首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The general purpose of normalization of EMG amplitude is to enable comparisons between participants, muscles, measurement sessions or electrode positions. Normalization is necessary to reduce the impact of differences in physiological and anatomical characteristics of muscles and surrounding tissues. Normalization of the EMG amplitude provides information about the magnitude of muscle activation relative to a reference value. It is essential to select an appropriate method for normalization with specific reference to how the EMG signal will be interpreted, and to consider how the normalized EMG amplitude may change when interpreting it under specific conditions. This matrix, developed by the Consensus for Experimental Design in Electromyography (CEDE) project, presents six approaches to EMG normalization: (1) Maximal voluntary contraction (MVC) in same task/context as the task of interest, (2) Standardized isometric MVC (which is not necessarily matched to the contraction type in the task of interest), (3) Standardized submaximal task (isometric/dynamic) that can be task-specific, (4) Peak/mean EMG amplitude in task, (5) Non-normalized, and (6) Maximal M-wave. General considerations for normalization, features that should be reported, definitions, and “pros and cons” of each normalization approach are presented first. This information is followed by recommendations for specific experimental contexts, along with an explanation of the factors that determine the suitability of a method, and frequently asked questions. This matrix is intended to help researchers when selecting, reporting and interpreting EMG amplitude data.  相似文献   

2.
M Ghandi  MA Beer 《PloS one》2012,7(8):e38695
Data normalization is a crucial preliminary step in analyzing genomic datasets. The goal of normalization is to remove global variation to make readings across different experiments comparable. In addition, most genomic loci have non-uniform sensitivity to any given assay because of variation in local sequence properties. In microarray experiments, this non-uniform sensitivity is due to different DNA hybridization and cross-hybridization efficiencies, known as the probe effect. In this paper we introduce a new scheme, called Group Normalization (GN), to remove both global and local biases in one integrated step, whereby we determine the normalized probe signal by finding a set of reference probes with similar responses. Compared to conventional normalization methods such as Quantile normalization and physically motivated probe effect models, our proposed method is general in the sense that it does not require the assumption that the underlying signal distribution be identical for the treatment and control, and is flexible enough to correct for nonlinear and higher order probe effects. The Group Normalization algorithm is computationally efficient and easy to implement. We also describe a variant of the Group Normalization algorithm, called Cross Normalization, which efficiently amplifies biologically relevant differences between any two genomic datasets.  相似文献   

3.
The normalization of EMG signals to those recorded during a maximal voluntary contraction provides a valid construct for comparisons of relative muscle activity. However, the length dependence of muscle activation and purported, substantial, muscle translocation and changes in muscle architecture during dynamic movements presents a need for joint angle-dependent normalization processes. The purposes of the present study were to: (1) quantify variations in muscle activity across a large ROM, (2) determine the accuracy with which fitted EMG-joint angle curves accurately characterized these variations, and (3) compare peak (EMG-P) and average (EMG-A) EMG amplitudes obtained during a countermovement leg extension when normalized to both absolute peak and joint angle-specific muscle activity. Fifteen subjects performed a large ROM (110°) isokinetic (30° s?1) leg extension from which EMG-joint angle relationships were derived using polynomial fitting of different complexities. Ten subjects also performed loaded countermovement leg extensions from which EMG signals were normalized using peak muscle activity and EMG-angle curves. EMG amplitude varied significantly over the ROM and the use of EMG-angle curves for signal normalization resulted in significantly greater EMG-P and EMG-A than those normalized using the absolute peak EMG. Higher-order polynomial fitting better matched the filtered EMG amplitudes. Thus, there is a strong rationale for using EMG-angle polynomial fits to normalize EMG signals for large ROM movements.  相似文献   

4.
5.
Pressure–volume (P–V) curves for leaves or terminal shoots summarize leaf-level responses to increasing water deficit. P–V curve traits and field-measured shoot xylem pressures were characterized across 62 species from four sites differing in rainfall and soil phosphorus. Within-species variation in the measured traits was small relative to differences among species and between environments. P–V curve traits tended to differ with site rainfall but not with soil phosphorus. Turgor loss points (TLPs) varied widely and averaged more negative in species from lower-rainfall sites. Differences between species in TLP were driven mainly by differences in solute potential, rather than by differences in cell wall elasticity. Among species at individual sites, species seemed to vary in leaf-response strategy reflected in TLP independently from water-uptake strategy reflected in predawn xylem pressures and in xylem pressure drop from predawn to midday.  相似文献   

6.
Bias in normalization: Causes,consequences, detection and remedies   总被引:2,自引:2,他引:0  
Introduction Normalization is an optional step in LCIA that is used to better understand the relative importance and magnitude of the impact category indicator results. It is used for error checking, as a first step in weighting, and for standalone presentation of results. A normalized score for a certain impact category is obtained by determining the ratio of the category indicator result of the product and that of a reference system, such as the world in a certain year or the population of a specific area in a certain year. Biased Normalization In determining these two quantities, the numerator, the denominator, or both can suffer from incompleteness due to a lack of emission data and/or characterisation factors. This leads to what we call a biased normalization. As a consequence. the normalized category indicator result can be too low or too high. Some examples from hypothetical and real case studies demonstrate this. Consequences of Biased Normalization Especially when for some impact categories the normalized category indicator result is right, for others too low, and for others too high, severe problems in using normalized scores can show up. It is shown how this may affect the three types of usage of normalized results: error checking, weighting and standalone presentation. Detection and Remedies of Biased Normalization Some easy checks are proposed that at least alert the LCA practitioner of the possibility of a biased result. These checks are illustrated for an example system on hydrogen production. A number of remedies of this problem is possible. These are discussed. In particular, casedependent normalization is shown to solve some problems, but on the expense of creating other problems. Discussion It appears that there is only one good solution: databases and tables of characterisation factors must be made more completely, so that the risk of detrimental bias is reduced. On the other hand, the use of the previously introduced checks should become a standard element in LCA practice, and should be facilitated with LCA software. ESS-Submission Editor: Duane A. Tolle (tolled@battelle.org)  相似文献   

7.
Investigating inter-joint coordination at different walking speeds in young and elderly adults could provide insights to age-related changes in neuromuscular control of gait. We examined effects of walking speed and age on the pattern and variability of inter-joint coordination. Gait analyses of 10 young and 10 elderly adults were performed with different self-selected speeds, including a preferred, faster, and slower speed. Continuous relative phase (CRP), derived from phase planes of two adjacent joints, was used to assess the inter-joint coordination. CRP patterns were examined with cross-correlation measures and root-mean-square (RMS) differences when comparing ensemble mean curves of the faster or slower speed to preferred speed walking. Variability of coordination for each participant was assessed with the average value of all standard deviations calculated for each data point over a gait cycle from all CRP curves, namely the deviation phase (DP). For hip-knee CRP pattern, RMS differences were significantly greater between the slower and preferred walking speeds than between the faster and preferred walking speeds in young adults, but this was not found in elderly adults. Significant group differences in RMS differences and cross-correlation measures were detected in hip-knee CRP patterns between the slower and preferred walking speeds. No significant walking speed or age effects were detected for the knee-ankle CRP. Significant walking speed effects were also detected in hip-knee DP values. However, no significant group differences were detected for all three speeds. These findings suggested that young and elder adults compromise changes of walking speed with different neuromuscular control strategies.  相似文献   

8.
The molecular structure of the phospholipid component of intact pulmonary surfactant isolated from bovine lung lavage has been examined by Fourier transform infrared spectroscopy. Two different physical states of the surfactant were examined by means of different infrared spectroscopic sampling techniques. Transmission infrared experiments were used to study the surfactant in the bulk phase. In these experiments, the thermotropic behavior of the bulk surfactant was monitored by temperature-induced variations in the phospholipid acyl chain CH2 stretching frequencies. A broad phase transition (confirmed by differential scanning calorimetry) was noted with an onset temperature near 15 degrees C and a completion temperature near 42 degrees C. In addition to the bulk transmission experiments, external reflection infrared spectroscopy was used to examine surfactant films in situ at the air-water interface. As surface pressure was increased from 0 to 43 dyn/cm, a gradual and continuous decrease in the CH2 stretching frequency was noted for the surfactant. Thus, under surface pressures which correspond to large lung volumes in vivo, the surfactant acyl chains exist mostly in the ordered (trans) configuration. The frequency shift in the CH2 stretching mode is consistent with a continuous ordering of the acyl chains upon compression over the pressure range 0-43 dyn/cm, and implies that a weakly cooperative phase transition occurs in the hydrocarbon region of the surface film. The surface film transition is especially noted in the pressure-area curve of the surfactant and approximates in two dimensions the broad thermotropic phase transition of the bulk phase surfactant.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
10.
Given growing interest in functional data analysis (FDA) as a useful method for analyzing human movement data, it is critical to understand the effects of standard FDA procedures, including registration, on biomechanical analyses. Registration is used to reduce phase variability between curves while preserving the individual curve's shape and amplitude. The application of three methods available to assess registration could benefit those in the biomechanics community using FDA techniques: comparison of mean curves, comparison of average RMS values, and assessment of time-warping functions. Therefore, the present study has two purposes. First, the necessity of registration applied to cyclical data after time normalization is assessed. Second, we illustrate the three methods for evaluating registration effects. Masticatory jaw movements of 22 healthy adults (2 males, 21 females) were tracked while subjects chewed a gum-based pellet for 20 s. Motion data were captured at 60 Hz with two gen-locked video cameras. Individual chewing cycles were time normalized and then transformed into functional observations. Registration did not affect mean curves and warping functions were linear. Although registration decreased the RMS, indicating a decrease in inter-subject variability, the difference was not statistically significant. Together these results indicate that registration may not always be necessary for cyclical chewing data. An important contribution of this paper is the illustration of three methods for evaluating registration that are easy to apply and useful for judging whether the extra data manipulation is necessary.  相似文献   

11.
12.
In order to compare gait patterns, a common procedure is to normalize strides both in time and magnitude. The stride duration is usually normalized to a time percentage before averaging curves. As the timing of event occurrences may shift across strides, the shape of the averaged curves is distorted and therefore the standard deviation is overvalued. Stride magnitude normalization is performed by means of dimensionless numbers. However, there is little agreement on which body size correction methods should be used. The Procrustes method describes curve shape and shape change in a mathematical and statistical framework, independently of time and size factors. The present study aims to explore how this technique may be used for time- and magnitude-stride normalization to reflect individual and group mean responses. The Procrustes method, which combines quantitative and visual features, is applied to the shape of the ankle and knee cyclograms. Superimposition of 25 cyclograms (10 for sprinters (SP) and 15 for middle-distance runners (MDR)) was supplemented by statistical procedures (principal component analysis, discriminant function) to extract the main key events, which vary according to the athletic specialities. In comparison with the MDR (poulaine-shaped cyclogram), the ovoid cyclogram of SP reveals the following gait indicators: a short braking phase, a rapid initial lower limb swing in the forward direction, a fast upward movement of the knee and ankle, and an active foot contact. The Procrustes approach could be used to describe other quasi-periodic movements through relative motion plots (e.g., cyclograms, angle-angle diagrams, phase plane portraits).  相似文献   

13.
14.
目的: 通过探讨负重深蹲练习中施加不同动脉闭塞压和间歇方式对大腿肌群激活特征的影响,找出引起最大激活的个人适宜动脉加压相对值范围,为运动员科学进行加压训练提供一定的理论依据和实践参考。方法: 募集10名男子运动员,进行负重30%1RM(最大抗阻百分比)的深蹲练习,以间歇加压和持续加压两种模式,分别完成无加压、40%动脉闭塞压(AOP)、50%AOP和60%AOP四种加压形式。运用Wave plus无线表面肌电测试仪采集大腿肌群的表面肌电信号,计算出大腿前、后肌群的肌电振幅值。采用双因素方差分析考察通过施加不同动脉闭塞压和不同间歇休息模式对大腿肌肉群的激活效应及其差异。结果: ① 经过双因素方差分析,通过施加不同AOP对所测肌肉标准化均方根振幅值具有显著性影响(P<0.05),而间歇方式则对所测大腿肌群%MVC值无显著性影响(P>0.05),施加不同动脉闭塞压和间歇方式对所测肌肉肌电活动的交互作用均无显著性(P>0.05);② 30%1RM负重深蹲练习时,在50%AOP压力条件下,间歇和持续加压都可以显著提高股直肌、股内侧肌、股外侧肌、股二头肌和半腱肌的%MVC值(P<0.05);③ 40%AOP压力条件下,仅间歇深蹲练习可显著提高股直肌的%MVC值(P<0.05);60%AOP压力条件下,也仅间歇练习可以显著提高股内侧肌和半腱肌%MVC值(P<0.05)。结论: 本研究进一步验证了50%AOP施压对高水平手球运动员在轻负重蹲起练习可以同时显著提高股四头肌和股后肌群的最佳激活程度,产生最佳训练效果,间歇模式推荐采用除压间歇模式。  相似文献   

15.
Different definitions for the lag time and of the duration of the exponential phase can be used to calculate these quantities from growth models. The conventional definitions were compared with newly proposed definitions. It appeared to be possible to derive values for the lag time and the duration of the exponential phase from the growth models and differences between the various definitions could be quantified. All the different values can be calculated from the growth parameters microm, lambda and alpha. Therefore, it appeared to be unnecessary to use complicated mathematical equations; simple equations were adequate. For the Gompertz model the conventional definition of the lag time did not differ appreciably from the newly proposed definition. The end-point of the exponential phase and thus the duration of the exponential phase differed considerably for the two definitions. For the logistic model the two definitions lead to considerable differences for all quantities. It is recommended that the conventional definition is used for calculating the lag time. For the duration of the exponential phase it is recommended that the new definition is used. The value can be calculated, however, directly from the conventional growth parameters.  相似文献   

16.
The objective of this study is to introduce dynamic topography of surface electromyography (SEMG) to visualize lumbar muscle myoelectric activity and provides a new view to analyze muscle activity in vivo. A total of 20 healthy male subjects and 15 males LBP were enrolled. An electrode-array was applied to the lumbar region to collect SEMG. The root mean square (RMS) value was calculated for each channel, and then a 160×120 matrix was constructed using a linear cubic spline interpolation of each scan to create a 2-D color topographic image. Along a definite interval of action, a series of RMS topography matrices was concatenated as a function of position and time, to form a dynamic topographical video of lumbar muscle activity. Relative area (RA), relative width (RW), relative height (RH) and Width-to-Height Ratio (W/H) were chosen as the four quantitative parameters in measuring topographic features. Normal RMS dynamic topography was found to have a consistent, symmetric pattern with a high intensity area in the paraspinal area. LBP patients had a different RMS dynamic topography, with an asymmetric, broad, or disorganized distribution. Quantitative SEMG features were found significantly different between normal control and LBP. After physiotherapy rehabilitation, the dynamic topography images of LBP tended towards the normal pattern.There are obvious differences in lumbar muscle coordination between healthy subjects and LBP patients. The dynamic topography allows the continuous visualization of the distribution of surface EMG signals and the coordination of muscular contractions.  相似文献   

17.
M.H. ZWIETERING, F.M. ROMBOUTS AND K. VAN 'T RIET. 1992. Different definitions of the lag time and of the duration of the exponential phase can be used to calculate these quantities from growth models. The conventional definitions were compared with newly proposed definitions. It appeared to be possible to derive values for the lag time and the duration of the exponential phase from the growth models, and differences between the various definitions could be quantified. All the different values can be calculated from the growth parameters μ m , and a. Therefore, it appeared to be unnecessary to use complicated mathematical equations: simple equations were adequate. For the Gompertz model the conventional definition of the lag time did not differ appreciably from the newly proposed definition. The end-point of the exponential phase and thus the duration of the exponential phase differed considerably for the two definitions. For the logistic model the two definitions lead to considerable differences for all quantities. It is recommended that the conventional definition is used for calculating the lag time. For the duration of the exponential phase it is recommended that the new definition is used. The value can be calculated, however, directly from the conventional growth parameters.  相似文献   

18.
Normalization is critical for removing systematic variation from microarray data. For two-color microarray platforms, intensity-dependent lowess normalization is commonly used to correct relative gene expression values for biases. Here we outline a normalization method for use when the assumptions of lowess normalization fail. Specifically, this can occur when specialized boutique arrays are constructed that contain a subset of genes selected to test particular biological functions.  相似文献   

19.
The purpose of this study was to determine if females and males use different hip and knee mechanics when walking with standardized military-relevant symmetric loads. Fifteen females and fifteen males walked on a treadmill for 2-min at a constant speed under three symmetric load conditions (unloaded: 1.71 kg, medium: 15 kg, heavy: 26 kg). Kinematic and kinetics of the hip and knee were calculated in the sagittal and frontal planes of the dominant limb. In females, hip abduction moments (normalized to total mass) and sagittal knee excursion decreased with increased load (p ≤ 0.024). In males, hip frontal excursion and adduction angle increased with load (p ≤ 0.003). Females had greater peak hip adduction angle than males in the unloaded and medium load conditions (p ≤ 0.036). Across sex, sagittal hip and knee excursion, peak knee extension angle, and peak hip and knee flexion angles increased with increased load (p ≤ 0.005). When normalized to body mass, all peak joint moments increased with each load (p ≤ 0.016) except peak hip adduction moment. When normalized to total mass, peak hip adduction moment and knee flexion, extension, and adduction moments decreased with each load (p < 0.001). While hip frontal plane kinetic alterations to load were only noted in females, kinematic changes were noted in males at the hip and females at the knee. Differences in strategies may increase the risk of hip and knee injuries in females compared to males. This study noted load and sex effects that were previously undetected, highlighting the importance of using military-relevant standardized loads and investigating frontal plane adaptations.  相似文献   

20.
An EMG-driven muscle model for determining muscle force-time histories during gait is presented. The model, based on Hill's equation (1938), incorporates morphological data and accounts for changes in musculotendon length, velocity, and the level of muscle excitation for both concentric and eccentric contractions. Musculotendon kinematics were calculated using three-dimensional cinematography with a model of the musculoskeletal system. Muscle force-length-EMG relations were established from slow isokinetic calibrations. Walking muscle force-time histories were determined for two subjects. Joint moments calculated from the predicted muscle forces were compared with moments calculated using a linked segment, inverse dynamics approach. Moment curve correlations ranged from r = 0.72 to R = 0.97 and the root mean square (RMS) differences were from 10 to 20 Nm. Expressed as a relative RMS, the moment differences ranged from a low of 23% at the ankle to a high of 72% at the hip. No single reason for the differences between the two moment curves could be identified. Possible explanations discussed include the linear EMG-to-force assumption and how well the EMG-to-force calibration represented excitation for the whole muscle during gait, assumptions incorporated in the muscle modeling procedure, and errors inherent in validating joint moments predicted from the model to moments calculated using linked segment, inverse dynamics. The closeness with which the joint moment curves matched in the present study supports using the modeling approach proposed to determine muscle forces in gait.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号