首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 844 毫秒
1.
The inactivation of chymotrypsin by 5-benzyl-6-chloro-2-pyrone has been studied. Chloride analysis of the inactivated enzyme suggests that chlorine is no longer present in the complex. 13C NMR spectroscopy of chymotrypsin inactivated with 5-benzyl-6-chloro-2-pyrone-2,6-13 C2 shows the presence of two new resonances from the protein-bound inactivator. The chemical shift values of these resonances are consistent with an intact pyrone ring on the enzyme as well as the replacement of the C-6 chlorine by a different heteroatom. X-ray diffraction analysis at 1.5-A resolution of the inactivator-enzyme complex demonstrates that the gamma-oxygen of the active site serine residue (serine 195) is covalently attached to C-6 of the inactivator and that the pyrone ring is intact. The 5-benzyl group of the inactivator is bound to the enzyme in the hydrophobic specificity pocket. The conformational changes that occur in the protein as a result of complexation with the inactivator are discussed.  相似文献   

2.
The inactivation of chymotrypsin by 3-benzyl-6-chloro-2-pyrone has been studied. A covalent adduct is formed that deacylates slowly with a half-life of 23 h. X-ray diffraction analysis at 1.9-A resolution of the inactivator-enzyme complex shows that the gamma-oxygen of the active-site serine (serine-195) is covalently attached to C-1 of (Z)-2-benzylpentenedioic acid, the benzyl group of the inactivator is held in the hydrophobic specificity pocket of the enzyme, and the free carboxylate forms a salt bridge with the active-site histidine (histidine-57). The conformational changes that occur in the protein as a result of complexation are described. It is proposed that formation of the salt bridge prevents access of water and, therefore, hydrolysis of the acyl-enzyme.  相似文献   

3.
Novel inactivators of serine proteases based on 6-chloro-2-pyrone   总被引:1,自引:0,他引:1  
The interaction of serine protease (esterases) with 6-chloro-2-pyrones was investigated. Time-dependent inactivation of chymotrypsin, alpha-lytic protease, pig liver elastase, and cholinesterase was found with 3- and 5-benzyl-6-chloro-2-pyrone, as well as 3- and 5-methyl-6-chloro-2-pyrone. No inactivation was observed with the unsubstituted 6-chloro-2-pyrone. The substituted pyrones did not inactivate papain or carboxypeptidase A, as well as a number of other nonproteolytic enzymes. The substituted chloropyrones, therefore, show considerable selectivity toward serine proteases. Analogues in which the 6-chloro substituent is replaced by H or OH do not inactivate. The presence of the halogen is, therefore, essential for inactivation. Chymotrypsin catalyzes the hydrolysis of 3-benzyl-6-chloro-2-pyrone. At pH 7.5, (E)-4-benzyl-2-pentenedioic acid is the major product, and 2-benzyl-2-pentenedioic anhydride is a minor product. The ration of hydrolysis product found to the number of enzyme molecules inactivated varies from 14 to 40. The enzyme inactivated with the 3-benzyl compound does not show a spectrum characteristic of the pyrone ring. This suggests that inactivation by 3-benzyl-6-chloro-2-pyrone occurs in a mechanism-based fashion after enzymatic lactone hydrolysis. When the enzyme is inactivated with the 5-benzyl compound, absorbance due to the pyrone ring is observed. We suggest that inactivation occurs through an active site directed mechanism involving a 1,6-conjugate addition of an active site nucleophile to the pyrone ring.  相似文献   

4.
Human sulphamate sulphohydrolase was purified at least 20,000-fold to homogeneity from liver with a three-step four-column procedure, which consisted of a concanavalin A-Sepharose/Blue A agarose coupled step, and Bio-Gel HT step and then a CM-Sepharose step. The procedure was also used to purify enzyme from kidney and placenta. The subunit Mr of liver, kidney and placenta sulphamate sulphohydrolase was assessed to be 56,000 by using SDS/polacrylamide-gel electrophoresis. The native protein Mr of enzyme from all three tissue sources was assessed by gel-permeation chromatography to be approx. 120,000 on Sephacryl S-300 and 100,000 on Fractogel TSK. It is probable that the native enzyme results from dimerization of subunits. Kinetic parameters (km and kcat.) of human liver sulphamate sulphohydrolase were determined with a variety of substrates matching structural aspects of the physiological substrates in vivo, namely heparin and heparan sulphate. More structurally complex substrates, in which several aspects of the aglycone structure of the natural substrate were maintained, are turned over up to 372000 times faster than the monosaccharide substrate 2-sulphaminoglucosamine. Aglycone structures that influence substrate binding and/or enzyme activity were penultimate-residue C-6 carboxy and C-2 sulphate ester groups and a post-penultimate 2-sulphaminoglucosamine residue. The C-4 hydroxy group of the 2-sulphaminoglucosamine under enzymic attack is involved in binding of substrate to enzyme. The presence of C-6 sulphate ester on the non-reducing end 2-sulphaminoglucosamine stimulates sulphamate bond hydrolysis and substrate affinity if the adjacent monosaccharide residue is idose or 2-sulphoidose, but strongly inhibits hydrolysis if the adjacent monosaccharide residue is iduronic acid. Sulphamate sulphohydrolase is an exoenzyme, since activity toward internal sulphamate bonds was not detected. The effect of incubation pH on enzyme activity towards the variety of substrates evaluated was complex and dependent on substrate aglycone structure. The presence of aglycone C-2 sulphate ester and aglycone C-6 carboxy groups and C-6 sulphate ester groups on the 2-sulphaminoglucosamine residue under attack considerably affect the pH response. Structurally complex substrates had two pH optima. Incubation temperature and buffer ionic strength markedly influenced pH optima and enzyme activity. Cu2+ and SO4(2-)ions are potent inhibitors of enzyme activity.  相似文献   

5.
1. The preparation of a mono-O-cyclohexylidene derivative of l-ascorbic acid is described. 2. The new compound is shielded by the cyclohexanone group at C-5 and C-6 of the ascorbic acid molecule, while the double bond between C-2 and C-3 is kept intact. 3. The double bond of the new derivative is more resistant to oxidation than its parent compound. 4. Ascorbic acid is easily regenerated by mild acid hydrolysis. 5. The new derivative facilitates the synthesis of (14)C-labelled vitamin C.  相似文献   

6.
Ubiquitin (Ub) carboxyl-terminal hydrolase (E) catalyzes the hydrolysis, at the Ub-carboxyl terminus, of a wide variety of C-terminal Ub derivatives. We show that the enzyme is inactivated by millimolar concentrations of either sodium borohydride or hydroxylamine, but only if Ub is present. We have interpreted these results on the assumption that the hydrolase mechanism is one of nucleophilic catalysis with an acyl-Ub-E intermediate. The borohydride-inactivated enzyme has the following properties. It is a stoichiometric complex of E and Ub containing tritium from sodium boro[3H]hydride. This complex is stable at neutral pH in 5 M urea and can be isolated on the basis of size on a sieving column, but a labeled product the size of Ub is released under more strongly denaturing conditions. The "Ub" released in acid is Ub-carboxyl-terminal aldehyde, based on the observations that: it contains the tritium present in the reduced complex and it is able to form the inactive enzyme from a stoichiometric amount of fresh enzyme, and inactivation is accompanied by E-Ub adduct formation; it has chemical properties expected of an aldehyde: after a second reduction of the Ub released with boro[3H]hydride and complete acid hydrolysis, tritium counts are found in ethanolamine (the carboxyl-terminal residue of Ub is glycine). These results suggest that enzyme and Ub combine in an equilibrium reaction to form an ester or thiol ester adduct (at the Ub-carboxyl terminus), and that this adduct is trapped by borohydride to give a very stable inactive E-Ub (thio) hemiacetal which is unable to undergo a second reduction step and which can release Ub-aldehyde in mild acid. Inactivation in the presence of hydroxylamine of hydrolase occurs once during hydrolysis of 1200 molecules of Ub-hydroxamate by the enzyme. The hydrolysis/inactivation ratio is constant over the range of 10-50 mM hydroxylamine showing that forms of E-Ub with which hydroxylamine and water react are different and not in rapid equilibrium. The inactive enzyme may be an acylhydroxamate formed from an E-Ub mixed anhydride generated from the E-Ub (thiol) ester inferred from the borohydride study. A direct radioactive assay for the hydrolase has been developed using the Ub-C-terminal amide of [3H]butanol-4-amine as substrate.  相似文献   

7.
F Sweet 《Steroids》1976,27(6):741-749
20 beta-Hydroxysteroid dehydrogenase (E.C. 1.1.1.53), which had been completely inactivated with 6beta-bromoacetoxyprogesterone at pH 7.0, was reactivated by elevating the pH. The rate of reactivation is pH dependant, characteristic of base-catalysed ester hydrolysis. Similar experiments with 6beta-bromoprogesterone fail to produce reactivation of the affinity labeled enzyme. Formation and scission of different types of covalent bonds during affinity labeling and reactivation attempts accounts for the different result obtained with each steroid. The activity of the reactivated steroid oxido-reductase vs the native enzyme, and also substrate stabilization of the enzyme are discussed.  相似文献   

8.
A simplified purification procedure for mung bean nuclease has been developed yielding a stable enzyme that is homogeneous in regards to shape and size. The nuclease is a glycoprotein consisting of 29% carbohydrate by weight. It has a molecular weight of 39 000 as determined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The enzyme contains 1 sulfhydryl group and 3 disulfide bonds per molecule. It has a high content (12.6 mol %) of aromatic residues. Approximately 70% of the enzyme molecules contain a peptide bond cleavage at a single region in the protein. The two polypeptides, 25 000 and 15 000 daltons, are covalently linked by a disulfide bond(s). Both the cleaved and intact forms of the enzyme are equally active in the hydrolysis of the phosphate ester linkages in either DNA, RNA, or adenosine 3'-monophophate. The enzymatic activity of mung bean nuclease can be stabilized at pH 5 in the presence of 0.1 mM zinc acetate, 1.0 mM cysteine, and 0.001% Triton X-100. The enzyme can be inactivated and reactivated by the removal and readdition of Zn2+ or sulfhydryl compounds.  相似文献   

9.
Several steroid analogues containing conjugated acetylenic ketone groups as part of a seco-ring structure or as substituents on the intact steroid system are irreversible inhibitors of delta 5-3-oxo steroid isomerase (EC 5.3.3.1) from Pseudomonas testosteroni. Thus 10 beta-(1-oxoprop-2-ynyl)oestr-4-ene-3,17-dione (I), 5,10-seco-oestr-4-yne-3,10,17-trione (II), 17 beta-hydroxy-5,10-seco-oestr-4-yne-3,10-dione (III) and 17 beta-(1-oxoprop-2-ynyl)androst-4-en-3-one (IV) irreversibly inactivate isomerase in a time-dependent manner. In all cases saturation kinetics are observed. Protection against inactivation is afforded by the powerful competitive inhibitor 19-nortestosterone. The inhibition constants (Ki) for 19-nortestosterone obtained from such experiments are in good agreement with those determined from conventional competitive-inhibition studies of enzyme activity. These compounds thus appear to be active-site directed. In every case the inactivated enzyme could be dialysed without return of activity, indicating that a stable covalent bond probably had formed between the steroid and enzyme. Compound (I) is a very potent inhibitor of isomerase [Ki = 66.0 microM and k+2 = 12.5 x 10(-3) s-1 (where Ki is the dissociation constant of the reversible enzyme-inhibitor complex and k+2 is the rate constant for the inactivation reaction of the enzyme-inhibitor complex)] giving half-lives of inactivation of 30-45 s at saturation. It is argued that the basic-amino-acid residue that abstracts the intramolecularly transferred 4 beta-proton in the reaction mechanism could form a Michael-addition product with compound (I). In contrast, although compound (IV) has a lower inhibition constant (Ki = 14.5 microM), it is a relatively poor alkylating agent (k+2 = 0.13 x 10(-3) s-1). If the conjugated acetylenic ketone groups are replaced by alpha-hydroxyacetylene groups, the resultant analogues of steroids (I)-(IV) are reversible competitive inhibitors with Ki values in the range 27-350 microM. The enzyme binds steroids in the C19 series with functionalized acetylenic substituents at C-17 in preference to steroids in the C18 series bearing similar groups in the ring structure or as C-10 substituents. In the 5,10-seco-steroid series the presence of hydroxy groups at both C-3 and C-17 is deleterious to binding by the enzyme.  相似文献   

10.
Cryospectrokinetic studies of zinc and cobalt carboxypeptidase A disclosed two intermediates in the hydrolysis of both peptides and depsipeptides and furnished all the rate and equilibrium constants for the reaction scheme E + S in equilibrium ES1 in equilibrium ES2---E + P [Auld, D. S., Galdes, A., Geoghegan, K. F., Holmquist, B., Martinelli, R. A., & Vallee, B. L. (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 5041-5045]. Since the ES2 intermediate is the predominate enzyme species present at steady state, its chemical nature is deducible from subzero chemical quench studies done after steady state is established. Extrapolation of the product concentration to zero time, [P0], measures the concentration of the enzyme species in which bond cleavage has occurred. For peptides, the [P0]values are zero, indicating that no product is generated prior to turnover and therefore the ES2 intermediate involves a complex between enzyme and intact peptide substrate. For depsipeptides, [P0] values are 1 mol of produce per mole of enzyme over the entire temperature range -20 to -50 degrees C, indicating cleavage of the ester bond occurs prior to the rate-limiting step so that ES2 is more properly denoted by EP1P2, where P1 and P2 are the substrates for the reverse reaction. The rate-limiting step for depsipeptides thus involves release of the products which may occur directly or through a mandatory conformational change followed by rapid product release.  相似文献   

11.
alpha-Difluoromethylornithine is an effective inhibitor of polyamine biosynthesis because of its specificity for ornithine decarboxylase and the fact that its attachment to this enzyme is considered to be irreversible. We have found, however, that ornithine decarboxylase inactivated with this inhibitor in intact cells, as well as purified enzyme inactivated in vitro, both are capable of releasing this inhibitor and recovering enzyme activity. This reactivation can be initiated by freezing of inactivated enzyme samples in the presence of reducing agents at -7 or -20 degrees C and can be partially induced at 37 degrees C. These results reveal an unexpected lability of this enzyme-inhibitor complex that needs to be considered in future experimental designs.  相似文献   

12.
Purified chicken intestinal alkaline phosphatase is active at pH 8 to 9, but becomes rapidly inactivated with change of pH to 6 or less. Also, a solution of the inactivated enzyme at pH 4.5 rapidly regains its activity at pH 8. In the range of pH 6 to 8 a solution of purified alkaline phosphatase consists of a mixture of active and inactive enzyme in equilibrium with each other. The rate of inactivation at lower pH and of reactivation at higher pH increases with increase in temperature. Also, the activity at equilibrium in the range of pH 6 to 8 increases with temperature so that a solution equilibrated at higher temperature loses part of its activity on cooling, and vice versa, a rise in temperature shifts the equilibrium toward higher activity. The kinetics of inactivation of the enzyme at lower pH and the reactivation at higher pH is that of a unimolecular reaction. The thermodynamic values for the heat and entropy of the reversible inactivation and reactivation of the enzyme are considerably lower than those observed for the reversible denaturation of proteins. The inactivated enzyme at pH 4 to 6 is rapidly reactivated on addition of Zn ions even at pH 4 to 6. However, zinc ions are unable to replace magnesium ions as cocatalysts for the enzymatic hydrolysis of organic phosphates by alkaline phosphatase.  相似文献   

13.
Hydrolysis of high-molecular-mass kininogen was studied by following the changes in the amounts of substrate, intermediates and products as a function of time using quantitative polyacrylamide-gel electrophoresis (silver staining). The experimental data was analysed on the basis of the concept that the overall reaction is composed of three hydrolysis reactions, two positional-change processes of intermediates at the active site, and two product-substrate exchange processes. It is proposed C1(-)-inhibitor to form two types of complexes with kallikrein, one with non-covalent and one with covalent bonds. With an adequately chosen set of reaction-partner concentrations and four different kinds of experimental conditions with respect to kininogen and inhibitor addition to kallikrein, the following results were obtained: 1) Non-covalently bound inhibitor has no effect on the first and the second hydrolysis reaction, but efficiently interferes with the third hydrolysis reaction; 2) Nicked kininogen (first intermediate; one of the two bradykinin bonds split) for the second bond to be hydrolysed undergoes a positional change during which it remains strongly bound to the enzyme, never exchanges with kininogen, and is not displaced by non-covalently bound inhibitor; 3) Intermediate kinin-free kininogen (second intermediate; both bradykinin bonds split and bradykinin released) prior to turning over into stable kinin-free kininogen (final product; histidine-rich fragment split off and released) undergoes a positional change involving dissociation and reassociation so that non-covalently bound inhibitor finds access to the active site; 4) Intermediate kinin-free kininogen to sustain multiple turnovers exchanges with kininogen via a stable complex of such structure that during this process non-covalently bound inhibitor cannot or can only slightly interfere; 5) Stable kinin-free kininogen to sustain multiple turnovers exchanges with intermediate kinin-free kininogen via free enzyme with the effect that non-covalently bound inhibitor efficiently interferes; 6) As hydrolysis proceeds more and more inhibitor becomes covalently bound, gradually leading to complete inactivation of the enzyme.  相似文献   

14.
In water, the purified 26 000-Mr membrane-bound DD-peptidase of Streptomyces K15 hydrolyses the ester carbonyl donor Ac2-L-Lys-D-Ala-D-lactate (release of D-lactate) and the amide carbonyl donor Ac2-L-Lys-D-Ala-D-Ala (release of D-alanine) with accumulation of acyl- (Ac2-L-Lys-D-alanyl-)enzyme. Whereas hydrolysis of the ester substrate proceeds to completion, hydrolysis of the amide substrate is negligible because of the capacity of the K15 DD-peptidase for utilizing the released D-alanine in a transfer reaction (Ac2-L-Lys-D-Ala-D-Ala + D-Ala----Ac2-L-Lys-D-Ala-D-Ala + D-Ala) that maintains the concentration of the amide substrate at a constant level. In the presence of an amino acceptor X-NH2 (Gly-Gly or Gly-L-Ala) related to the Streptomyces peptidoglycan, both amide and ester carbonyl donors are processed without detectable accumulation of acyl-enzyme. Under proper conditions, the acceptor activity of water and, in the case of the amide substrate, the acceptor activity of the released D-alanine can be totally overcome so that the two substrates are quantitatively converted into transpeptidated product Ac2-L-Lys-D-Ala-NH-X (and hydrolysis is prevented). Experimental evidence suggests that the amino acceptor modifies both the binding of the carbonyl donor to the enzyme and the ensuing rate of enzyme acylation.  相似文献   

15.
A series of phosphonic acid analogues of 2-benzylsuccinate were tested as inhibitors of carboxypeptidase A. The most potent of these, (2RS)-2-benzyl-3-phosphonopropionic acid, had a Ki of 0.22 +/- 0.05 microM, equipotent to (2RS)-2-benzylsuccinate and thus one of the most potent reversible inhibitors known for this enzyme. Lengthening by one methylene group to (2RS)-2-benzyl-4-phosphonobutyric acid increased the Ki to 370 +/- 60 microM. The monoethyl ester (2RS)-2-benzyl-3-(O-ethylphosphono)propionic acid was nearly as potent as (2RS)-2-benzyl-3-phosphonopropionic acid, with a Ki of 0.72 +/- 0.3 microM. The sulphur analogue of the monoethyl ester, 2-ambo-P-ambo-2-benzyl-3-(O-ethylthiophosphono)propionic acid, had a Ki of 2.1 +/- 0.6 microM, nearly as active as (2RS)-2-benzyl-3-(O-ethylphosphono)propionic acid. These phosphonic acids and esters could be considered to be multisubstrate inhibitors of carboxypeptidase A by virtue of their structural analogy with 2-benzylsuccinate. Alternatively, the tetrahedral hybridization at the phosphorus atom suggests that they could be mimicking a tetrahedral transition state for the enzyme-catalysed hydrolysis of substrate.  相似文献   

16.
The induction of freezing tolerance in bromegrass (Bromus inermis Leyss) cell culture was used to investigate the activity of absisic acid (ABA) analogs. Analogs were either part of an array of 32 derived from systematic alterations to four regions of the ABA molecule or related, pure optical isomers. Alterations were made to the functional group at C-1 (acid replaced with methyl ester, aldehyde, or alcohol), the configuration at C-2, C-3 (cis double bond replaced with trans double bond), the bond order at C-4, C-5 (trans double bond replaced with a triple bond), and ring saturation (C-2′, C-3′ double bond replaced with a single bond so that the C-2′ methyl and side chain were cis). All deviations in structure from ABA reduced activity. A cis C-2, C-3 double bond was the only substituent absolutely required for activity. Overall, acids and esters were more active than aldehydes and alcohols, cyclohexenones were more active than cyclohexanones, and dienoic and acetylenic analogs were equally active. The activity associated with any one substituent was, however, markedly influenced by the presence of other substituents. cis, trans analogs were more active than their corresponding acetylenic analogs unless the C-1 was an ester. Cyclohexenones were more active than cyclohexanones regardless of oxidation level at C-1. An acetylenic side chain decreased the activity of cyclohexenones but increased the activity of cyclohexanones relative to their cis, trans counterparts. Trends suggested that for activity the configuration at C-1′ has to be the same as in (S)-ABA, in dihydro analogs the C-2′-methyl and the side chain must be cis, small positional changes of the 7′-methyl are tolerable, and the C-1 has to be at the acid oxidation level.  相似文献   

17.
The holoenzyme of adenosylcobalamin-dependent ethanolamine ammonia lyase undergoes suicidal inactivation during catalysis as well as inactivation in the absence of substrate. The inactivation involves the irreversible cleavage of the Co-C bond of the coenzyme. We found that the inactivated holoenzyme undergoes rapid and continuous reactivation in the presence of ATP, Mg2+, and free adenosylcobalamin in permeabilized cells (in situ), homogenate, and cell extracts of Escherichia coli. The reactivation was observed in the permeabilized E. coli cells carrying a plasmid containing the E. coli eut operon as well. From coexpression experiments, it was demonstrated that the eutA gene, adjacent to the 5' end of ethanolamine ammonia lyase genes (eutBC), is essential for reactivation. It encodes a polypeptide consisting of 467 amino acid residues with predicted molecular weight of 49,599. No evidence was obtained that shows the presence of the auxiliary protein(s) potentiating the reactivation or associating with EutA. It was demonstrated with purified recombinant EutA that both the suicidally inactivated and O2-inactivated holoethanolamine ammonia lyase underwent rapid reactivation in vitro by EutA in the presence of adenosylcobalamin, ATP, and Mg2+. The inactive enzyme-cyanocobalamin complex was also activated in situ and in vitro by EutA under the same conditions. Thus, it was concluded that EutA is the only component of the reactivating factor for ethanolamine ammonia lyase and that reactivation and activation occur through the exchange of modified coenzyme for free intact adenosylcobalamin.  相似文献   

18.
To examine the structural and functional importance of backbone amide groups in ion channels for subunit folding, hydrogen bonding, ion solvation, and ion permeation, we replaced the peptide bond between Val(1) and Gly(2) in gramicidin A by an ester bond. The substitution is at the junction between the two channel subunits, where it removes an intramolecular hydrogen bond between the NH of Gly(2) and the C==O of Val(7) and perturbs an intermolecular hydrogen bond between the C==O of Val(1) in one subunit and the NH of Ala(5) in the other subunit. The substitution thus perturbs not only subunit folding but also dimer assembly, in addition to any effects on ion permeation. This backbone modification has large effects on channel function: It alters channel stability, as monitored by the channel forming ability and channel lifetime, and ion permeability, as monitored by changes in single-channel conductance and cation permeability ratios. In fact, the homodimeric channels, with two ester-containing subunits, have lifetimes so short that it becomes impossible to characterize them in any detail. The peptide --> ester substitution, however, does not affect the basic subunit fold because heterodimeric channels can form between a subunit with an ester bond and a native subunit. These heterodimeric channels, with only a single ester bond, are more easily characterized; the lone ester reduces the single-channel conductance about 4-fold and the lifetime about 200-fold as compared to the native homodimeric channels. The altered channel function results from a perturbation/disruption of the hydrogen bond network that stabilizes the backbone, as well as the membrane-spanning dimer, and that forms the lining of the ion-conducting pore. Molecular dynamics simulations show the expected destabilization of the modified heterodimeric or homodimeric channels, but the changes in backbone structure and dynamics are remarkably small. The ester bond is somewhat unstable, which precluded further structural characterization. The lability also led to a hydrolysis product that terminates with an alcohol and lacks formyl-Val. Symmetric channels formed by the hydrolyzed product again have short lifetimes, but the channels are distinctly different from those formed by the ester gramicidin A. Furthermore, well-behaved asymmetric channels form between the hydrolysis product and reference subunits that have either an L- or a D-residue at the formyl-NH-terminus.  相似文献   

19.
An ester hydrolase (ABL) has been isolated from a strain of Arthrobacter species (RRLJ-1/95) maintained in the culture collection of this laboratory. The purified enzyme has a specific activity of 1700 U/mg protein and is found to be composed of a single subunit (Mr 32,000), exhibiting both lipase and esterase activities shown by hydrolysis of triglycerides and p-nitrophenyl acetate respectively. Potential application of the enzyme concerns the asymmetrisation of prochiral 2-benzyl-1,3-propanediol esters besides enantioselective hydrolysis of alkyl esters of unsubstituted and substituted 1-phenyl ethanols.  相似文献   

20.
Pyridoxal phosphate-dependent histidine decarboxylase from Morganella morganii AM-15 was inactivated by (S)-alpha-fluoromethylhistidine by a pseudo first-order reaction, with KI and k inact values of 0.1 mM and 32.2 min-1, respectively, and was most efficient at pH 6.5-7.0. Both L-histidine and the competitive inhibitor, L-histidine methyl ester, protected against inactivation. The apoenzyme was not inactivated. These findings indicate that inhibition is a mechanism-based process. Under optimal conditions a single molecule of alpha-fluoromethylhistidine inactivates one enzyme subunit, indicating that no escaping side reaction occurs during the inactivation process. The bound inactivator is not released by dialysis of the native protein but is released upon denaturation by heat or urea. This released product was not fully characterized, but it contains the tritium of ring-labeled alpha-fluoromethyl-[3H]histidine, exhibits the spectral properties of a 3-hydroxypyridine derivative, and does not yield any amino acids on hydrolysis. The label was much more stable following borohydride reduction of the inactivated protein, and a tryptic peptide containing the modified residue was isolated. Sequencing of this peptide and the corresponding peptide from the native enzyme revealed that the inactivator binds to a serine residue of the holoenzyme. Two P-pyridoxyl peptides from tryptic or CNBr digests of the NaBH4-reduced enzyme were also isolated. Sequence and compositional data obtained with these peptides showed that the serine residue to which the inhibitor binds is not near the lysine residue that binds pyridoxal-P in the primary sequence of the protein, although the two residues must be near one another in the three-dimensional structure to account for these results. A speculative mechanism for inactivation, consistent with the experimental findings, is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号