首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Fungi are known to produce a range of extracellular enzymes and other secondary metabolites. Investment in extracellular enzyme production may be an important element of the survival strategy of these fungi in maritime Antarctic soils. This study focuses on fungi that were isolated from ornithogenic, undisturbed and human-impacted soils collected from the Fildes Peninsula, King George Island, Antarctica, during the austral summer in February 2007. We (1) describe fungal diversity based on molecular approaches, (2) describe the thermal characteristics of the fungal isolates, and (3) screen extracellular hydrolase enzyme production (amylase and cellulase) by the isolates. Soil samples were cultured using the Warcup soil plating technique and incubated at 4 and 25 °C to allow basic thermal classification. In total, 101 isolates were obtained. All the isolates were screened at culture temperatures of 4 and 25 °C in order to detect activity of extracellular hydrolase enzymes. At 25 °C, ornithogenic penguin rookery soils recorded the lowest diversity of fungi, with little difference in diversity apparent between the other soils examined. At 4 °C, an undisturbed site recorded the lowest and a human-impacted site the highest diversity of fungi. The majority of the fungi identified in this study were in the mesophilic thermal class. Six strains possessed significant activity for amylase and 13 for cellulase at 25 °C. At 4 °C, four strains showed significant amylase and 22 significant cellulase activity. The data presented increase our understanding of microbial responses to environmental temperature.  相似文献   

3.
Bacteria of the genus Exiguobacterium have been repeatedly isolated from ancient permafrost sediments of the Kolyma lowland of Northeast Eurasia. Here we report that the Siberian permafrost isolates Exiguobacterium sibiricum 255-15, E. sibiricum 7-3, Exiguobacterium undae 190-11 and E. sp. 5138, as well as Exiguobacterium antarcticum DSM 14480, isolated from a microbial mat sample of Lake Fryxell (McMurdo Dry Valleys, Antarctica), were able to grow at temperatures ranging from -6 to 40 degrees C. In comparison to cells grown at 24 degrees C, the cold-grown cells of these strains tended to be longer and wider. We also investigated the effect of growth conditions (broth or surface growth, and temperature) on cryotolerance of the Exiguobacterium strains. Bacteria grown in broth at 4 degrees C showed markedly greater survival following freeze-thawing treatments (20 repeated cycles) than bacteria grown in broth at 24 degrees C. Surprisingly, significant protection to repeated freeze-thawing was also observed when bacteria were grown on agar at either 4 or 24 degrees C.  相似文献   

4.
A very simple and sensitive procedure for the determination of the activity of highly purified endo-1,4-beta-glucanase from the microscopic fungus Trichoderma reesei using 4-methylumbelliferyl-beta-D-cellobioside has been developed. The HPLC study has shown that this substrate is cleaved by endo-1,4-beta-glucanase to form predominantly free 4-methylumbelliferone, Km and kcat being 1.25 mM and 7.9 s-1, respectively (30 degrees C, pH 5.0). The possibility of continuous photometric determination of the enzyme using the difference absorptivity coefficient of 1600 M-1 cm-1 at 350 nm has been demonstrated.  相似文献   

5.
We investigated the fatty acid composition of the membrane of Bacillus amyloliquefaciens grown at different temperatures. A decrease in growth temperature was accompanied by an increase in the ratio of branched- to straight-chain fatty acids and a marked increase in the level of unsaturation of branched-chain fatty acids. When cells of this organism grown at 30 degrees C were cold shocked, viability and ability to secrete extracellular protease were lost. Growth of this organism at lower temperatures or addition of Tween 80 to cells caused the critical temperature zone for cold shocking to be lowered significantly. These results suggest a direct correlation between membrane fluidity and the susceptibility to cold shock.  相似文献   

6.
Eight strains of chemoorganotrophic bacteria were isolated from the water column of Lake Hoare, McMurdo Dry Valleys, Antarctica, using cold enrichment temperatures. The isolates were Alpha-, Beta-, and Gammaproteobacteria and Actinobacteria spp. All isolates grew at 0 degrees C, and all but one grew at subzero temperatures characteristic of the water column of Lake Hoare. Growth temperature optima varied among isolates, but the majority showed optima near 15 degrees C, indicative of cold-active phenotypes. One isolate was truly psychrophilic, growing optimally around 10 degrees C and not above 20 degrees C. Half of the isolates grew at 2% salt while the other half did not, and all but one isolate grew at 2 atm of O(2). Our isolates are the first prokaryotes from the water column of Lake Hoare to be characterized phylogenetically and physiologically and show that cold-active species of at least two major phyla of Bacteria inhabit Lake Hoare.  相似文献   

7.
Few studies have addressed the diversity of cultivable fungi from marine sediments, especially those from Antarctica. In the present study, we evaluated the presence and distribution of cultivable fungi in marine core sediments obtained from 100, 500, 700 and 1,100 m below the Antarctic Ocean surface. Fifty-two fungal isolates were identified as Penicillium solitum by their physiological and morphological characteristics, and the identity of 12 representative isolates was further confirmed by sequencing of the ITS1-5.8S-ITS2 and β-tubulin genes. P. solitum displayed high sequence similarity to Penicillium taxa that have been described from other marine habitats. Conidial germination of P. solitum occurred at low temperatures and high salinities. In addition, P. solitum displayed extracellular amylasic and esterasic activities. The isolation of P. solitum from marine sediments in Antarctica and its survival at low temperatures and high salt concentrations suggest that it is adapted to the cold and halophilic environment of the Antarctic oceans. Because P. solitum produces extracellular enzymes, it is an interesting eukaryotic model for the study of structure–function relationships during enzymatic biocatalysis and biotransformation under extreme conditions. Marine sediments from Antarctica may represent a unique source for obtaining extremophilic fungi. New studies using different culture media, temperatures ranges and pressure conditions as well as metagenomic techniques can assist in understanding the extremophilic fungal communities in marine sediments across the Antarctic Ocean.  相似文献   

8.
Thermophilic fungi: their physiology and enzymes.   总被引:8,自引:0,他引:8  
Thermophilic fungi are a small assemblage in mycota that have a minimum temperature of growth at or above 20 degrees C and a maximum temperature of growth extending up to 60 to 62 degrees C. As the only representatives of eukaryotic organisms that can grow at temperatures above 45 degrees C, the thermophilic fungi are valuable experimental systems for investigations of mechanisms that allow growth at moderately high temperature yet limit their growth beyond 60 to 62 degrees C. Although widespread in terrestrial habitats, they have remained underexplored compared to thermophilic species of eubacteria and archaea. However, thermophilic fungi are potential sources of enzymes with scientific and commercial interests. This review, for the first time, compiles information on the physiology and enzymes of thermophilic fungi. Thermophilic fungi can be grown in minimal media with metabolic rates and growth yields comparable to those of mesophilic fungi. Studies of their growth kinetics, respiration, mixed-substrate utilization, nutrient uptake, and protein breakdown rate have provided some basic information not only on thermophilic fungi but also on filamentous fungi in general. Some species have the ability to grow at ambient temperatures if cultures are initiated with germinated spores or mycelial inoculum or if a nutritionally rich medium is used. Thermophilic fungi have a powerful ability to degrade polysaccharide constituents of biomass. The properties of their enzymes show differences not only among species but also among strains of the same species. Their extracellular enzymes display temperature optima for activity that are close to or above the optimum temperature for the growth of organism and, in general, are more heat stable than those of the mesophilic fungi. Some extracellular enzymes from thermophilic fungi are being produced commercially, and a few others have commercial prospects. Genes of thermophilic fungi encoding lipase, protease, xylanase, and cellulase have been cloned and overexpressed in heterologous fungi, and pure crystalline proteins have been obtained for elucidation of the mechanisms of their intrinsic thermostability and catalysis. By contrast, the thermal stability of the few intracellular enzymes that have been purified is comparable to or, in some cases, lower than that of enzymes from the mesophilic fungi. Although rigorous data are lacking, it appears that eukaryotic thermophily involves several mechanisms of stabilization of enzymes or optimization of their activity, with different mechanisms operating for different enzymes.  相似文献   

9.
Brachiola (Nosema) algerae is a microsporidian species generally believed to be an intracellular parasite of insects, especially mosquitoes. However, both mosquito and human isolates have been shown to infect mammalian cells. The present study was undertaken to determine if spores of two insect and two human isolates of B. algerae cultured at 30 degrees C and 37 degrees C differed in their ability to germinate and infect cultured green monkey kidney cells at these two temperatures. Spores from all four isolates exhibited an optimum pH of 9.5 for germination. Mercury (Hg2+) inhibited germination of all isolates equally. Germination of spores from all four isolates was significantly greater when the parasite was cultured at 30 degrees C than when cultured at 37 degrees C. However, spores from the insect isolates cultivated at 30 degrees C or 37 degrees C infected significantly fewer mammalian cells at 37 degrees C than did spores from the human isolates under the same conditions. Thus, there is no correlation between the effects of temperature on the germination and the infectivity of an isolate. In addition, while exposure of B. algerae to 37 degrees C has been reported to cause spore dysmorphism, we failed to observe any consistent ultrastructural changes that explained the greater infectivity of the human isolates at 37 degrees C.  相似文献   

10.
A temperature-sensitive, elongation-deficient mutant of Arabidopsis thaliana was isolated. At the non-permissive temperature of 31 degrees C, the mutation impaired tissue elongation; otherwise, tissue development was normal. Hypocotyl cells that had established cell walls at 21 degrees C under light-dark cycles ceased elongation and swelled when the mutant was shifted to 31 degrees C and darkness, indicating that the affected gene is essential for cell elongation. Analysis of the cell walls of mutant plants grown at 31 degrees C revealed that the cellulose content was reduced to 40% and the pectin content was increased to 162% of the corresponding values for the wild type grown at the same temperature. The increased amounts of pectin in the mutant were bound tightly to cellulose microfibrils. No change in the content of hemicellulose was apparent in the 31 degrees C-adapted mutant. Field emission-scanning electron microscopy suggested that the structure of cellulose bundles was affected by the mutation; X-ray diffraction, however, revealed no change in the crystallite size of cellulose microfibrils. The regeneration of cellulose microfibrils from naked mutant protoplasts was substantially delayed at 31 degrees C. The recessive mutation was mapped to chromosome V, and map-based cloning identified it as a single G-->A transition (resulting in a Gly(429)-->Arg substitution) in KORRIGAN, which encodes a putative membrane-bound endo-1,4-beta-glucanase. These results demonstrate that the product of this gene is required for cellulose synthesis.  相似文献   

11.
Campylobacter jejuni is a leading cause of bacterial gastroenteritis in humans, and contamination of poultry has been implicated in illness. The bacteria are fastidious in terms of their temperature requirements, being unable to grow below ca. 31 degrees C, but have been found to be physiologically active at lower temperatures and to tolerate exposure to low temperatures in a strain-dependent manner. In this study, 19 field isolates of C. jejuni (10 of clinical and 9 of poultry origin) were studied for their ability to tolerate prolonged exposure to low temperature (4 degrees C). Although substantial variability was found among different strains, clinical isolates tended to be significantly more likely to remain viable following cold exposure than poultry-derived strains. In contrast, the relative degree of tolerance of the bacteria to freezing at -20 degrees C and freeze-thawing was strain specific but independent of strain source (poultry versus clinical) and degree of cold (4 degrees C) tolerance.  相似文献   

12.
Culture fluids obtained from submerged cultures of white, brown and gray wood rot fungi were assayed for the presence of cellulolytic activity complexes against the model substrated carboxymethylcellulose-Na and Standard Whatman cellulose and natural substrates, i.e. celluloses isolated from pine bark and sawdust. The cellulolytic activity of the examined fungal species was highly differentiated. The use of model and natural substrates allowed determination of the high substrate specificity of the cellulase complexes produced by the fungi. Not all the fungi were found to produce EC 3.2.1.4. endo-1, 4-beta-glucanase under the culture conditions employed. All the fungi were, however, able to produce a complex of EC 3.2.1.4. exo-1, 4-beta-glucanases. All the examined fungi were also able to degrade, although to a varied extent, such higher forms of cellulose as Standard Whatman cellulose or natural celluloses isolated from pine bark and sawdust. Determination of the cellulolytic activity of fungi against the above-mentioned specific natural substrates affords the possibility of their practical use.  相似文献   

13.
The formation and location of endo-1,4-beta-glucanases and beta-glucosidases were studied in cultures of Cellulomonas uda grown on microcrystalline cellulose, carboxymethyl cellulose, printed newspaper, and some mono- or disaccharides. Endo-1,4-Glucanases were found to be extracellular, but a very small amount of cell-bound endo-1,4-beta-glucanase was considered to be the basal endoglucanase level of the cells. The formation of extracellular endo-1,4-beta-glucanases was induced by cellobiose and repressed by glucose. Extracellular endoglucanase activity was inhibited by cellobiose but not by glucose. beta-Glucosidases, on the other hand, were formed constitutively and found to be cell bound. beta-Glucosidase activity was inhibited noncompetitively by glucose. Some characteristics such as the optimal pH for and the thermostability of the endoglucanases and beta-glucosidases and the end products of cellulose degradation were determined.  相似文献   

14.
Neozygites tanajoae has recently been described as a new fungal pathogen distinct from Neozygites floridana. This pathogen is currently being used as a classical biological control agent against the cassava green mite, Mononychellus tanajoa (Bondar), in Africa. Neozygites tanajoae is a particularly fastidious species, and in vitro cultures of isolates from Brazil and Africa have only recently been established. In this study, the efficacy of several cryoprotectants at different exposure times, cooling rates, and warming rates for protecting hyphal bodies of N. tanajoae during cryopreservation was investigated. A protocol for preservation of cultures of N. tanajoae at ultra-low temperatures of -80 degrees C or -196 degrees C, using 1% trehalose + 2% dimethyl sulfoxide as cryoprotective agents, is described in detail. In this study, we demonstrate that N. tanajoae differs remarkably from N. floridana (isolates ARSEF 662 and ARSEF 5376) in the ability to withstand the stress of cold temperature (4 degrees C) and cryopreservation. In vitro cultures of the 2 N. floridana isolates remained viable at 4 degrees C for up to 47 d; however, cultures of N. tanajoae did not survive this temperature for 4 d. Cryopreservation methods successful for N. tanajoae isolates are not suitable for N. floridana and are unusual in comparison to those for many fungi.  相似文献   

15.
A method of purification of endo-(1-->4)-beta-xylanase (endoxylanase; EC 3.2.1.8) from the culture liquid of Geotrichum candidum 3C, grown for three days, is described. The enzyme purified 23-fold had a specific activity of 32.6 U per mg protein (yield, 14.4%). Endoxylanase was shown to be homogeneous by SDS-PAGE (molecular weight, 60 to 67 kDa). With carboxymethyl xylan as substrate, the optimum activity (determined viscosimetrically) was recorded at pH 4.0 (pI 3.4). The enzyme retained stability at pH 3.0-4.5 and 30-45 degrees C for 1 h. With xylan from beach wood, the hydrolytic activity of the enzyme (ability to saccharify the substrate) was maximum at 50 degrees C. In 72 h of exposure to 0.2 mg/ml endoxylanase, the extent of saccharification of xylans from birch wood, rye grain, and wheat straw amounted to 10, 12, and 7.7%, respectively. At 0.4 mg/ml, the extent of saccharification of birch wood xylan was as high as 20%. In the case of birch wood xylan, the initial hydrolysis products were xylooligosaccharides with degrees of polymerization in excess of four; the end products were represented by xylobiose, xylotriose, xylose, and acid xylooligosaccharides.  相似文献   

16.
Extracellular protease from the antarctic yeast Candida humicola.   总被引:5,自引:1,他引:4       下载免费PDF全文
The psychrotrophic, dimorphic yeast Candida humicola, isolated from Antarctic soil, secretes an acidic protease into the medium. The secretion of this protease by C. humicola was found to be dependent on the composition of the medium. In YPD or yeast nitrogen base medium containing either amino acids or ammonium sulfate as the nitrogen source, the activity of the protease in the medium was low (basal level). However, when yeast nitrogen base medium was depleted of amino acids or ammonium sulfate and supplemented with proteins, the activity of the enzyme increased. The secretion of the enzyme was greater during exponential growth at low temperatures than during growth at higher temperatures. The purified protease had a molecular mass of 36,000 Da and was inhibited by pepstatin, iodoacetamide, and sodium dodecyl sulfate. Despite the prevalent cold temperatures in Antarctica, this extracellular protease of the psychrotrophic yeast C. humicola was active at temperatures ranging from 0 to 45 degrees C, with an optimum activity at 37 degrees C.  相似文献   

17.
Extracellular protease from the antarctic yeast Candida humicola.   总被引:3,自引:0,他引:3  
The psychrotrophic, dimorphic yeast Candida humicola, isolated from Antarctic soil, secretes an acidic protease into the medium. The secretion of this protease by C. humicola was found to be dependent on the composition of the medium. In YPD or yeast nitrogen base medium containing either amino acids or ammonium sulfate as the nitrogen source, the activity of the protease in the medium was low (basal level). However, when yeast nitrogen base medium was depleted of amino acids or ammonium sulfate and supplemented with proteins, the activity of the enzyme increased. The secretion of the enzyme was greater during exponential growth at low temperatures than during growth at higher temperatures. The purified protease had a molecular mass of 36,000 Da and was inhibited by pepstatin, iodoacetamide, and sodium dodecyl sulfate. Despite the prevalent cold temperatures in Antarctica, this extracellular protease of the psychrotrophic yeast C. humicola was active at temperatures ranging from 0 to 45 degrees C, with an optimum activity at 37 degrees C.  相似文献   

18.
Several filamentous fungi belonging to the genus Mortierella were found to produce large amounts of 5,8,11,14,17-cis-eicosapentaenoic acid (EPA) in their mycelia only when grown at low temperature (12 degrees C), i.e., not at physiological growth temperature (20-28 degrees C). The results of experiments with cell-free extracts suggested that this unique phenomenon is due to activation of enzyme(s) involved in EPA formation at low temperature. Mortierella alpina 1S-4 produced 0.3 g/l of EPA (27 mg/g dry mycelia). This high productivity show the practical significance of these novel EPA producers.  相似文献   

19.
The extracellular endo-1,4-beta-glucanase components of Ruminococcus flavefaciens FD-1 were analyzed by high-performance liquid chromatography (HPLC) by using DEAE ion-exchange, hydroxylapatite, and gel filtration chromatography and polyacrylamide gel electrophoresis (PAGE). Two endo-1,4-beta-glucanase peaks were resolved by DEAE-HPLC and termed endoglucanases A and B. Carboxymethyl cellulose (CMC) zymograms were achieved by enzyme separation using nondenaturing PAGE followed by incubation of the gel on top of a CMC-agarose gel. This revealed no less than 13 and 5 endo-1,4-beta-glucanase components present in endoglucanases A and B, respectively. Hydroxylapatite chromatography of endoglucanases A and B revealed one activity peak for each preparation, which contained 4 and 5 endo-1,4-beta-glucanase components, respectively. Gel filtration chromatography of endoglucanase A following hydroxylapatite chromatography resolved the most active carboxymethylcellulase (CMCase) component from other endo-1,4-beta-glucanase activities. Gel filtration of endoglucanase B following hydroxylapatite chromatography showed one CMCase activity peak. Protein stains of sodium dodecyl sulfate-PAGE and nondenaturing PAGE gels of endoglucanases A and B from hydroxylapatite and gel filtration chromatography revealed multiple protein components. When xylan was substituted for CMC in zymograms, identical separation patterns for CMCase and xylanase activities were observed for both endoglucanases A and B. These data suggest that both 1,4-beta linkage-hydrolyzing activities reside on the same polypeptide or protein complex. The highest endo-1,4-beta-glucanase-specific activities were observed following DEAE-HPLC chromatography, with 16.2 and 7.5 mumol of glucose equivalents per min per mg of protein for endoglucanases A and B, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
More than 10 protein molecules with endo-1,4-beta-glucanase activity were identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and zymogram in Cellulomonas fimi culture supernatants, grown in CMC as carbon source. These molecules are shown to belong to at least four immunologically different groups, against three of which polyclonal antibodies were raised. The protein species used as antigens showed significant differences in cross reactivity, carbon regulation, and affinity to crystalline cellulose. Three intracellular precursors of the first group were detected, two of which were under carbon catabolite control with the third apparently being synthesized constitutively. In the extracellular environment this group showed the largest versatility in protein molecules. The second group appeared to originate from two intracellular precursors both synthesized constitutively and subject to minor extracellular modifications as compared to the first group. The main extracellular protein of this group showed high affinity toward crystalline cellulose. One intracellular precursor was identified for the third group, which was subject to carbon catabolite control. Only one extracellular molecule without binding ability to crystalline cellulose corresponded to this precursor, indicating that the latter was resistant to proteolytic modifications after excretion. It appears that the C. fimi cellulases are more complex than expected and reconstitution of the whole system will be difficult.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号