首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lilium spp. with symptoms of severe fasciation were observed in Southern and central Bohemia during the period 1999-2003. Nucleic acids extracted from symptomatic and asymptomatic plants were used in nested-PCR assays with primers amplifying 16S-23S rRNA sequences specific for phytoplasmas. The subsequent nested-PCR with phytoplasma group-specific primers followed by RFLP analyses and the 16S ribosomal gene sequencing, allowed classification of the detected phytoplasmas in the aster yellows group, subgroups 16SrI-B and 16SrI-C alone, and in mixed infection. Samples infected by 16SrI-C phytoplasmas showed different overlapping RFLP profiles after TruI digestion of R16F2/R2 amplicons. Two of these amplicons were sequenced, one of them directly and the other after cloning; sequence analyses and blast alignment confirmed the presence of two different overlapping patterns in samples studied. The sequences obtained were closely related, respectively, to operon A and operon B ribosomal sequences of the clover phyllody phytoplasma. Direct PCR followed by RFLP analyses of the tuf gene with two restriction enzymes showed no differences from reference strain of subgroup 16SrI-C. Infection with aster yellows phytoplasmas of 16SrI-B subgroup in asymptomatic lilies cv. Sunray was also detected.  相似文献   

2.
AIMS: Verify the presence and the molecular identity of phytoplasmas in Northern and Central Italy vineyards where yellows diseases are widespread. METHODS AND RESULTS: Phytoplasma presence and identity were determined by PCR/RFLP analyses on 16S ribosomal gene testing 1424 symptomatic samples. The 65% of samples resulted phytoplasma infected; in particular 256 samples were found positive to phytoplasmas belonging to group 16SrV (mainly Flavescence dorée associated), and the remaining 37% was infected by phytoplasmas belonging to ribosomal subgroup 16SrXII-A (Stolbur or Bois Noir associated). 16SrV ribosomal group representative strains were further typed for variability in SecY and rpS3 genes. The results showed the presence of phytoplasmas belonging to 16SrV-C, 16SrV-D and to a lesser extent, 16SrV-A subgroup. CONCLUSIONS: Possible relationships between genetic polymorphisms of phytoplasma strains belonging to subgroup 16SrV-C and their geographic distribution and/or epidemic situations were detected. SIGNIFICANCE AND IMPACT OF THE STUDY: Bois Noir and Flavescence dorée phytoplasmas are present in significant percentages in the areas under investigation. Molecular tools allowed to identify phytoplasma-infected plants and the genes employed as polymorphism markers resulted useful in distinguishing and monitoring the spreading of the diseases associated with diverse phytoplasmas belonging to 16SrV subgroup in vineyards.  相似文献   

3.
During a survey in a limited area of the Shanxi province in China, phytoplasma symptoms were observed on woody plants such as Chinese scholar tree, apple, grapevine and apricot. The polymerase chain reaction/restriction fragment length polymorphism (PCR/RFLP) analyses on the phytoplasma 16S ribosomal gene confirmed that symptomatic samples from all these species were infected by phytoplasmas. The molecular characterization of the pathogen, performed also with sequencing of polymerase chain reaction amplified 16S rDNA, showed that the phytoplasmas detected in all plant species tested are closely related with stolbur, but two samples from a Chinese scholar tree were infected with phytoplasmas related to ‘Candidatus Phytoplasma japonicum’. The presence of RFLP polymorphism was found in the 16S rDNA amplicons with three of the six enzymes employed in the majority of phytoplasma strains studied.  相似文献   

4.
The Distribution of Phytoplasmas in Myanmar   总被引:1,自引:0,他引:1  
Phytoplasma‐infected plants with symptoms of general yellowing, stunting, little leaves, white leaves, virescence, phyllody and witches’ broom growth of axillary shoots were collected from various plant species in Myanmar during 2010 and 2011. Restriction fragment length polymorphism (RFLP), sequence analysis of the PCR‐amplified 16S ribosomal RNA gene and phylogenetic analyses were used to identify and classify the phytoplasmas. Based on RFLP and sequence analyses, 13 isolates were identified and classified into one subgroup of 16SrI‐B, two subgroups of 16SrII‐A and 16SrII‐C, and one of 16SrXI group phytoplasmas. Phylogenetic analyses also supported the relationship of Myanmar isolates with the three 16Sr groups. This study showed that at least three 16Sr groups exist and 16SrII group phytoplasmas are widely distributed in Myanmar.  相似文献   

5.
During 2010–14 surveys in the major sesame growing areas of Fars, Yazd and Isfahan provinces (Iran), genetic diversity and vector transmission of phytoplasmas associated with sesame phyllody were studied. Virtual RFLP, phylogenetic, and DNA homology analyses of partial 16S ribosomal sequences of phytoplasma strains associated with symptomatic plants revealed the presence of phytoplasmas referable to three ribosomal subgroups, 16SrII-D, 16SrVI-A, and 16SrIX-C. The same analyses using 16S rDNA sequences from sesame phyllody-associated phytoplasmas retrieved from GenBank database showed the presence of phytoplasmas clustering with strains in the same subgroups in other Iranian provinces including Bushehr and Khorasan Razavi. Circulifer haematoceps and Orosius albicinctus, known vectors of the disease in Iran, were tested for transmission of the strains identified in this study. C. haematoceps transmitted 16SrII-D, 16SrVI-A, and 16SrIX-C phytoplasmas, while O. albicinctus only transmitted 16SrII-D strains. Based on the results of the present study and considering the reported presence of phytoplasmas belonging to the same ribosomal subgroups in other crops, sesame fields probably play an important role in the epidemiology of other diseases associated with these phytoplasmas in Iran.  相似文献   

6.
Samples of sugarcane leaves were collected from different commercial fields and breeding stations in Egypt. Aetiology of sugarcane phytoplasma disease was investigated using nested PCR. Phytoplasma‐specific primers (P1/P7 and R16F2n/R16R2) were used to amplify a fragment of the 16S rRNA gene. Sequencing and restriction fragment length polymorphism analyses revealed that the tested phytoplasmas belonged to the 16SrI (aster yellows phytoplasma) group. Phylogenetic analyses of 60 screened accessions of 16S ribosomal RNA gene sequences of Candidatus phytoplasmas comprising those collected from Egypt (this study) and those extracted from GenBank showed that they split into two distinct clusters. All the phytoplasmas form a stable phylogenetic subcluster, as judged by branch length and bootstrap values of 100% in the 16S group cluster. Results of phylogenetic analyses indicated that these phytoplasmas are closely related and share a common ancestor. Conversely, based on the analysis of the 16S‐23S region, examined isolates segregated into four different clusters suggesting a notable heterogeneity between them. These results are the first record of the presence of phytoplasma in association with sugarcane yellow leaf in Egypt.  相似文献   

7.
Melia azedarach var. japonica trees with leaf yellowing, small leaves and witches' broom were observed for the first time in Korea. A phytoplasma from the symptomatic leaves was identified based on the 16Sr DNA sequence as a member of aster yellows group, ribosomal subgroup 16SrI‐B. Sequence analyses of more variable regions such as 16S–23S intergenic spacer region, secY gene, ribosomal protein (rp) operon and tuf gene showed 99.5?100% nucleotide identity to several GenBank sequences of group 16SrI phytoplasmas. Phylogenetic analysis confirmed that the Melia azedarach witches' broom phytoplasma belongs to aster yellows group.  相似文献   

8.
During a survey of large carrot fields in Serbia, plants showing leaf reddening and/or yellowing, adventitious shoot production and reduction in taproot size and quality were observed in a low percentage of plants. To verify phytoplasma association with the described symptoms and to carry out pathogen differentiation, PCR assays followed by restriction fragment length polymorphism (RFLP) analyses and/or sequencing of phytoplasma 16Sr DNA and ribosomal protein genes l22 and s3 , tuf , putative aa kinase plus ribosomal recycling factor genes and DNA helicase gene were carried out. Phytoplasmas belonging to 16SrI-A and 16SrI-B ribosomal subgroups and to rpI-A and rpI-B ribosomal protein subgroups, respectively, were identified by RFLP analyses in 13 of 15 symptomatic plants tested. No amplification was obtained with non-symptomatic carrot samples. The identification was confirmed by sequence analyses of the phytoplasma genes studied. In two carrot samples, presence of interoperon sequence heterogeneity was detected and phytoplasma strains were identified as belonging to 16SrI group but were not assigned to any 16S rRNA or ribosomal protein subgroup. This research allowed the first molecular identification of phytoplasmas infecting carrot in Serbia using several molecular markers, and it indicates that under field conditions in non-epidemic outbreaks a certain amount of genetic mutation may occur in conserved genes of these prokaryotes.  相似文献   

9.
Apium graveolens L. plants showing stunting, purplish/whitening of new leaves, flower abnormalities and bushy tops were observed in South Bohemia (Czech Republic) during 2011 and 2012. Transmission electron microscopy observations showed phytoplasmas in phloem sieve tube elements of symptomatic but not healthy plants. Polymerase chain reactions with universal and group‐specific phytoplasma primers followed by restriction fragment length polymorphism analyses and sequencing of 16S rDNA enabled classification of the detected phytoplasmas into the aster yellows group, ribosomal subgroup 16SrI‐C. Identical analyses of the ribosomal protein genes rpl22 and rps3 were used for further classification and revealed affiliation of the phytoplasmas with the rpIC subgroups. This is the first report of naturally occurring clover phyllody phytoplasma in A. graveolens in both the Czech Republic and worldwide.  相似文献   

10.
Leaves from sugarcane were collected from Egyptian plantation fields and tested for phytoplasma (Sugarcane yellows phytoplasma, SCYP) and Sugarcane yellow leaf virus (SCYLV) using nested PCR (with different primers) and RT‐PCR, respectively. These results showed significant differences in the amplification of the PCR assays. The primer MLO‐X/MLO‐Y, which amplified the 16S‐23S rDNA spacer region, was the most precise to detect the phytoplasma in sugarcane plants. Sequencing and restriction fragment length polymorphism analysis revealed that all tested phytoplasmas belonged to the 16SrI (aster yellows phytoplasma) group, with the exception of cultivar G84‐47 belonged to the 16SrXI (Rice yellow dwarf phytoplasma) group. Three Egyptian sugarcane cultivars were phytoplasma free. Phylogenetic analyses of 34 screened accessions of 16S ribosomal DNA gene sequences of Candidatus phytoplasma including the ones collected from Egypt used in this study and those extracted from GenBank showed that they split into two distinct clusters. The phylogenetic analyses indicated that these phytoplasmas are closely related and share a common ancestor. All tested Egyptian sugarcane plants were infected by SCYLV with the exception of cultivar Phil‐8013 which was virus free.  相似文献   

11.
Visual inspections of elm trees in south Moravia in 1997–2007 revealed a rare occurrence of plants with smaller and cowl-forming leaves on some twigs, i.e. a feature resembling witches’-broom disease observed on the end of twigs. The presence of phytoplasma-like bodies was observed by transmission electron microscopy of phloem tissue. On the other hand, no phytoplasmas were found in asymptomatic trees. Nucleic acids extracted from these plants were used in nested-PCR assays with primers amplifying 16S rRNA sequences specific for phytoplasmas. Sequence analyses of the 16S–23S ribosomal operon (1852 bp) allowed for the classification of the detected phytoplasmas in the elm yellows group, but its position remained on the boundary of the 16SrV-A and 16SrV-C ribosomal subgroups. Sequence analyses of the ribosomal protein of the rpl22-rps3 and secY genes lead to further classification and revealed the phytoplasmas’ affiliations to the ‘Candidates Phytoplasma ulmi’. Some exceptions in unique oligonucleotide sequences defined for ‘Ca. Phytoplasma ulmi’ were found in the Czech isolate. This is the northernmost confirmed occurrence of phytoplasma on elm trees within Europe.  相似文献   

12.
Stylosanthes sp. exhibiting characteristic symptoms such as little leaf, witches' broom and floral abnormalities were collected from north Queensland and the Northern Territory, Australia. Previous studies have shown that sweet potato little leaf V4 (SPLL-V4), tomato big bud (TBB), stylosanthes little leaf (StLL) and pigeon pea little leaf (PLL) phytoplasmas are associated with this disease. The detection of an additional phytoplasma type, vigna little leaf (ViLL) is reported herein. The range and severity of symptoms expressed by affected plants is highly variable and is not associated with a particular phytoplasma type. Similarly, host plants infected with a complex of two phytoplasmas did not have unique or more severe symptoms. Of the phytoplasmas associated with stylosanthes little leaf disease, StLL is unique because it lacks the tRNAIle gene which is normally situated in the 16S-23S rRNA intergenic spacer region. This phytoplasma was shown to have a second operon containing the expected tRNAIle gene in all StLL samples examined. Sequence analysis suggests that the two 16S rRNA genes amplified by polymerase chain reaction from StLL samples originate from the same phytoplasma. This the first report of a phytoplasma having ribosomal operons both with and without an intergenic tRNAIle gene.  相似文献   

13.
In July 2017, a survey was conducted in a fig collection plot at Locorotondo (south of Italy) to investigate the possible presence of phytoplasmas in plants showing yellowing, deformed leaves, short internodes, mottling and mosaic. Samples were collected from symptomatic plants and tested by nested PCR assays using universal and specific primers to amplify the 16S rDNA of these prokaryotes. PCR results detected the presence of phytoplasma sequences in twenty plant samples that resulted clustering two phylogenetically distinct phytoplasmas, i.e., “Candidatus Phytoplasma asteris” and “Candidatus Phytoplasma solani” affiliated to 16SrI and 16SrXII ribosomal groups, respectively. The presence of phytoplasmas belonging to both ribosomal groups was confirmed with group specific quantitative PCR and RFLP assays on 16S ribosomal amplicons. Results of this study indicate for the first time the occurrence of phytoplasmas in fig; however, more work should be carried out to verify their association with the symptoms observed on diseased fig plants.  相似文献   

14.
In October 2013, a new disease affecting purple woodnettle, Oreocnide pedunculata, plants was found in Miaoli County, Taiwan. Diseased plants exhibited leaf yellowing and witches'‐broom symptoms. Molecular diagnostic tools and electron microscopic cell observation were used to investigate the possible cause of the disease with a specific focus on phytoplasmas. The result of polymerase chain reaction with universal primer pairs indicated that phytoplasmas were strongly associated with the symptomatic purple woodnettles. The virtual restriction fragment length polymorphism (RFLP) patterns and phylogenetic analysis based on 16S rDNA and ribosomal protein, rplV‐rpsC region revealed that purple woodnettle witches'‐broom phytoplasma (PWWB) belongs to a new subgroup of 16SrI and rpI group and was designated as 16SrI‐AH and rpI‐Q, respectively, herein. RFLP analysis based on tuf gene region revealed that the PWWB belongs to tufI‐B, but phylogenetic analysis suggested that PWWB should be delineated to a new subgroup under the tufI group. Taken together, our analyses based on 16S rRNA and rplV‐rpsC region gave a finer differentiation while classifying the subgroup of aster yellows group phytoplasmas. To our knowledge, this is the first report of a Candidatus Phytoplasma asteris‐related strain in 16SrI‐AH, rpI‐Q and tufI‐B subgroup affecting purple woodnettle, and of an official documentation of purple woodnettle as being a new host of phytoplasmas.  相似文献   

15.
Recombination plays a major evolutionary role by creating genetic diversity and provides the potential to find rapid adaptation to new environmental conditions. We sought the occurrence of possible recombination events in the 16S ribosomal RNA gene of 60 accessions belonging to the group 16SrI of Candidatus phytoplasma (aster yellows phytoplasma). Three bioinformatic programs were used (TOPALI v2.5, RECCO and RDP package). All the three programs indicated the presence of putative recombination signals in aligned sequences. Recombination events located in the 16S ribosomal RNA gene revealed the presence of four recombining accessions gathering sugarcane grassy shoot phytoplasmas (JF928001, DQ459439, EF614269 and JN223446).  相似文献   

16.
In 2012, yellowing of camellias was observed in Tai'an in Shandong province, China. Transmission electron microscopy (TEM) revealed phytoplasma in the phloem sieve tube elements of symptomatic plants. A specific fragment of phytoplasma 16S rRNA gene was amplified by polymerase chain reaction (PCR) using the universal phytoplasma primers P1/P7 followed by R16F2n/R16R2. Sequence and restriction fragment length polymorphism (RFLP) analyses allowed us to classify the detected phytoplasma into the elm yellows (EY) group (16SrV), subgroup 16SrV‐B. Sequence analyses of the ribosomal protein (rp) gene confirmed a close relationship with phytoplasmas belonging to the rpV‐C subgroup. Thus, the phytoplasma associated with yellows disease in camellia, designated as ‘CY’, is a member of the 16SrV‐B subgroup. This is the first report of phytoplasma associated with camellia.  相似文献   

17.
During the past two decades, a high mortality of coconut palms was observed in the coastal areas of Equatorial Guinea. Reportedly, the palm population has been reduced by 60%–70%, and coconut production has decreased accordingly. To identify the cause of the mortality, a survey was carried out in April 2021 in various localities of the coconut belt. Molecular analyses carried out on 16S rRNA and secA genes detected phytoplasma presence in the majority of the samples. Sequencing and BLAST search of the 16S rRNA gene sequences showed >99% identity of the detected phytoplasmas to ‘Candidatus Phytoplasma palmicola’. The RFLP analyses of 16S ribosomal gene using Tru1I and TaqI enzymes led to assign these phytoplasmas to subgroup 16SrXXII-A. In all samples that tested positive, including one from a hybrid coconut palm and two from oil palm the same phytoplasma was identified. The phylogenetic analyses of 16S rRNA and secA genes confirmed respectively 99.98%–100% and 97.94%–100% identity to ‘Ca. P. palmicola’. RFLP analyses using MboII enzyme on the secA gene amplicon differentiated the phytoplasma found in Equatorial Guinea from those present in Ghana and Ivory Coast. The Equatorial Guinean phytoplasma strain resulted to be identical to the strains from Mozambique, confirming the presence of a geographic differentiation among phytoplasma strains in the coastal areas of Western and Central Africa. The identified phytoplasma is different from the ‘Ca. P. palmicola’ strains found in Ghana and Ivory Coast and represents the first identification a 16SrXXII-A strain in Equatorial Guinea and in Central Africa. Strict monitoring and surveillance procedures for early detection of the pathogen are strongly recommended to reduce its impact and further spread in the country and permit the recovery of coconut plantations.  相似文献   

18.
Phytoplasmas of the group 16SrII (peanut witches'‐broom group) are among the most important phytoplasmas identified in Iran. These phytoplasmas are so diverse that they have been classified within 23 subgroups, among which phytoplasmas of subgroups 16SrII‐B, ‐C and ‐D have been recognised in Iran. In this study, we used multilocus sequence analysis as a tool to find the extent of genetic diversity and phylogeny of representative phytoplasmas of 16SrII in Iran in comparison to reference phytoplasma strains characterised elsewhere. The genes used were 16S rRNA, secY, rplVrpsC, imp and a hypothetical protein (inmp). Analysis of this study showed that phytoplasmas of 16SrII could be resolved into at least three main phylogenetic lineages. One lineage comprised phytoplasmas of the subgroups 16SrII‐A and II‐D, another included strains of subgroups 16SrII‐B and II‐C and the third lineage comprised phytoplasmas belonging to 16SrII‐E. The significance of host adaptation and geographical distribution in relation to the genetic diversity of these phytoplasmas is discussed. Among five different genetic loci used in this study, imp gene displayed the highest genetic diversity, hence considered as the most powerful genetic tool for differentiation of closely related phytoplasmas.  相似文献   

19.

Background

Phytoplasmas are bacterial phytopathogens responsible for significant losses in agricultural production worldwide. Several molecular markers are available for identification of groups or strains of phytoplasmas. However, they often cannot be used for identification of phytoplasmas from different groups simultaneously or are too long for routine diagnostics. DNA barcoding recently emerged as a convenient tool for species identification. Here, the development of a universal DNA barcode based on the elongation factor Tu (tuf) gene for phytoplasma identification is reported.

Methodology/Principal Findings

We designed a new set of primers and amplified a 420–444 bp fragment of tuf from all 91 phytoplasmas strains tested (16S rRNA groups -I through -VII, -IX through -XII, -XV, and -XX). Comparison of NJ trees constructed from the tuf barcode and a 1.2 kbp fragment of the 16S ribosomal gene revealed that the tuf tree is highly congruent with the 16S rRNA tree and had higher inter- and intra- group sequence divergence. Mean K2P inter−/intra- group divergences of the tuf barcode did not overlap and had approximately one order of magnitude difference for most groups, suggesting the presence of a DNA barcoding gap. The use of the tuf barcode allowed separation of main ribosomal groups and most of their subgroups. Phytoplasma tuf barcodes were deposited in the NCBI GenBank and Q-bank databases.

Conclusions/Significance

This study demonstrates that DNA barcoding principles can be applied for identification of phytoplasmas. Our findings suggest that the tuf barcode performs as well or better than a 1.2 kbp fragment of the 16S rRNA gene and thus provides an easy procedure for phytoplasma identification. The obtained sequences were used to create a publicly available reference database that can be used by plant health services and researchers for online phytoplasma identification.  相似文献   

20.
Symptoms suggestive of phytoplasma diseases were observed in infected sweet cherry trees growing in the central regions of Iran. Phytoplasmas were detected in symptomatic trees by the nested polymerase chain reaction (nested PCR) using phytoplasma universal primer pairs (P1/Tint, PA2F/R, R16F2/R2 and NPA2F/R). Restriction fragment length polymorphism analyses of 485 bp DNA fragments amplified in nested PCR revealed that different phytoplamas were associated with infected trees. Sequence analyses of phytoplasma 16S rRNA gene and 16S-23S intergenic spacer region indicated that the phytoplasmas related to ' Ca. Phytoplasma asteris ' and peanut WB group infect sweet cherry trees in these regions. This is the first report of the presence of phytoplasmas related to ' Ca. Phytoplasma asteris' and peanut WB group in sweet cherry trees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号