首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lemay, A-M. and Haston, C. K. Radiation-Induced Lung Response of AcB/BcA Recombinant Congenic Mice. Radiat. Res. 170, 299-306 (2008).The genetic factors that influence the development of radiotherapy-induced lung disease are largely unknown. Herein we identified a strain difference in lung response to radiation wherein A/J mice developed alveolitis with increased levels of pulmonary mast cells and cells in bronchoalveolar lavage while the phenotype in C57BL/6J mice was fibrosis with fewer inflammatory cells. To identify genomic loci that may influence these phenotypes, we assessed recombinant congenic (RC) mice derived from the A/J and C57BL/6J strains for their propensity to develop alveolitis or fibrosis after 18 Gy whole-thorax irradiation. Mouse survival, lung histopathology and bronchoalveolar lavage cell types were recorded. Informative strains for each of mast cell influx, bronchoalveolar cell numbers, alveolitis and fibrosis were identified. In mice with the A/J strain background, the severity of alveolitis correlated with increased mast cell numbers while in C57BL/6J background strain mice fibrosis was correlated with the percentage of neutrophils in lavage. The data for RC mice support the association of specific inflammatory cells with the development of radiation-induced lung disease and provide informative strains with which to dissect the genetic basis of these complex traits.  相似文献   

2.
The pear (Pyrus pyrifolia) has gametophytic self-incompatibility (GSI). To elucidate the S-genotypes of Korean-bred pear cultivars, whose parents are heterozygotes, the PCR amplification using S-RNase primers that are specific for each S-genotype was carried out in 15 Korean-bred pear cultivars and 5 Japanese-bred pear cultivars. The difference of the fragment length was shown in the following order: S6 (355 bp) < S7 (360 bp) < S1 (375 bp) < S4 (376 bp) < S3 and S5 (384 bp) < S8 (442 bp) < S9 (1,323 bp) < S2 (1,355 bp). We analyzed the sequence of the S-RNase gene, which had introns of various sizes in the hypervariable (HV) region between the adjacent exons with a fairly high homology. The sizes of the introns were as follows: S1 = 167 bp, S2 = 1,153 bp, S3 = 179 bp, S4 = 168 bp, S5 = 179 bp, S6 = 147 bp, S7 = 152 bp, S8 = 234 bp, S9 = 1,115 bp. There were five conservative and five hypervariable regions in the introns of S1, S3, S4, S5, S6 and S-RNases. A pairwise comparison of these introns of S-RNases revealed homologies as follows: 93.7% between S1- and S4-RNases, 93.3% between S3- and S5-RNases and 78.9% between S6- and S7-RNases. PCR-RFLP and S-RNases sequencing determined the S-genotypes of the pear cultivars. The S-genotypes were S4S9 for Shinkou, S3S9 for Niitaka, S3S5 for Housui, S1S5 for Kimizukawase, S1S8 for Ichiharawase, S3S5 for Mansoo, S3S4 for Shinil, S3S4 for Whangkeumbae, S3S5 for Sunhwang, S3S5 for Whasan, S3S5 for Mihwang, S5S? for Chengsilri, S3S5 for Gamro, S3S4 for Yeongsanbae, S3S4 for Wonhwang, S3S5 for Gamcheonbae, S3S5 for Danbae, S3S4 for Manpoong, S3S4 for Soowhangbae and S4S6 for Chuwhangbae. The information on the S-genotypes of pear cultivars will be used for the pollinizer selection and breeding program.  相似文献   

3.
RNase catalyzed hydrolysis of ribosomes in several functional states   总被引:1,自引:0,他引:1  
The RNase A catalyzed hydrolysis of rRNA in ribosomes has been studied for nonwashed 50S and 70S ribosomes, for washed 50S and 70S ribosomes, for runoff 50S ribosomes and for 70S ribosomes in polysomes. The regions available to hydrolysis in the 50S ribosome remain available when the 50S ribosomes become a part of a 70S ribosome or a polysome. The regions available to hydrolysis in the 30S ribosome become unavailable when the 30S ribosome becomes part of a 70S ribosome or a polysome. Removal of tRNA, mRNA and factors from the 50S and 70S ribosome lowers the rate of hydrolysis of one site in the 23S rRNA. This shows that the conformation of one region of the 23S RNA changes for ribosomes in different functional states.  相似文献   

4.
The 16S-23S rDNA intergenic spacer regions (ISR) of different streptococcal species and subspecies were amplified with primers derived from the highly conserved flanking regions of the 16S rRNA and 23S rRNA genes. The single sized amplicons showed a uniform pattern for S. agalactiae, S. dysgalactiae subsp. dysgalactiae (serogroup C), S. dysgalactiae subsp. equisimilis (serogroup G), S. dysgalactiae subsp. dysgalactiae (serogroup L), S. canis, S. phocae, S. uberis, S. parauberis, S. pyogenes and S. equi subsp. equi, respectively. The amplicons of S. equi subsp. zooepidemicus, S. porcinus and S. suis appeared with 3, 5 and 3 different sizes, respectively. ISR of selected strains of each species or subspecies investigated were sequenced and multiple aligned. This allowed a separation of ISR into regions, with 7 regions for S. agalactiae, S. dysgalactiae subsp. dysgalactiae (serogroup C), S. dysgalactiae subsp. equisimilis (serogroup G), S. dysgalactiae subsp. dysgalactiae (serogroup L), S. canis, S. phocae, S. pyogenes and S. suis, 8 regions for S. uberis and S. parauberis and mostly 9 regions for S. equi subsp. equi, S. equi subsp. zooepidemicus and S. porcinus. Region 4, encoding the transfer RNA for alanine (tRNA(Ala)), was present and identical for all isolates investigated. The size and sequence of ISR appears to be a unique marker for streptococci of various species and subspecies and could be used for bacterial identification. In addition the size and sequence variations of ISR of S. equi subsp. zooepidemicus, S. porcinus and S. suis allows a molecular typing of isolates of these species possibly useful in epidemiological aspects.  相似文献   

5.
Functionally active 70S ribosomes containing 4-thiouridine (s4U) in place of uridine were prepared by a formerly described in vivo substitution method. Proteins were crosslinked to RNA by 366 nm photoactivation of s4U. We observe the systematic and characteristic formation of 30S dimers; they were eliminated for analysis of RNA-protein crosslinks. M13 probes containing rDNA inserts complementary to domains 1 and 2 of 16S RNA from the 5'end up to nucleotide 868 were used to select contiguous or overlapping RNA sections. The proteins covalently crosslinked to each RNA section were identified as S3, S4, S5, S7, S9, S18, S20 and S21. Several crosslinks are compatible with previously published sites for proteins S5, S18, S20 and S21; others for proteins S3, S4, S7, S9, S18 correspond necessarily to new sites.  相似文献   

6.
The termini of rRNA processing intermediates and of mature rRNA species encoded by the 3' terminal region of 23S rDNA, by 4.5S rDNA, by the 5' terminal region of 5S rDNA and by the 23S/4.5S/5S intergenic regions from Zea mays chloroplast DNA were determined by using total RNA isolated from maize chloroplasts and 32P-labelled rDNA restriction fragments of these regions for nuclease S1 and primer extension mapping. Several processing sites detectable by both 3' and 5' terminally labelled probes could be identified and correlated to the secondary structure for the 23S/4.5S intergenic region. The complete 4.5S/5S intergenic region can be reverse transcribed and a common processing site for maturation of 4.5S and 5S rRNA close to the 3' end of 4.5S rRNA was detected. It is therefore concluded that 23S, 4.5S and 5S rRNA are cotranscribed.  相似文献   

7.
应用总体平衡 (mass_balance)法研究了施硫肥 (0 ,30及 6 0kgS/hm2 )对内蒙古典型草原放牧生态系统硫循环的影响及在硫肥需要量上的应用。结果表明 ,施硫肥使牧草硫的吸收量提高了 5 0 % ,并使放牧系统硫的生物循环速率提高了 15 %以上。 1995和 1996年两年内两种硫肥处理 30和 6 0kgS/hm2 的硫的利用效率分别为 74.0 %和37.6 %。当其他硫的来源较低时 ,土壤中有机硫的矿化是草原有效硫的主要来源 ,约占整个有效硫输入量的 70 %。放牧家畜在物质循环中具有重要的生态功能 ,其硫采食量的 90 %左右以排泄物的形式返回到土壤 ,经过排泄物而释放的有效硫量约占硫的生物再循环量的 30 %。土壤中硫的淋溶损失是放牧系统中硫的主要输出形式 ;同时 ,家畜尿和粪中硫的损失 (包括转移到非生产区和淋溶损失 )也影响着放牧系统硫的平衡状况。因此 ,应该深入研究粪尿硫的再循环速率及其影响因素。基于总体平衡原则 ,该地区放牧系统中至少每年应施入 10kgS/hm2 才能保持有效硫的平衡状态  相似文献   

8.
介绍了分布于我国的双鬃缟蝇属17种,包括2新种和4新纪录种,即Sapromyza (Notiosapromyza) ainanensis sp.nov.,Sapromyza (Sapromyza) ventistriata sp.nov.,S.(N.) longimentula Sasakawa,2001,S.(S.)annulifera M alloch,1929,S.(S.) sexmaculata Sasakawa,2001,S.(S.) septemnotata asakawa,2001,并编制了分种检索表。  相似文献   

9.
In the present study, the CAMP-factor (cfb) gene of streptococci of serological group B (Streptococcus agalactiae) and the CAMP-factor (cfu) gene of S. uberis could be amplified by polymerase chain reaction. A cfb specific amplicon could be observed for all 128 phenotypically CAMP-positive S. agalactiae, for the phenotypically CAMP-negative S. agalactiae strain 74-360, and for 2 S. difficile reference strains. A cfu specific amplicon could be observed for all 7 phenotypically CAMP-positive S. uberis. Four S. agalactiae strains isolated from 4 cows with mastitis appeared to be phenotypically CAMP-negative and negative in the cfb gene PCR. The CAMP-positive and CAMP-negative isolates, including both S. difficile, could be identified as S. agalactiae by amplification of a S. agalactiae specific part of the V2 region of the 16S rRNA and a species-specific part of the 16S-23S rRNA intergenic spacer region. Amplification of an internal fragment of the cfb gene with a reduced annealing temperature yielded positive reactions not only for CAMP-positive S. agalactiae, but also for phenotypically CAMP-positive S. pyogenes (n = 4), S. canis (n = 28), and S. uberis (n = 7), indicating a close relation of the CAMP genes of these 4 species. The relation could be further demonstrated by sequencing the internal fragment of the CAMP-factor (cfg) gene of S. canis and comparing the sequence with those of S. agalactiae, S. pyogenes, and S. uberis.  相似文献   

10.
B Pope  M Way  A G Weeds 《FEBS letters》1991,280(1):70-74
Gelsolin binds two monomers in the nucleating complex with G-actin in calcium and caps actin filaments. However, 3 actin-binding domains have been identified within its 6 repeating sequence segments corresponding to S1 S2-3 and S4-6. S1 and S4-6 bind only G-actin whereas S2-3 binds specifically to F-actin. Two of the three domains (S2-3 and S4-6) are required for nucleation and a different pair (S1 and S2-3) for severing. Here we show for the first time that the domains unique to nucleation (S4-6) or severing (S1) compete for the same region on subdomain 1 of G-actin. We further show that S2-3 binds actin monomers weakly in G-buffer conditions and that this interaction persists when S1 or S4-6 are also bound. Thus gelsolin associates with two distinct regions on actin. Since S2-3 does not bind monomeric actin in F-buffer, we suggest that its high affinity 1:1 stoichiometry for filament subunits reflects interaction with two adjacent subunits.  相似文献   

11.
12.
D J Goss  D J Rounds 《Biochemistry》1988,27(10):3610-3613
The rate constants for eucaryotic initiation factor 3 (eIF3) association and dissociation with 40S ribosomal subunits and 80S monosomes have been determined. These rate constants were determined by laser light scattering with unmodified eIF3. The affinity of eIF3 for 40S subunits is about 30-fold greater than for 80S ribosomes. This difference in affinity resides mainly in the association rate constants. Rate constants of 8.8 X 10(7) and 7.3 X 10(6) M-1 s-1 were obtained for eIF3 binding to 40S subunits and 80S ribosomes, respectively. From thermodynamic cycles, the affinity of eIF3-40S subunits for 60S subunits is about 30-fold lower than free 40S subunits for 60S subunits. A calculation shows that under these conditions and assuming simple equilibria, approximately 12% of ribosomal subunits would associate via a reaction of 40S-eIF3 with 60S subunits as opposed to a path where eIF3 dissociates from the 40S subunits prior to association with 60S subunits.  相似文献   

13.
Leishmaniasis worldwide and global estimates of its incidence   总被引:1,自引:0,他引:1  
As part of a World Health Organization-led effort to update the empirical evidence base for the leishmaniases, national experts provided leishmaniasis case data for the last 5 years and information regarding treatment and control in their respective countries and a comprehensive literature review was conducted covering publications on leishmaniasis in 98 countries and three territories (see 'Leishmaniasis Country Profiles Text S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12, S13, S14, S15, S16, S17, S18, S19, S20, S21, S22, S23, S24, S25, S26, S27, S28, S29, S30, S31, S32, S33, S34, S35, S36, S37, S38, S39, S40, S41, S42, S43, S44, S45, S46, S47, S48, S49, S50, S51, S52, S53, S54, S55, S56, S57, S58, S59, S60, S61, S62, S63, S64, S65, S66, S67, S68, S69, S70, S71, S72, S73, S74, S75, S76, S77, S78, S79, S80, S81, S82, S83, S84, S85, S86, S87, S88, S89, S90, S91, S92, S93, S94, S95, S96, S97, S98, S99, S100, S101'). Additional information was collated during meetings conducted at WHO regional level between 2007 and 2011. Two questionnaires regarding epidemiology and drug access were completed by experts and national program managers. Visceral and cutaneous leishmaniasis incidence ranges were estimated by country and epidemiological region based on reported incidence, underreporting rates if available, and the judgment of national and international experts. Based on these estimates, approximately 0.2 to 0.4 cases and 0.7 to 1.2 million VL and CL cases, respectively, occur each year. More than 90% of global VL cases occur in six countries: India, Bangladesh, Sudan, South Sudan, Ethiopia and Brazil. Cutaneous leishmaniasis is more widely distributed, with about one-third of cases occurring in each of three epidemiological regions, the Americas, the Mediterranean basin, and western Asia from the Middle East to Central Asia. The ten countries with the highest estimated case counts, Afghanistan, Algeria, Colombia, Brazil, Iran, Syria, Ethiopia, North Sudan, Costa Rica and Peru, together account for 70 to 75% of global estimated CL incidence. Mortality data were extremely sparse and generally represent hospital-based deaths only. Using an overall case-fatality rate of 10%, we reach a tentative estimate of 20,000 to 40,000 leishmaniasis deaths per year. Although the information is very poor in a number of countries, this is the first in-depth exercise to better estimate the real impact of leishmaniasis. These data should help to define control strategies and reinforce leishmaniasis advocacy.  相似文献   

14.
Deproteinated 16S RNA was iodinated at pH 5.0 in an aqueous solution containing TlCl3 plus KI for 1-5 hours at 42 degrees C. Under these conditions 33 moles of iodine are incorporated per mole of RNA. As judged by sucrose gradient sedimentation, the iodinated RNA does not exhibit any large alteration in conformation as compared to unmodified 16S. The iodinated RNA was examined for its ability to reconstitute with total 30S proteins. Sedimentation velocity analysis reveals that the reconstituted subunit has a sedimentation constant of approximately 20S. In addition, protein analysis of particles reconstituted with 16S RNA iodinated for 5 hours indicates that proteins S2, S10, S13, S14, S15, S17, S18, S19, and S21 are no longer able to participate in the 30S assembly process and that proteins S6, S16 and S20 are present in reduced amounts. The ramifications of these results concerning protein-RNA and RNA-RNA interactions occurring in ribosome assembly are discussed.  相似文献   

15.
Despite of the high resolution structure available for the E. coli ribosome, hitherto the structure and localization of the essential ribosomal protein S1 on the 30 S subunit still remains to be elucidated. It was previously reported that protein S1 binds to the ribosome via protein-protein interaction at the two N-terminal domains. Moreover, protein S2 was shown to be required for binding of protein S1 to the ribosome. Here, we present evidence that the N-terminal domain of S1 (amino acids 1-106; S1(106)) is necessary and sufficient for the interaction with protein S2 as well as for ribosome binding. We show that over production of protein S1(106) affects E. coli growth by displacing native protein S1 from its binding pocket on the ribosome. In addition, our data reveal that the coiled-coil domain of protein S2 (S2α(2)) is sufficient to allow protein S1 to bind to the ribosome. Taken together, these data uncover the crucial elements required for the S1/S2 interaction, which is pivotal for translation initiation on canonical mRNAs in gram-negative bacteria. The results are discussed in terms of a model wherein the S1/S2 interaction surface could represent a possible target to modulate the selectivity of the translational machinery and thereby alter the translational program under distinct conditions.  相似文献   

16.
Antibodies were raised in rabbits against 70S ribosomes, 50S and 30S ribosomal subunits individually. Purified immunoglobulins from the antiserum against each of the above ribosomal entities were tested for their capabilities of precipitating 70S, 50S and 30S ribosomes. The observations revealed the following: (i) The antiserum (IgG) raised against 70S ribosomes precipitates 70S ribosomes completely, while partial precipitation is seen with the subunits, the extent of precipitation being more with the 50S subunits than with 30S subunits; addition of 50S subunits to the 30S subunits facilitates the precipitation of 30S subunits by the antibody against 70S ribosomes. (ii) Antiserum against 50S subunits has the ability to immunoprecipitate both 50S and 70S ribosomes to an equal extent. (iii) Antiserum against 30S subunits also has the property of precipitating both 30S and 70S ribosomes. The differences in the structural organisation of the two subunits may account for the differences in their immunoprecipitability.  相似文献   

17.
We have previously reported the development of a technique utilizing nitrocellulose filters, which rapidly separates ribosomal protein-ribosomal RNA complexes from unbound protein. We have used this technique to obtain binding data for the association of proteins S4, S7, S8, S15, S17, and S20 with 16S RNA. With the exception of protein S17, the association behavior for each of these proteins exhibits a single binding site with a unique binding constant. The apparent association constants have been calculated and have been found to have a range from 1.6 x 10(6) M-1 for protein S7 to 7.1 x 10(7) M-1 for protein S17. The Scatchard plot for the protein S17 binding data is biphasic, suggesting that within the RNA population two different binding sites exist, each with a different apparent association constant.  相似文献   

18.
B Karunanandaa  S Huang    T Kao 《The Plant cell》1994,6(12):1933-1940
For Petunia inflata and Nicotiana alata, which display gametophytic self-incompatibility, S proteins (the products of the multiallelic S gene in the pistil) have been shown to control the pistil's ability to recognize and reject self-pollen. The biochemical mechanism for rejection of self-pollen by S proteins has been shown to involve their ribonuclease activity; however, the molecular basis for self/non-self recognition by S proteins is not yet understood. Here, we addressed whether the glycan chain of the S3 protein of P. inflata is involved in self/non-self recognition by producing a nonglycosylated S3 protein in transgenic plants and examining the effect of deglycosylation on the ability of the S3 protein to reject S3 pollen. The S3 gene was mutagenized by replacing the codon for Asn-29, which is the only potential N-glycosylation site of the S3 protein, with a codon for Asp, and the mutant S3 gene was introduced into P. inflata plants of the S1S2 genotype. Six transgenic plants that produced a normal level of the nonglycosylated S3 protein acquired the ability to reject S3 pollen completely. These results suggest that the carbohydrate moiety of the S3 protein does not play a role in recognition or rejection of self-pollen and that the S allele specificity determinant of the S3 protein and those S proteins that contain a single glycan chain at the same site as the S3 protein must reside in the amino acid sequence itself.  相似文献   

19.
In Escherichia coli, ribosomal RNAs (16S, 23S and 5S) are co-transcribed in a highly regulated manner from seven genomically dispersed operons. Previous studies on the cellular effects of altered levels of two of these rRNAs (16S and 23S) have been useful in better understanding the regulation of rRNA expression. Furthering these studies, we have investigated the effect of 5S rRNA deficiencies on cell fitness through the sequential deletion of 5S rRNA genes. Our findings indicate that the loss of 5S rDNA from multiple genes decreases cell fitness more rapidly than loss of a similar number of 16S and 23S rRNA genes. These results suggest that the cell's innate ability to up-regulate rRNA operons does not compensate for 5S rRNA deficiencies, as was previously shown for 16S and 23S rRNAs. A plasmid-borne 5S rRNA gene is able to compensate for the deleted 5S rRNA genes.  相似文献   

20.
Studies of Escherichia coli 30S ribosomal subunit assembly have revealed a hierarchical and cooperative association of ribosomal proteins with 16S ribosomal RNA; these results have been used to compile an in vitro 30S subunit assembly map. In single protein addition and omission studies, ribosomal protein S13 was shown to be dependent on the prior association of ribosomal protein S20 for binding to the ribonucleoprotein particle. While the overwhelming majority of interactions revealed in the assembly map are consistent with additional data, the dependency of S13 on S20 is not. Structural studies position S13 in the head of the 30S subunit > 100 A away from S20, which resides near the bottom of the body of the 30S subunit. All of the proteins that reside in the head of the 30S subunit, except S13, have been shown to be part of the S7 assembly branch, that is, they all depend on S7 for association with the assembling 30S subunit. Given these observations, the assembly requirements for S13 were investigated using base-specific chemical footprinting and primer extension analysis. These studies reveal that S13 can bind to 16S rRNA in the presence of S7, but not S20. Additionally, interaction between S13 and other members of the S7 assembly branch have been observed. These results link S13 to the 3' major domain family of proteins, and the S7 assembly branch, placing S13 in a new location in the 30S subunit assembly map where its position is in accordance with much biochemical and structural data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号