首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Sulfate reduction accounts for about a half of the remineralization of organic carbon in anoxic marine shelf regions. Moreover, it was already a major microbial process in the very early ocean at least 2.4 billion years before the present. Here we demonstrate for the first time the capability of sulfate-reducing bacteria (SRB) to biosynthesize hopanoids, compounds that are quantitatively important and widely distributed biomarkers in recent and fossil sediments dating back to the late Archean. We found high concentrations (9.8-12.3 mg per gram of dry cells) of non-extended and extended bacteriohopanoids (bacteriohopanetetrol, aminobacteriohopanetriol, aminobacteriohopanetetrol) in pure cultures of SRB belonging to the widely distributed genus Desulfovibrio. Biohopanoids were found--considered as membrane rigidifiers--in more than 50% of bacterial species analysed so far. However, their biosynthesis appeared to be restricted to aerobes or facultative anaerobes with a very few recently described exceptions. Consequently, findings of sedimentary hopanoids are often used as indication for oxygenated settings. Nevertheless, our findings shed new light on the presence of hopanoids in specific anoxic settings and suggests that SRB are substantial sources of this quantitatively important lipid class in recent but also past anoxic environments.  相似文献   

3.
The sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough possesses four periplasmic hydrogenases to facilitate the oxidation of molecular hydrogen. These include an [Fe] hydrogenase, an [NiFeSe] hydrogenase, and two [NiFe] hydrogenases encoded by the hyd, hys, hyn1, and hyn2 genes, respectively. In order to understand their cellular functions, we have compared the growth rates of existing (hyd and hyn1) and newly constructed (hys and hyn-1 hyd) mutants to those of the wild type in defined media in which lactate or hydrogen at either 5 or 50% (vol/vol) was used as the sole electron donor for sulfate reduction. Only strains missing the [Fe] hydrogenase were significantly affected during growth with lactate or with 50% (vol/vol) hydrogen as the sole electron donor. When the cells were grown at low (5% [vol/vol]) hydrogen concentrations, those missing the [NiFeSe] hydrogenase suffered the greatest impairment. The growth rate data correlated strongly with gene expression results obtained from microarray hybridizations and real-time PCR using mRNA extracted from cells grown under the three conditions. Expression of the hys genes followed the order 5% hydrogen>50% hydrogen>lactate, whereas expression of the hyd genes followed the reverse order. These results suggest that growth with lactate and 50% hydrogen is associated with high intracellular hydrogen concentrations, which are best captured by the higher activity, lower affinity [Fe] hydrogenase. In contrast, growth with 5% hydrogen is associated with a low intracellular hydrogen concentration, requiring the lower activity, higher affinity [NiFeSe] hydrogenase.  相似文献   

4.
Identification of three classes of hydrogenase in the genus, Desulfovibrio   总被引:5,自引:0,他引:5  
A comparison of amino-terminal amino acid sequences from the large and small subunits of hydrogenases from Desulfovibrio reveals significant differences. These results, in conjunction with antibody analyses, clearly indicate that the iron, iron + nickel, and iron + nickel + selenium containing hydrogenases represent three distinct classes of hydrogenase in Desulfovibrio.  相似文献   

5.
Antisera have been developed against the wholecell antigens of Desulfovibrio africanus Benghazi and Walvis Bay, D. vulgaris Hildenborough, D. salexigens British Guiana, D. gigas, and D. desulfuricans Essex 6. An enzymelinked immunoadsorption assay (ELISA) was developed to measure the reaction of these antisera with the homologous and heterologous antigens. The ELISA method demonstrated a reaction between pre-immune sera and cells of D. africanus, D. gigas and D. desulfuricans, suggesting the presence of a lectin-like substance on these cell surfaces. Extensive cross-reactions were seen between the antisera and heterologous cells, suggesting the sharing of a number of surface antigens amongst the Desulfovibrio. However, the pattern of these cross-reactions was different from that observed for an ELISA reaction developed for the cytochrome c3 from various Desulfovibrio.Abbreviation ELISA enzyme-linked immunoadsorption assay  相似文献   

6.
A novel adenylate kinase (AK) has recently been purified from Desulfovibrio gigas and characterized as a Co(2+)/Zn(2+)-containing enzyme: this is an unusual characteristic for AKs from Gram-negative bacteria, in which these enzymes are normally devoid of metals. Here, we studied the conformational stability of holo- and apo-AK as a function of temperature by differential scanning calorimetry (DSC), circular dichroism (CD), and intrinsic fluorescence spectroscopy. The thermal unfolding of AK is a cooperative two-state process, and is sufficiently reversible in the 9-11 pH range, that can be correctly interpreted in terms of a simple two-state thermodynamic model. The spectral parameters as monitored by ellipticity changes in the CD spectra of the enzyme as well as the decrease in tryptophan intensity emission upon heating were seen to be good complements to the highly sensitive but integral DSC-method.  相似文献   

7.
A central step in the energy metabolism of sulfate-reducing bacteria is the oxidation of molecular hydrogen, catalyzed by a periplasmic hydrogenase. The resulting electrons are then transferred to various electron transport chains and used for cytoplasmic sulfate reduction. The complex formation between [NiFeSe] hydrogenase and the soluble periplasmic polyheme cytochromes from Desulfomicrobium norvegicum was characterized by cross-linking experiments, BIAcore and kinetics analysis. Analysis of electron transfer between [NiFeSe] hydrogenase and octaheme cytochrome c(3) (M(r) 26? omitted?000) pointed out that this cytochrome is reduced faster in the presence of catalytic amounts of tetraheme cytochrome c(3) (M(r) 13? omitted?000) isolated from the same organism. The activation of the hydrogenase-dependent reduction of polyheme cytochromes by cytochrome c(3) (M(r) 13? omitted?000), which is now described in both Desulfovibrio and Desulfomicrobium, is proposed as a general mechanism. During this process, cytochrome c(3) (M(r) 13? omitted?000) would act as an electron shuttle in between hydrogenase and the polyheme cytochromes and its conductivity appears to be an important factor.  相似文献   

8.
9.
The three types of hydrogenase hitherto characterized in genus Desulfovibrio exhibit distinctive inhibition patterns of their proton-deuterium exchange activity by CO, NO and NO2-. The (Fe) and (NiFeSe) hydrogenases are the most sensitive to all three inhibitors while the (NiFe) enzymes, relatively little inhibited by CO, are still very sensitive to NO but unaffected by NO2-. These differences together with some specific catalytic properties, in particular the pH profile and the H2 to HD ratio in the exchange reaction, constitute a simple means of characterizing multiple hydrogenases present in one or different species.  相似文献   

10.
11.
Active sulphate-reducing microorganism which belongs to the genus Pseudomonas has been distinguished and described. The culture is a facultative aerobe, optimum Eh is -170-180 mV. Pseudomonas sp. being cultivated under strictly anaerobic conditions sulphate-reduction proceeds more intensively than under aerobic conditions. This fact should be taken into account under treatment of industrial sewage.  相似文献   

12.
An indirect enzyme-linked immunoadsorption assay (ELISA) was developed for cytochrome c3 using antisera to the cytochromes fromDesulfovibrio africanus Benghazi, Desulfovibrio vulgaris Hildenborough andDesulfovibrio salexigens British Guiana. The ELISA system was used to test for cross-reactions between these antisera and the heterologous antigens. In contrast to previous experiments using the Ouchterlony technique, all of the cytochromes c3 tested exhibited some degree of cross-reaction. Considerable variation was seen in cross-reactions for cytochromes c3 from differing strains ofD. desulfuricans. This observation raises questions about the taxonomic relatedness of these strains. No cross-reaction was seen with eukaryotic cytochrome c or withD. vulgaris cytochrome c553. The data demonstrate that cytochrome c3 is capable of undergoing nonprecipitating cross-reactions, and thus may not be as immunologically unique as was once thought.Abbreviations ELISA Enzyme-linked immunoadsorption assay  相似文献   

13.
Different patterns have been found in the pH dependence of hydrogenase activity with enzymes purified from different species of Desulfovibrio. With the cytoplasmic hydrogenase from Desulfovibrio baculatus strain 9974, the pH optima in H2 production and uptake were respectively 4.0 and 7.5 with a higher activity in production than in uptake. The highest D2-H+ exchange activity was found also at pH 4.0 but the optima differed for the HD and the H2 components. Both similarly rose when the pH decreased from 9.0 to 4.5, but the rate of H2 evolution slowed whereas the HD evolution continued rising till pH values around 3.0 were reached. The H2 to HD ratio at pH above 4.5 was higher than one. With the periplasmic hydrogenase from Desulfovibrio vulgaris Hildenborough, the highest exchange activity was near pH 5.5, the same value as in hydrogen production. The periplasmic hydrogenase from Desulfovibrio gigas had in contrast the same pH optimum in the exchange (7.5-8.0) as in the H2 uptake. The ratio of H2 to HD was below one for both enzymes. These different patterns may be related to functional and structural differences in the three hydrogenases so far studied, particularly in the composition of their catalytic centers.  相似文献   

14.
Summary Hydrogenase, desulfoviridin and molybdenum proteins have been isolated from a halophilic sulfate-reducing bacteria,Desulfovibrio salexigens strain British Guiana. At least 50% of the hydrogenase was found to be located in the periplasm. The hydrogenase has a typical absorption spectrum, a 400/280 nm ratio of 0.28, a molecular weight by sedimentation equilibrium of 81 000 and is composed of two subunits. It has one nickel, one selenium and 12 iron atoms per molecule. The sulfite reductase has a typical desulfoviridin absorption spectrum, a molecular weight of 191 000 and iron and zinc associated with it. The molybdenum-iron protein is gray-green in color and exhibits an absorbtion spectrum with peaks around 612, 410, 275 nm and a shoulder at 319 nm. It is composed of subunits of approximately 13 250 and has an approximate molecular weight of 110 000. Three molybdenum and 20 iron atoms are found associated with it.An extensive study of these three proteins will allow a better understanding of the function of these enzymes and also of their possible role in microbially caused corrosion.  相似文献   

15.
16.
17.
Deep subsurface sandstones in the area of Berlin (Germany) located 600 to 1060 m below the surface were examined for the presence of viable microorganisms. The in situ temperatures at the sampling sites ranged from 37 to 45 degrees C. Investigations focussed on sulfate-reducing bacteria able to grow on methanol and triethylene glycol, which are added as chemicals to facilitate the long-term underground storage of natural gas. Seven strains were isolated from porewater brines in the porous sandstone. Three of them were obtained with methanol (strains H1M, H3M, and B1M), three strains with triethylene glycol (strains H1T, B1T, and B2T) and one strain with a mixture of lactate, acetate and butyrate (strain H1-13). Due to phenotypic properties six isolates could be identified as members of the genus Desulfovibrio, and strain B2T as a Desulfotomaculum. The salt tolerance and temperature range for growth indicated that the isolates originated from the indigenous deep subsurface sandstones. They grew in mineral media reflecting the in situ ionic composition of the different brines, which contained 1.5 to 190 g NaCl x l(-1) and high calcium and magnesium concentrations. The Desulfovibrio strains grew at temperatures between 20 and 50 degrees C, while the Desulfotomaculum strain was thermophilic and grew between 30 and 65 degrees C. The strains utilized a broad spectrum of electron donors and acceptors. They grew with carbon compounds like lactate, pyruvate, formate, n-alcohols (C1-C5), glycerol, ethylene glycol, malate, succinate, and fumarate. Some strains even utilized glucose as electron donor and carbon source. All strains were able to use sulfate, sulfite and nitrate as electron acceptors. Additionally, three Desulfovibrio strains reduced manganese oxide, the Desulfotomaculum strain reduced manganese oxide, iron oxide, and elemental sulfur. The 16S rRNA analysis revealed that the isolates belong to three different species. The strains H1T, H3M and B1M could be identified as Desulfovibrio indonesiensis, and strain B2T as Desulfotomaculum geothermicum. The other Desulfovibrio strains (H1M, H1-13, and B1T) showed identical 16S rDNA sequences and similarities as low as 93% to their closest relative, Desulfovibrio aminophilusT. Therefore, these isolates were assigned to a new species, Desulfovibrio cavernae sp. nov., with strain H1M as the type strain.  相似文献   

18.
The redox properties of purified bisulfite reductases from Desulfovibrio gigas, D. desulfuricans (Norway) and Desulfotomaculum ruminis, containing non-heme iron and siroheme have been studied by EPR spectroscopy. Each enzyme shows ferric siroheme EPR signals which are not completely reduced by dithionite after 20 min, but are readily reduced within 1 min by dithionite plus methyl viologen. With the latter reducing system, each reductase also reveals a variable Beinert “g=1.94” type iron-sulfur signal. Reaction of each reductase with reduced methyl viologen results in reduction of only the siroheme. These results suggest different redox potentials for the iron-sulfur and siroheme moieties, and indicate that their functional properties are similar for each reductase.  相似文献   

19.
The metabolism of Desulfovibrio vulgaris Hildenborough grown on medium containing lactate or pyruvate plus a high concentration of sulfate (36 mM) was studied. Molecular growth yields were 6.7 +/- 1.3 and 10.1 +/- 1.7 g/mol for lactate and pyruvate, respectively. Under conditions in which the energy source was the sole growth-limiting factor, we observed the formation of 0.5 mol of hydrogen per mol of lactate and 0.1 mol of hydrogen per mol of pyruvate. The determination of metabolic end products revealed that D. vulgaris produced, in addition to normal end products (acetic acid, carbon dioxide, hydrogen sulfide) and molecular hydrogen, 2 and 5% of ethanol per mol of lactate and pyruvate, respectively. Power-time curves of growth of D. vulgaris on lactate and pyruvate were obtained, by the microcalorimetric Tian-Calvet apparatus. The enthalpies (delta Hmet) associated with the oxidation of these substrates and calculated from growth thermograms were -36.36 +/- 5 and -70.22 +/- 3 kJ/mol of lactate and pyruvate, respectively. These experimental values were in agreement with the homologous values assessed from the theoretical equations of D. vulgaris metabolism of both lactate and pyruvate. The hydrogen production by this sulfate reducer constitutes an efficient regulatory system of electrons, from energy source through the pathway of sulfate reduction. This hydrogen value may thus facilitate interactions between this strain and other environmental microflora, especially metagenic bacteria.  相似文献   

20.
The interaction between hydrogenases from either Desulfovibrio desulfuricans or Clostridium pasteurianum and electron donors methyl viologen or polymeric viologens was examined. Extracts from each organism contained a single gel electophoretic band of active hydrogenase. The hydrogenase of D. desulfuricans was much more stable than that of Cl. pasteurianum. With methyl viologen apparent Km and Vm values were 0.5 mM and 0.62 mumole H2/min per milligram protein for the Cl. pasteurianum and 0.7 and 6.2 mumole H2/min per milligram protein, respectively, for the D. desulfuricans enzyme. The hydrogenases bound the polymeric viologens more tightly than methyl viologen, more so for the enzyme of D. desulfuricans than for Cl. pasteurianum. Maximal rate of hydrogen production was less with the polymeric than with methyl viologen. The results suggest that the D. desulfuricans enzyme in conjunction wiion than that from Cl. pasteurianum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号