. mycelia were used as substrate and food source. The mean developmental time of the egg and the active larva did not differ significantly at the various constant temperatures, but these periods were significantly different for the quiescent larval stage. The preoviposition period ranged from 2.3 to 2.8 days, the ovipositional period increased with temperature increase, and all females died immediately after oviposition. The development of active larvae was the fastest of all life stages. The developmental threshold ranged between 5.25-14.22℃ the highest value being observed for the quiescent larval development. For immature development required 89.29 degree-days. Values of rm (intrinsic rate of increase) were 0.229, 0.398 and 0.386 for 20, 22 and 25℃ respectively. Finite rates of increase (λ) increased along with increasing temperature from 20-25℃ consequently the population doubling time (D) and mean generation time (T) showed significant differences with increasing temperature.  相似文献   

18.
Abstract The plasmid-mediated TEM-1 and TEM-2 β-lactamases are the most commonly encountered among Gram-negative bacteria. They belong to molecular class A, and differ by one amino acid at position 39: TEM-1 have a glutamine and TEM-2 a lysine. Kinetic parameters ( k cat and K m) and catalytic efficiency ( k cat/ K m) of TEM-1 and TEM-2 β-lactamases are slightly, but significantly different. For all antibiotics except methicillin and cefazolin, the catalytic efficiency values of TEM-2 are clearly greater than that of TEM-1. Molecular modelling of TEM-2, when compared to that of TEM-1, showed an additional ionic bond between Lys-39 and Glu-281.  相似文献   

19.
Abstract Bradyrhizobium japonicum and Shewanella putrefaciens were unable to oxidize hydrogen at atmospheric concentrations (0.55 ppmv), neither in suspension nor when added to sterile soil. The K m-value of S. putrefaciens for H2 (39 ppmv in gas phase, 0.22 μM in aqueous phase), using Fe(III) as electron acceptor, showed a 4–5-fold higher affinity for H2 than that of B. japonicum (1200 ppmv; 0.84 μM) or other hydrogen-oxidizing bacteria. However, the V max (4.54 fmol H2 h−1 cell −1) and threshold (> 0.5 ppmv; 0.35 nM) of S. putrefaciens and the V max (7.19 fmol H2 h−1 cell−1) and threshold (> 0.5 ppmv; 0.35 nM) of B. japonicum were in the same order of magnitude as data for Knallgas bacteria from relevant literature. To enable hydrogen oxidation in soil the soil-samples with S. putrefaciens even had to be supplemented with Fe(III). Fresh soil, on the other hand, oxidized hydrogen very efficiently below atmospheric mixing ratios, demonstrating that there must be other oxidation activities in soil.  相似文献   

20.
Abstract: Rat striatal tyrosine hydroxylase can be isolated in both a soluble and a synaptic membrane-bound form. The membrane-bound enzyme, which exhibits lower K ms for both tyrosine (7 μ M ) and reduced pterin cofactor (110 μ M ) relative to the soluble enzyme (47 μ M and 940 μ M , respectively), can be released from the membrane fraction with mild detergent, and concomitantly its kinetic properties revert to those of the soluble enzyme. Treatment of membrane-bound tyrosine hydroxylase with C. perfringens phospholipase C increased the K m of the enzyme for tyrosine to 27 μ M and the V max by 60% without changing the K m for cofactor. In contrast, treatment of membrane-bound tyrosine hydroxylase with V. russelli phospholipase A2 increased the K m for tyrosine to 48 μ M increased the V max and increased the K m for cofactor to 560 μ M . The enzyme remained bound to the membrane fraction following both phospholipase treatments. Addition of phospholipids to treated enzyme could partially reverse the effects of phospholipase A2 treatment, but not the effects of phospholipase C treatment. The kinetic properties of phospholipase-treated, detergent-solubilized tyrosine hydroxylase were identical to those of the control solubilized enzyme. Tyrosine hydroxylase appears to interact with synaptic membrane components to produce at least two separately determined consequences for the kinetic properties of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号