共查询到20条相似文献,搜索用时 15 毫秒
1.
An optimal way to design an enzymatic process for the production of betalactam antibiotics based on thermodynamic and kinetic studies is described. The study was performed on model reactions involving synthesis of cephalosporin-acids (cephalotin, cefazolin, cefoxitin) using immobilised cephalosporin-acid synthetase from Escherichia coli as biocatalyst, and aminocephalosporins (cephalexin) using immobilised cells of Xanthomonas rubrilineans containing the aminocephalosporin synthetase. The possibility of direct synthesis of cephalotin and cefoxitin was shown, the main equilibrium parameters were determined and the operation conditions were evaluated. The maximum key amino acid conversion to product of approximately 90% for cefoxitin and cephalotin was achieved using initial concentrations of the corresponding key amino acids of 0.05 u M and, respectively, 2-fold and 4-fold molar excess of the carboxylic acids. Cefazolin and cephalexin production by enzymatic synthesis with using of corresponding biocatalyst with a mechanism of action involving the acylenzyme intermediate was shown possible. The kinetic parameters of the process were estimated and the relationship between the maximum antibiotic yield and the initial concentrations of the substrate and nucleophile in the kinetically controlled synthesis was determined. The technologies for cefazolin and cephalexin enzymatic synthesis were designed and the cefazolin technology was optimised. Maximum yields of cefazolin and cephalexin of more than 90% were predicted by the kinetic model using 4-6-fold molar excess of the acylating agents and maximum yields of approximately 85% were achieved in experiments. 相似文献
2.
An optimal way to design an enzymatic process for the production of betalactam antibiotics based on thermodynamic and kinetic studies is described. The study was performed on model reactions involving synthesis of cephalosporin-acids (cephalotin, cefazolin, cefoxitin) using immobilised cephalosporin-acid synthetase from Escherichia coli as biocatalyst, and aminocephalosporins (cephalexin) using immobilised cells of Xanthomonas rubrilineans containing the aminocephalosporin synthetase. The possibility of direct synthesis of cephalotin and cefoxitin was shown, the main equilibrium parameters were determined and the operation conditions were evaluated. The maximum key amino acid conversion to product of approximately 90% for cefoxitin and cephalotin was achieved using initial concentrations of the corresponding key amino acids of 0.05 λM and, respectively, 2-fold and 4-fold molar excess of the carboxylic acids. Cefazolin and cephalexin production by enzymatic synthesis with using of corresponding biocatalyst with a mechanism of action involving the acylenzyme intermediate was shown possible. The kinetic parameters of the process were estimated and the relationship between the maximum antibiotic yield and the initial concentrations of the substrate and nucleophile in the kinetically controlled synthesis was determined. The technologies for cefazolin and cephalexin enzymatic synthesis were designed and the cefazolin technology was optimised. Maximum yields of cefazolin and cephalexin of more than 90% were predicted by the kinetic model using 4-6-fold molar excess of the acylating agents and maximum yields of approximately 85% were achieved in experiments. 相似文献
3.
4.
《Journal of receptor and signal transduction research》2013,33(5-6):361-380
AbstractThe binding of insulin to its receptor in rat adipocyte and isolated plasma membranes has been measured. The adipocyte insulin receptor has been reconstituted in lecithin liposomes and the binding of insulin investigated. A method of interpreting binding data presented as binding vs. the logarithm of free insulin concentration (binding isotherms) in terms of the binding potential concept of Wyman (1965) is described, and the results are compared with the commonly used Scatchard analysis of binding. The binding potential approach enables binding constants and Gibbs energies of formation of the insulin-receptor complex to be determined as a function of insulin bound. The limiting Gibbs energies of binding at 15°C to intact cells, membranes and liposomes were found to be -55, -52 and -49 kJ mol?1 respectively. The affinity of the receptor for insulin decreases smoothly with increase in binding in all three systems. For intact adipocytes the number of insulin receptors per cell is found to be approximately 43,000. 相似文献
5.
Yuno Lee Joong-jae Lee Songmi Kim Sang-Chul Lee Jieun Han Woosung Heu Keunwan Park Hyun Jung Kim Hae-Kap Cheong Dongsup Kim Hak-Sung Kim Keun Woo Lee 《PloS one》2014,9(5)
Repeat proteins have recently attracted much attention as alternative scaffolds to immunoglobulin antibodies due to their unique structural and biophysical features. In particular, repeat proteins show high stability against temperature and chaotic agents. Despite many studies, structural features for the stability of repeat proteins remain poorly understood. Here we present an interesting result from in silico analyses pursuing the factors which affect the stability of repeat proteins. Previously developed repebody structure based on variable lymphocytes receptors (VLRs) which consists of leucine-rich repeat (LRR) modules was used as initial structure for the present study. We constructed extra six repebody structures with varying numbers of repeat modules and those structures were used for molecular dynamics simulations. For the structures, the intramolecular interactions including backbone H-bonds, van der Waals energy, and hydrophobicity were investigated and then the radius of gyration, solvent-accessible surface area, ratio of secondary structure, and hydration free energy were also calculated to find out the relationship between the number of LRR modules and stability of the protein. Our results show that the intramolecular interactions lead to more compact structure and smaller surface area of the repebodies, which are critical for the stability of repeat proteins. The other features were also well compatible with the experimental results. Based on our observations, the repebody-5 was proposed as the best structure from the all repebodies in structure optimization process. The present study successfully demonstrated that our computer-based molecular modeling approach can significantly contribute to the experiment-based protein engineering challenge. 相似文献
6.
7.
Cell damage has been observed in suspension cell cultures with air sparging, especially in the absence of any protective additives. This damage is associated with cells adhering to bubbles, and it has been shown that if this adhesion is prevented, cell damage is prevented. This article presents a thermodynamic approach for predicting cell adhesion at the air-medium interface. With this relationship it can be shown that cell-gas adhesion can be prevented by lowering the surface tension of the liquid growth medium through the addition of surface-active protective additives. The thermodynamic relationship describes the change in free energy as a function of the interfacial tensions between the (i) gas and liquid phases, (ii) gas and cell phases, and (iii) liquid and cell phases. Experimental data, along with theoretical and empirical equations, are used to quantify the changes in free energy that predict the process of cell-gas adhesion. The thermodynamic model is nonspecific in nature and, consequently, results are equally valid for all types of cells. (c) 1995 John Wiley & Sons, Inc. 相似文献
8.
9.
10.
11.
Understanding of protein structure and stability gained to date has been acquired through investigations made under dilute conditions where total macromolecular concentration never surpasses 10 g l−1. However, biological macromolecules are known to evolve and function under crowded intracellular environments that comprises of proteins, nucleic acids, ribosomes and carbohydrates etc. Crowded environment is known to result in altered biological properties including thermodynamic, structural and functional aspect of macromolecules as compared to the macromolecules present in our commonly used experimental dilute buffers (for example, Tris HCl or phosphate buffer). In this study, we have investigated the thermodynamic and structural consequences of synthetic crowding agent (Ficoll 70) on three different proteins (Ribonuclease-A, lysozyme and holo α-lactalbumin) at different pH values. We report here that the effect of crowding is protein dependent in terms of protein thermal stability and structure. We also observed that the structural characteristics of the denatured state determines if crowding will have an effect or not on the protein stability. 相似文献
12.
Models of adsorption were considered, which describe the binding of biologically active ligands on DNA templates. The binding is described most comprehensively and in greatest detail by the distribution function, which determines the probability of detecting the preset number of adsorbed ligands on the template. In the case of noncooperative binding, this function corresponds to the Gaussian distribution and is characterized by two quantities: the mean value of the occupation of the template by ligands and the dispersion of occupation. The accuracy of the occupation of the template by ligands is inversely proportional to dispersion. As the length of the template and the number of reaction sites covered by one ligand upon binding increase, the accuracy of the occupation of the template by ligands increases. An important characteristic of binding is the degree of coverage of the template by ligands. This characteristic represents the portion of template reaction sites covered by all ligands adsorbed on the template. If polycations are bound to nucleic acid molecules, the coverage of the template determines the transition of nucleic acids to a compact state. The degree of template coverage for extended ligands depends only slightly on the binding constant in a wide range of concentrations of a free ligand in solution. Different adsorption models are considered from the unified point of view. The classification of cooperative interactions for a wide class of systems is given, from situations when several ligands are bound on nucleic acid templates to a situation when templates change by the action of ligands and begin to interact with each other. 相似文献
13.
14.
15.
16.
E. P. Cathcart 《BMJ (Clinical research ed.)》1938,2(4048):273-276
17.
18.
19.
Robert P. Warin 《BMJ (Clinical research ed.)》1966,2(5521):1067-1068
20.