首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 839 毫秒
1.
2.
Male accessory gland in Drosophila is a secretory tissue of the reproductive system. The proteins synthesized in the accessory gland are tissue specific, stage specific-seen only during the adult stage and sex specific in the sense of male limited expression. These secretions that form a component of the seminal fluid are transferred to the female at the time of copulation and play an important role in reproduction. In conjunction with sperm, these secretory proteins assure reproductive success by reducing the female's receptivity to mating and escalating the rate of egg laying. Some of these proteins are antibacterial in nature with a likely function of protecting the female's genital tract against microbial infection during/after mating. Most of the genes involved in the synthesis of accessory gland proteins are autosomal but a few are still X-linked. Their male specific expression is achieved at the time of sex determination. The level of expression of these genes is dose dependent and they follow Mendelian pattern of segregation. Further, majority of these proteins are rapidly evolving with high rates of non-synonymous substitutions. In this review, by considering the work carried out in different fields, we have tried to generate a comprehensive picture about the male accessory gland and the role of its proteins in the reproduction of Drosophila.  相似文献   

3.
4.
5.
6.
7.
Molecular analysis of tra-2, a sex determining gene in C.elegans.   总被引:9,自引:0,他引:9       下载免费PDF全文
  相似文献   

8.
9.
10.
11.
12.
13.
Insect steroid hormones (ecdysteroids) are important for female reproduction in many insect species and are required for the initiation and coordination of vital developmental processes. Ecdysteroids are also important for adult male physiology and behavior, but their exact function and site of synthesis remains unclear, although previous studies suggest that the reproductive system may be their source. We have examined expression profiles of the ecdysteroidogenic Halloween genes, during development and in adults of the flour beetle Tribolium castaneum. Genes required for the biosynthesis of ecdysone (E), the precursor of the molting hormone 20-hydroxyecdysone (20E), are expressed in the tubular accessory glands (TAGs) of adult males. In contrast, expression of the gene encoding the enzyme mediating 20E synthesis was detected in the ovaries of females. Further, Spookiest (Spot), an enzyme presumably required for endowing tissues with competence to produce ecdysteroids, is male specific and predominantly expressed in the TAGs. We also show that prothoracicotropic hormone (PTTH), a regulator of E synthesis during larval development, regulates ecdysteroid levels in the adult stage in Drosophila melanogaster and the gene for its receptor Torso seems to be expressed specifically in the accessory glands of males. The composite results suggest strongly that the accessory glands of adult male insects are the main source of E, but not 20E. The finding of a possible male-specific source of E raises the possibility that E and 20E have sex-specific roles analogous to the vertebrate sex steroids, where males produce primarily testosterone, the precursor of estradiol. Furthermore this study provides the first evidence that PTTH regulates ecdysteroid synthesis in the adult stage and could explain the original finding that some adult insects are a rich source of PTTH.  相似文献   

14.
15.
16.
17.

Background  

In Drosophila melanogaster, the male seminal fluid contains proteins that are important for reproductive success. Many of these proteins are synthesised by the male accessory glands and are secreted into the accessory gland lumen, where they are stored until required. Previous studies on the identification of Drosophila accessory gland products have largely focused on characterisation of male-specific accessory gland cDNAs from D. melanogaster and, more recently, Drosophila simulans. In the present study, we have used a proteomics approach without any sex bias to identify proteins in D. melanogaster accessory gland secretions.  相似文献   

18.
There are many obvious morphological and behavioural differences between male and female Drosophila, whose differing phenotypes are produced by a hierarchy of sex determination genes. These genes have been well characterised at the genetic and molecular level. Similarly, a number of sex-specific differentiation genes have been characterised, such as the chorion and vitelline membrane genes in females and the sex peptide and other accessory gland proteins in males. Despite the depth of these parallel studies, there is only one example of a direct link between the sex determination pathway and the downstream sex differentiation genes, namely the regulation of the female-specific yolk protein genes. The yolk proteins are synthesised in the fat body and ovarian follicle cells of the adult female and are subsequently transported to the oocyte where they are stored for utilization during embrygenesis. The expression of the yolk protein genes is not entirely controlled by the sex determination hierarchy, as several different regulatory pathways must interact to direct their correct sexual, temporal and spatial regulation during development.  相似文献   

19.
The Drosophila male accessory glands (paragonias) are two male-specific organs that produce seminal fluid, a secretion involved in sperm storage and subsequent sperm utilization by the female. This paper reports the first X-linked locus, male-female-sterile in region 6E [mfs(1)6E], required for the production of normal seminal fluid. Mutant males produce motile spermatozoa, which are transferred to females during mating, but which are not stored. Sterility of these males is mainly due to severe affected transfer of seminal fluid to females during mating. In addition, the mutant seminal fluid seems defective in triggering the behavioral (reduced receptivity to further mating) and physiological (increased egg-laying) changes normally observed in mated females. Mutant male accessory glands show notable abnormalities, connected with glandular secretion as well as qualitative and quantitative differences in their protein content.  相似文献   

20.
Waterbury JA  Horabin JI  Bopp D  Schedl P 《Genetics》2000,155(4):1741-1756
It has been suggested that sexual identity in the germline depends upon the combination of a nonautonomous somatic signaling pathway and an autonomous X chromosome counting system. In the studies reported here, we have examined the role of the sexual differentiation genes transformer (tra) and doublesex (dsx) in regulating the activity of the somatic signaling pathway. We asked whether ectopic somatic expression of the female products of the tra and dsx genes could feminize the germline of XY animals. We find that Tra(F) is sufficient to feminize XY germ cells, shutting off the expression of male-specific markers and activating the expression of female-specific markers. Feminization of the germline depends upon the constitutively expressed transformer-2 (tra-2) gene, but does not seem to require a functional dsx gene. However, feminization of XY germ cells by Tra(F) can be blocked by the male form of the Dsx protein (Dsx(M)). Expression of the female form of dsx, Dsx(F), in XY animals also induced germline expression of female markers. Taken together with a previous analysis of the effects of mutations in tra, tra-2, and dsx on the feminization of XX germ cells in XX animals, our findings indicate that the somatic signaling pathway is redundant at the level tra and dsx. Finally, our studies call into question the idea that a cell-autonomous X chromosome counting system plays a central role in germline sex determination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号