首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Crystal structures of enoyl-coenzyme A (CoA) isomerase from Bosea sp. PAMC 26642 (BoECI) and enoyl-CoA hydratase from Hymenobacter sp. PAMC 26628 (HyECH) were determined at 2.35 and 2.70 Å resolution, respectively. BoECI and HyECH are members of the crotonase superfamily and are enzymes known to be involved in fatty acid degradation. Structurally, these enzymes are highly similar except for the orientation of their C-terminal helix domain. Analytical ultracentrifugation was performed to determine the oligomerization states of BoECI and HyECH revealing they exist as trimers in solution. However, their putative ligand-binding sites and active site residue compositions are dissimilar. Comparative sequence and structural analysis revealed that the active site of BoECI had one glutamate residue (Glu135), this site is occupied by an aspartate in some ECIs, and the active sites of HyECH had two highly conserved glutamate residues (Glu118 and Glu138). Moreover, HyECH possesses a salt bridge interaction between Glu98 and Arg152 near the active site. This interaction may allow the catalytic Glu118 residue to have a specific conformation for the ECH enzyme reaction. This salt bridge interaction is highly conserved in known bacterial ECH structures and ECI enzymes do not have this type of interaction. Collectively, our comparative sequential and structural studies have provided useful information to distinguish and classify two similar bacterial crotonase superfamily enzymes.  相似文献   

2.
1. A specimen of stereospecifically 2-tritiated 3-hydroxybutyric acid was prepared by hydroboration of ethyl crotonate. It was assumed that the hydroboration reaction took a syn course and hence that (2R,3S) plus (2S,3R)-3-hydroxy[2 minus 3H1]butyric acid was formed after oxidation and hydrolysis. 2. 3RS-3-Hydroxy[2 minus 3H2]butyric acid, symmetrically tritiated at C-2, was prepared by isotopic exchange of ethyl acetoacetate in tritiated water, followed by reduction and hydrolysis. 3. The 3R-enantiomers of the acids listed under paragraphs (1) and (2) were destroyed enzymically by use of 3R-specific 3-hydroxybutyrate dehydrogenase and the residual 3S-enantiomers were isolated. 4. The resulting specimens of 2R,3S-3-hydroxy[2 minus 3H1]butyric acid and 3S-3hydroxy[2 minus 3H2]-butyric acid were converted chemically to the acyl-CoA derivatives. These were incubated with enoyl-CoA hydratase. 5. In the presence of the enoyl-CoA hydratase symmetrically labelled 3S-3-hydroxy[2 minus 3H2]BUTYRYL-CoA lost nearly 50% of its tritium label; 2R,3S-3hydroxy [2-3-H1]butyryl-CoA lost about 78%. 6. It was concluded that the elimination of the elements of water from 3-hydroxybutyryl-CoA on the hydratase occurs stereospecifically with syn geometry.  相似文献   

3.
Feng Y  Hofstein HA  Zwahlen J  Tonge PJ 《Biochemistry》2002,41(42):12883-12890
Enoyl-CoA hydratase catalyzes the hydration of trans-2-crotonyl-CoA to 3(S)-HB-CoA, 3(S)-hydroxybutyryl-CoA with a stereospecificity (k(S)/k(R)) of 400000 to 1 [Wu, W. J., Feng, Y., He, X., Hofstein, H. S., Raleigh, D. P., and Tonge, P. J. (2000) J. Am. Chem. Soc. 122, 3987-3994]. Replacement of E164, one of the catalytic glutamates in the active site, with either aspartate or glutamine reduces the rate of formation of the 3(S) product enantiomer (k(S)) without affecting the rate of formation of the 3(R) product (k(R)). Consequently, k(S)/k(R) is 1000 and 0.33 for E164D and E164Q, respectively. In contrast, mutagenesis of E144, the second catalytic glutamate, reduces the rate of formation of both product enantiomers. Thus, only E144 is required for the formation of 3(R)-HB-CoA, 3(R)-hydroxybutyryl-CoA. Modeling studies together with analysis of alpha-proton exchange rates and experiments with crotonyl-oxyCoA, a substrate analogue in which the alpha-proton acidity has been reduced 10000-fold, support a mechanism of 3(R)-hydroxybutyryl-CoA formation that involves the E144-catalyzed stepwise addition of water to crotonyl-CoA which is bound in an s-trans conformation in the active site. Finally, we also demonstrate that hydrogen bonds in the oxyanion hole, provided by the backbone amide groups of G141 and A98, are important for the formation of both product enantiomers.  相似文献   

4.
Insect acetylcholinesterase (AChE), an enzyme whose catalytic site is located at the bottom of a gorge-like structure, hydrolyzes its substrate over a wide range of concentrations (from 2 microm to 300 mm). AChE is activated at low substrate concentrations and inhibited at high substrate concentrations. Several rival kinetic models have been developed to try to describe and explain this behavior. One of these models assumes that activation at low substrate concentrations partly results from an acceleration of deacetylation of the acetylated enzyme. To test this hypothesis, we used a monomethylcarbamoylated enzyme, which is considered equivalent to the acylated form of the enzyme and a non-hydrolyzable substrate analog, 4-oxo-N,N,N-trimethylpentanaminium iodide. It appears that this substrate analog increases the decarbamoylation rate by a factor of 2.2, suggesting that the substrate molecule bound at the activation site (K(d) = 130 +/- 47 microm) accelerates deacetylation. These two kinetic parameters are consistent with our analysis of the hydrolysis of the substrate. The location of the active site was investigated by in vitro mutagenesis. We found that this site is located at the rim of the active site gorge. Thus, substrate positioning at the rim of the gorge slows down the entrance of another substrate molecule into the active site gorge (Marcel, V., Estrada-Mondaca, S., Magné, F., Stojan, J., Klaébé, A., and Fournier, D. (2000) J. Biol. Chem. 275, 11603-11609) and also increases the deacylation step. This results in an acceleration of enzyme turnover.  相似文献   

5.
Chromatium vinosum, strain D, exhibits two extreme modifications of near infra-red absorption spectra when growing heterotrophically at temperatures either above or below 36.5° C. Chromatophores isolated from cells grown either at 33° C (33° C chromatophores) or 39° C (39° C chromatophores) were analyzed for structural and functional parameters. For this the following chromatophore subunits were solubilized and characterized; (i) a fraction absorbing maximally at 800 nm with shoulders at 820 and 850 nm when derived from 33° C chromatophores or absorbing at 800 nm and 850 nm when derived from 39° C chromatophores; (ii) reaction center-light harvesting bacteriochlorophyll complexes with identical spectra and ratios of reaction center to light harvesting bacteriochlorophyll (1:45); (iii) complexes containing cytochromes, (IV) reaction center bacteriochlorophyll complexes. Irrespective of their origins the fractions exhibited qualitatively identical protein patterns as analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis.Protein patterns of 33° C and 39° C chromatophores revealed an identical ratio of proteins of reaction centers to proteins of cytochrome preparations. But the ratio of proteins of reaction centers to proteins of light harvesting moieties was 1.9 times higher in 39° C chromatophores than in 33° C chromatophores. Correspondingly, the ratio of reaction center per total bacteriochlorophyll was 1.7 times higher in 39° C chromatophores (1:110) then in 33° C chromatophores (1:190). Activities of photophosphorylation were 0.73 and 0.56 moles of ATP per moles of total bacteriochlorophyll per min for 33° C and 39° C chromatophores, respectively. Activities of sulfide oxidation in the light by whole cells were 2.37 and 1.96 moles of sulfide per mole of total bacteriochlorophyll per min for 33° C and 39° C cells. Accordingly, on a reaction center basis activities are significantly lower after growth of the organisms at 39° C than at 33° C. The data indicate that spectral changes in Chromatium vinosum represent changes in the ratio of reaction center to light harvesting bacteriochlorophyll accompanied by a variation of the absorption spectra of the latter bacteriochlorophyll moiety. Concomitantly, activities coupled to the photochemical apparatus were subjected to variations.Abbreviations Bchl Bacteriochlorophyll - LDAO lauryl dimethylamine oxide - SDS sodium dodecyl sulfate  相似文献   

6.
7.
8.
Elssner T  Engemann C  Baumgart K  Kleber HP 《Biochemistry》2001,40(37):11140-11148
Two proteins (CaiB and CaiD) were found to catalyze the reversible biotransformation of crotonobetaine to L-carnitine in Escherichia coli in the presence of a cosubstrate (e.g., gamma-butyrobetainyl-CoA or crotonobetainyl-CoA). CaiB (45 kDa) and CaiD (27 kDa) were purified in two steps to electrophoretic homogeneity from overexpression strains. CaiB was identified as crotonobetainyl-CoA:carnitine CoA-transferase by MALDI-TOF mass spectrometry and enzymatic assays. The enzyme exhibits high cosubstrate specificity to CoA derivatives of trimethylammonium compounds. In particular, the N-terminus of CaiB shows significant identity with other CoA-transferases (e.g., FldA from Clostridium sporogenes, Frc from Oxalobacter formigenes, and BbsE from Thauera aromatica) and CoA-hydrolases (e.g., BaiF from Eubacterium sp.). CaiD was shown to be a crotonobetainyl-CoA hydratase using MALDI-TOF mass spectrometry and enzymatic assays. Besides crotonobetainyl-CoA CaiD is also able to hydrate crotonyl-CoA with a significantly lower Vmax (factor of 10(3)) but not crotonobetaine. The substrate specificity of CaiD and its homology to the crotonase confirm this enzyme as a new member of the crotonase superfamily. Concluding these results, it was verified that hydration of crotonobetaine to L-carnitine proceeds at the CoA level in two steps: the CaiD catalyzed hydration of crotonobetainyl-CoA to L-carnitinyl-CoA, followed by a CoA transfer from L-carnitinyl-CoA to crotonobetaine, catalyzed by CaiB. When gamma-butyrobetainyl-CoA was used as a cosubstrate (CoA donor), the first reaction is the CoA transfer. The optimal ratios of CaiB and CaiD during this hydration reaction, determined to be 4:1 when crotonobetainyl-CoA was used as cosubstrate and 5:1 when gamma-butyrobetainyl-CoA was used as cosubstrate, are different from that found for in vivo conditions (1:3).  相似文献   

9.
Nuclear magnetic resonance methods have been developed for assignment of the absolute configuration of (4,4,4-d3)-β-hydroxyisovalerate and (2-d1)-β-hydroxyisovalerate. (E) and (Z)-(4,4,4-d3)-β-methylcrotonate and (2-d)-β-methylcrotonate have been administered to biotin-deficient rats, and the resultant β-hydroxyisovalerate was isolated from their urine. The NMR spectra of derivatives of the biosynthetic products established that the hydration of β-methylcrotonate had proceeded nonstereospecifically.  相似文献   

10.
The role of two glutamate residues (E164 and E144) in the active site of enoyl-CoA hydratase has been probed by site-directed mutagenesis. The catalytic activity of the E164Q and E144Q mutants has been determined using 3'-dephosphocrotonyl-CoA. Removal of the 3'-phosphate group reduces the affinity of the substrate for the enzyme, thereby facilitating the determination of K(m) and simplifying the analysis of the enzymes' pH dependence. k(cat) for the hydration of 3'-dephosphocrotonyl-CoA is reduced 7700-fold for the E144Q mutant and 630000-fold for the E164Q mutant, while K(m) is unaffected. These results indicate that both glutamate residues play crucial roles in the hydration chemistry catalyzed by the enzyme. Previously, we reported that, in contrast to the wild-type enzyme, the E164Q mutant was unable to exchange the alpha-proton of butyryl-CoA with D(2)O [D'Ordine, R. L., Bahnson, B. J., Tonge, P. J. , and Anderson, V. E. (1994) Biochemistry 33, 14733-14742]. Here we demonstrate that E144Q is also unable to catalyze alpha-proton exchange even though E164, the glutamate that is positioned to abstract the alpha-proton, is intact in the active site. The catalytic function of each residue has been further investigated by exploring the ability of the wild-type and mutant enzymes to eliminate 2-mercaptobenzothiazole from 4-(2-benzothiazole)-4-thiabutanoyl-CoA (BTTB-CoA). As expected, reactivity toward BTTB-CoA is substantially reduced (690-fold) for the E164Q enzyme compared to wild-type. However, E144Q is also less active than wild-type (180-fold) even though elimination of 2-mercaptobenzothiazole (pK(a) 6.8) should require no assistance from an acid catalyst. Clearly, the ability of E164 to function as an acid-base in the active site is affected by mutation of E144 and it is concluded that the two glutamates act in concert to effect catalysis.  相似文献   

11.
Enoyl-CoA hydratase catalyzes the hydration of 2-trans-enoyl-CoA into 3-hydroxyacyl-CoA. The present study focuses on the correlation between the functional and structural aspects of enoyl-CoA hydratase from Avicennia marina. We have used bioinformatics tools to construct and analyze 3D homology models of A. marina enoyl-CoA hydratase (AMECH) bound to different substrates and inhibitors and studied the residues involved in the ligand–enzyme interaction. Structural information obtained from the models was compared with those of the reported crystal structures. We observed that the overall folds were similar; however, AMECH showed few distinct structural changes which include structural variation in the mobile loop, formation and loss of certain interactions between the active site residues and substrates. Some changes were also observed within specific regions of the enzyme. Glu106 is almost completely conserved in sequences of the isomerases/hydratases including AMECH while Glu86 which is the other catalytic residue in most of the isomerases/hydratases is replaced by Gly and shows no interaction with the substrate. Asp114 is located within 4 Å distance of the catalytic water which makes it a probable candidate for the second catalytic residue in AMECH. Another prominent feature of AMECH is the presence of structurally distinct mobile loop having a completely different coordination with the hydrophobic binding pocket of acyl portion of the substrate.  相似文献   

12.
The kinetics of bovine liver enoyl-CoA hydratase (EC 4.2.1.17) or crotonase with 2-trans-hexadecenoyl-CoA as a substrate were studied because different rates were obtained with two assay methods based on measurements of substrate utilization and product formation, respectively. L-3-Hydroxyhexadecanoyl-CoA, the product of the crotonase-catalyzed hydration of 2-trans-hexadecenoyl-CoA, was found to be a strong competitive inhibitor of the enzyme with a Ki of 0.35 microM. In contrast the short-chain product, L-3-hydroxybutyryl-CoA, is a weak competitive inhibitor with a Ki of 37 microM. L-3-Hydroxyhexadecanoyl-CoA is a much stronger inhibitor of crotonase than are other short-chain and long-chain intermediates of beta-oxidation and crotonase is more severely inhibited by this compound than are all beta-oxidation enzymes tested so far. Determination of true kinetic parameters for the crotonase-catalyzed hydration of long-chain substrates requires the removal of product in a coupled assay. When this was done, the Km for 2-trans-hexadecenoyl-CoA with bovine liver crotonase was found to be only 9 microM. It is suggested that under conditions of restricted beta-oxidation, when 3-hydroxyacyl-CoAs accumulate in mitochondria, the inhibition of crotonase by long-chain 3-hydroxyacyl-CoAs may limit the further degradation of medium-chain and short-chain intermediates of beta-oxidation.  相似文献   

13.
14.
BACKGROUND: The AU binding homolog of enoyl-CoA hydratase (AUH) is a bifunctional protein that has two distinct activities: AUH binds to RNA and weakly catalyzes the hydration of 2-trans-enoyl-coenzyme A (enoyl-CoA). AUH has no sequence similarity with other known RNA binding proteins, but it has considerable sequence similarity with enoyl-CoA hydratase. A segment of AUH, named the R peptide, binds to RNA. However, the mechanism of the RNA binding activity of AUH remains to be elucidated. RESULTS: We determined the crystal structure of human AUH at 2.2 A resolution. AUH adopts the typical fold of the enoyl-CoA hydratase/isomerase superfamily and forms a hexamer as a dimer of trimers. Interestingly, the surface of the AUH hexamer is positively charged, in striking contrast to the negatively charged surfaces of the other members of the superfamily. Furthermore, wide clefts are uniquely formed between the two trimers of AUH and are highly positively charged with the Lys residues in alpha helix H1, which is located on the edge of the cleft and contains the majority of the R peptide. A mutational analysis showed that the lysine residues in alpha helix H1 are essential to the RNA binding activity of AUH. CONCLUSIONS: Alpha helix H1 exposes a row of Lys residues on the solvent-accessible surface. These characteristic Lys residues are named the "lysine comb." The distances between these Lys residues are similar to those between the RNA phosphate groups, suggesting that the lysine comb may continuously bind to a single-stranded RNA. The clefts between the trimers may provide spaces sufficient to accommodate the RNA bases.  相似文献   

15.
The (R)-specific enoyl coenzyme A hydratase ((R)-hydratase) from Aeromonas caviae catalyzes the addition of a water molecule to trans-2-enoyl coenzyme A (CoA), with a chain-length of 4-6 carbons, to produce the corresponding (R)-3-hydroxyacyl-CoA. It forms a dimer of identical subunits with a molecular weight of about 14,000 and is involved in polyhydroxyalkanoate (PHA) biosynthesis. The crystal structure of the enzyme has been determined at 1.5-A resolution. The structure of the monomer consists of a five-stranded antiparallel beta-sheet and a central alpha-helix, folded into a so-called "hot dog" fold, with an overhanging segment. This overhang contains the conserved residues including the hydratase 2 motif residues. In dimeric form, two beta-sheets are associated to form an extended 10-stranded beta-sheet, and the overhangs obscure the putative active sites at the subunit interface. The active site is located deep within the substrate-binding tunnel, where Asp(31) and His(36) form a catalytic dyad. These residues are catalytically important as confirmed by site-directed mutagenesis and are possibly responsible for the activation of a water molecule and the protonation of a substrate molecule, respectively. Residues such as Leu(65) and Val(130) are situated at the bottom of the substrate-binding tunnel, defining the preference of the enzyme for the chain length of the substrate. These results provide target residues for protein engineering, which will enhance the significance of this enzyme in the production of novel PHA polymers. In addition, this study provides the first structural information of the (R)-hydratase family and may facilitate further functional studies for members of the family.  相似文献   

16.
Peroxisome proliferators, which induce proliferation of hepatic peroxisomes, have been shown previously to cause a marked increase in an 80,000 mol wt polypeptide predominantly in the light mitochondrial and microsomal fractions of liver of rodents. We now present evidence to show that this hepatic peroxisome-proliferation-associated polypeptide, referred to as polypeptide PPA-80, is immunochemically identical with the multifunctional peroxisome protein displaying heat-labile enoyl-CoA hydratase activity. This conclusion is based on the following observations: (a) the purified polypeptide PPA-80 and the heat- labile enoyl-CoA hydratase from livers of rats treated with the peroxisome proliferators Wy-14,643 {[4-chloro-6(2,3-xylidino)-2-pyrimidinylthio]acetic acid} exhibit identical minimum molecular weights of approximately 80,000 on SDS polyacrylamide gel electrophoresis; (b) these two proteins are immunochemically identical on the basis of ouchterlony double diffusion, immunotitration, rocket immunoelectrophoresis, and crossed immunoelectrophoresis analysis; and (c) the immunoprecipitates formed by antibodies to polypeptide PPA-80 when dissociated on a sephadex G-200 column yield enoyl-CoA hydratase activity. Whether the polypeptide PPA-80 exhibits the activity of other enzyme(s) of the peroxisomal β-oxidation system such as fatty acyl-CoA oxidase activity or displays immunochemical identity with such enzymes remains to be determined. The availability of antibodies to polypeptide PPA-80 and enoyl-CoA hydratase facilitated immunofluorescent and immunocytochemical localization of the polypeptide PPA- 80 and enoyl-CoA hydratase in the rat liver. The indirect immunofluorescent studies with these antibodies provided direct visual evidence for the marked induction of polypeptide PPA-80 and enoyl-CoA hydratase in the livers of rats treated with Wy-14,643. The present studies also provide immunocytochemical evidence for the localization of polypeptide PPA- 80 and the heat-labile enoyl-CoA hydratase in the peroxisome, but not in the mitochondria, of hepatic parenchymal cells. These studies, therefore, provide morphological evidence for the existence of fatty acyl-CoA oxidizing system in peroxisomes. An increase of polypeptide PPA-80 on SDS polyacrylamide gel electrophoretic analysis of the subcellular fractions of liver of rodents treated with lipid-lowering drugs should serve as a reliable and sensitive indicator of enhanced peroxisomal β- oxidation system.  相似文献   

17.
Yu W  Chu X  Deng G  Liu X  Chen G  Li D 《Biochimica et biophysica acta》2006,1760(12):1874-1883
We report here a novel example of generating hydratase activity through site-directed mutagenesis of a single residue Lys242 of rat liver mitochondrial Delta3-Delta2-enoyl-CoA isomerase, which is one of the key enzymes involved in fatty acid oxidation and a member of the crotonase superfamily. Lys242 is at the C-terminal of the enzyme, which is far from the active site in the crotonase superfamily and forms a salt bridge with Asp149. A variety of mutant expression plasmids were constructed, and it was observed that mutation of Lys242 to nonbasic residues allowed the mutants to have enoyl-CoA hydratase activity confirmed by HPLC analysis of the incubation mixture. Kinetic studies of these mutants were carried out for both isomerase and hydratase activities. Mutant K242C showed a k(cat) value of 1.0 s(-1) for hydration reaction. This activity constitutes about 10% of the total enzyme activity, and the remaining 90% is its natural isomerase activity. To the best of our knowledge, this is the first report on the generation of functional promiscuity through single amino acid mutation far from the active site. This may be a simple and efficient approach to designing a new enzyme based on an existing template. It could perhaps become a general methodology for facilitating an enzyme to acquire a type enzymatic activity that belongs to another member of the same superfamily, by interrupting a key structural element in order to introduce ambiguity, using site-directed mutagenesis.  相似文献   

18.
Glycine is an inhibitory neurotransmitter in the spinal cord and brain stem, where it acts on strychnine-sensitive glycine receptors, and is also an excitatory neurotransmitter throughout the brain and spinal cord, where it acts on the N-methyl-d-aspartate family of receptors. There are two Na(+)/Cl(-)-dependent glycine transporters, GLYT1 and GLYT2, which control extracellular glycine concentrations and these transporters show differences in substrate selectivity and blocker sensitivity. A bacterial Na(+)-dependent leucine transporter (LeuT(Aa)) has recently been crystallized and its structure determined. When the amino acid residues within the leucine binding site of LeuT(Aa) are aligned with residues of the two glycine transporters there are a number of identical residues and also some key differences. In this report, we demonstrate that the LeuT(Aa) structure represents a good working model of the Na(+)/Cl(-)-dependent neurotransmitters and that differences in substrate selectivity can be attributed to a single difference of a glycine residue in transmembrane domain 6 of GLYT1 for a serine residue at the corresponding position of GLYT2.  相似文献   

19.
Activity of enoyl-CoA hydratase in rat liver was elevated about 6-fold by the administration of di-(2-ethylhexyl)phthalate, a hepatic peroxisome proliferator. Almost all of the increased activity was the peroxisomal enzyme, which was distinguished by its heat-lability from mitochondrial one. Heat-labile enoyl-CoA hydratase was copurified with peroxisomal 3-hydroxyacyl-CoA dehydrogenase. The purified enzyme corresponded to a peroxisome specific peptide with a molecular weight of 80,000.  相似文献   

20.
5,6-Dichloro-7,7,7-trifluoro-4-thia-5-heptenoyl-CoA (DCTFTH-CoA) is an analogue of a class of cytotoxic 4-thiaacyl-CoA thioesters that can undergo a beta-elimination reaction to form highly unstable thiolate fragments, which yield electrophilic thioketene or thionoacyl halide species. Previous work demonstrated that the medium-chain acyl-CoA dehydrogenase both bioactivates and is inhibited by these CoA thioesters through enzyme-catalyzed beta-elimination of the reactive thiolate moiety [Baker-Malcolm, J. F., Haeffner-Gormley, L., Wang, L., Anders, M. W., and Thorpe, C. (1998) Biochemistry 37, 1383-1393]. This paper shows that DCTFTH-CoA can be directly bioactivated by the enoyl-CoA hydratase (ECH) with the release of 1,2-dichloro-3,3,3-trifluoro-1-propenethiolate and acryloyl-CoA. In the absence of competing exogenous trapping agents, DCTFTH-CoA effects rapid and irreversible loss of hydratase activity. The inactivator is particularly effective at pH 9.0, with a stoichiometry approaching 1 mol of DCTFTH-CoA per enzyme subunit. Modification is associated with a new protein-bound chromophore at 360 nm and an increase in mass of 89 +/- 5 per subunit. Surprisingly, ECH exhibiting less than 2% residual hydratase activity retains essentially 100% beta-eliminase activity and continues to generate reactive thiolate species from DCTFTH-CoA. This leads to progressive derivatization of the enzyme with additional UV absorbance, covalent cross-linking of subunits, and an eventual complete loss of beta-eliminase activity. A range of exogenous trapping agents, including small thiol nucleophiles, various proteins, and even phospholipid bilayers, exert strong protection against modification of ECH. Peptide mapping, thiol titrations, UV-vis spectrophotometry, and mass spectrometry show that inactivation involves the covalent modification of Cys62 and/or Cys111 of the recombinant rat liver ECH. These data suggest that enoyl-CoA hydratase is an important enzyme in the bioactivation of DCTFTH-CoA, in a pathway which does not require involvement of the medium-chain acyl-CoA dehydrogenase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号