首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To examine the effect of excess growth hormones on carbohydrate metabolism, we studied glucose-stimulated insulin secretion and glucose utilization in 6 patients with acromegaly and 6 age-, sex- and weight-matched normal subjects. The levels of plasma glucose and serum insulin were determined during fasting and every 30 min up to 180 min after 75 g of oral glucose loading. In addition, plasma glucose, serum insulin and serum C-peptide were measured during euglycemic glucose clamp with insulin infusion of 40 mU/m2,min-1. The acromegalic patients had significantly higher mean levels of fasting plasma glucose (p less than 0.05) and insulin (p less than 0.01). After glucose loading for 3 h, the acromegalic patients also had a higher incremental area under the curve of plasma glucose (p less than 0.05) and serum insulin (p less than 0.05). However, no significant difference in the fasting molar ratio of C-peptide/IRI was noted between these two groups. During euglycemic clamp studies, the steady-state serum insulin levels were identical between the two groups. The glucose disposal rate was lower in acromegalics than in normal subjects (p less than 0.01). The results demonstrated that glucose intolerance, hyperinsulinemia and insulin resistance are present in acromegalic patients.  相似文献   

2.
We studied the effect of the acute administration of gliclazide at 160 mg on insulin release during hyperglycaemic clamps in 12 type 2 diabetes patients, age 50 +/- 9.0 years, diabetes duration 5.5 +/- 4.8 years, fasting blood glucose 9.6 +/- 2.1 mmol/L (means +/- SD). After a 210 min of hyperinsulinaemic euglycaemic clamp (blood glucose 4.6 +/- 0.14mmol/L), gliclazide or placebo (randomised, double-blind, cross-over) was administered; 60 minutes later, a hyperglycaemic clamp (4hr) at 8mmol/L was started. Plasma C-peptide levels increased significantly after the administration of gliclazide (increment 0.17 +/- 0.15 vs. 0.04 +/- 0.07 nmol/L, p = 0.024) before the clamp. After the start of the hyperglycaemic clamp, the areas under the curve (AUC) for insulin and C-peptide did not differ from 0-10 min (first phase) with gliclazide. However, second-phase insulin release (30-240 min) was markedly enhanced by gliclazide. AUC plasma insulin (30 to 240 min) was statistically significantly higher after gliclazide (12.3 +/- 13.9 vs. -0.56 +/- 9.4 nmol/L x 210 min, p = 0.022); similarly, AUC plasma C-peptide (30 to 240 min) was also higher: 128 +/- 62 vs. 63 +/- 50 nmol/L x 210 min, p = 0.002). In conclusion, in long-standing type 2 diabetes the acute administration of gliclazide significantly enhances second phase insulin release at a moderately elevated blood glucose level. In contrast to previous findings in mildly diabetic subjects, these 12 type 2 diabetes patients who had an inconsiderable first phase insulin release on the placebo day, only showed an insignificant increase in first phase with gliclazide.  相似文献   

3.
Insulin secretion and sensitivity in hyperthyroidism   总被引:1,自引:0,他引:1  
To examine the effect of hyperthyroidism on carbohydrate metabolism, we studied glucose-stimulated insulin secretion and glucose utilization in 8 subjects with Graves' disease before and after treatment for hyperthyroidism and 8 age-, sex- and weight-matched normal subjects. Subjects with Graves' disease had significant elevated serum levels of thyroxine (24.81 +/- 2.44 micrograms/dl, mean +/- SEM) and triiodothyronine (459 +/- 5.5 ng/dl, mean +/- SEM). Simultaneous measurement of plasma glucose, serum insulin and C-peptide levels during fasting and every 30 minutes up to 180 minutes after 75 g oral glucose loading was determined. In addition, plasma glucose, serum insulin and serum C-peptide were measured during euglycemic glucose clamp with insulin infusion of 40 mU/m2 min-1. Mean fasting plasma glucose (P less than 0.05, serum insulin (P less than 0.005) and serum C-peptide (P less than 0.005) levels were significantly higher in the hyperthyroid patients. After glucose loading, the plasma glucose (P less than 0.05), serum insulin (P less than 0.05) and C-peptide (P less than 0.05) responses were significantly higher in hyperthyroid patients at all times up to 180 minutes. During euglycemic clamp studies, the steady-state serum insulin levels were identical in the two groups. The glucose disposal rate was lower in hyperthyroid patients before treatment (P less than 0.01) than in normal subjects. After thyroid function had been normalized for 2 to 4 weeks, the glucose disposal rate increased significantly (P less than 0.05), but was still significantly lower than those of normal subjects (P less than 0.05). Our data show that patients with Graves' hyperthyroidism manifest glucose intolerance, hyperinsulinemia and insulin resistance.  相似文献   

4.
Insulin receptors of erythrocytes and oral glucose tolerance test (O-GTT) were investigated in sixteen children treated with prednisolone for various diseases. Ten patients (Group 1) received low doses of prednisolone (0.2-0.5 mg/kg body weight/day) and six patients (Group 2) received higher doses of prednisolone (1.5-2.0 mg/kg body weight/day). Compared to the values for controls, the sums of blood glucose (sigma BS) at O-GTT in both group 1 and group 2 patients were significantly elevated. (422 +/- 75 mg/dl, p less than 0.01 Group 1; 419 +/- 39 mg/dl, p less than 0.01 Group 2; 338 +/- 41 mg/dl controls) Significant differences were not observed in the sums of insulin concentration at O-GTT, fasting blood concentration and basal insulin levels among these two groups and the controls. There was a significant increase in the maximum insulin binding in group 2 (9.13 +/- 0.68% in group 2, 7.97 +/- 1.06% in controls, p less than 0.05), but not in group 1 (8.59 +/- 1.82%). There is no significant difference in binding affinity or the number of receptors between any of these two patients' groups and the controls. When patients in group 1 and group 2 were combined, sigma IRI levels were significantly elevated in the patients (p less than 0.05). These results suggested that prednisolone treatment with a smaller dosage as well as with the higher dosage resulted in a carbohydrate intolerance, the main cause of which is located in a postreceptor step (or steps) of insulin action.  相似文献   

5.
The effects of a single bout of exercise to exhaustion on pancreatic insulin secretion were determined in seven untrained men by use of a 3-h hyperglycemic clamp with plasma glucose maintained at 180 mg/100 ml. Clamps were performed either 12 h after an intermittent treadmill run at approximately 77% maximum O2 consumption or without prior exercise. Arterialized blood samples for glucose, insulin, and C-peptide determination were obtained from a heated hand vein. The peak insulin response during the early phase (0-10 min) of the postexercise clamp was higher (81 +/- 8 vs. 59 +/- 9 microU/ml; P less than 0.05) than in the nonexercise clamp. Incremental areas under the insulin (376 +/- 33 vs. 245 +/- 51 microU.ml-1.min) and C-peptide (17 +/- 2 vs. 12 +/- 1 ng.ml-1.min) curves were also greater (P less than 0.05) during the early phase of the postexercise clamp. No differences were observed in either insulin concentrations or whole body glucose disposal during the late phase (15-180 min). Area under the C-peptide curve was greater during the late phase of the postexercise clamp (650 +/- 53 vs. 536 +/- 76 ng.ml-1.min, P less than 0.05). The exercise bout induced muscle soreness and caused an elevation in plasma creatine kinase activity (142 +/- 32 vs. 305 +/- 31 IU/l; P less than 0.05) before the postexercise clamp. We conclude that in untrained men a bout of running to exhaustion increased pancreatic beta-cell insulin secretion during the early phase of the hyperglycemic clamp. Increased insulin secretion during the late phase of the clamp appeared to be compensated by increased insulin clearance.  相似文献   

6.
We have previously demonstrated an impaired insulin response to intraperitoneal glucose and arginine by the transplantable NEDH rat insulinoma. The nature of this tumour B-cell defect has been further studied by investigating the response of insulinoma-bearing rats to intravenous and intragastric glucose. Intravenous glucose failed to stimulate plasma immunoreactive insulin (IRI) above high basal levels (14.5 +/- 1.1 micrograms/L). However, significant elevation of the plasma IRI concentration was observed following an intragastric glucose load (17.1 +/- 1.5 micrograms/L; P less than 0.02). In view of the different effects of oral and intravenous glucose on insulin secretion in the RIN, implicating an involvement of incretin factors from the gut, the response of the tumour to GIP was investigated. Plasma IRI concentrations rose significantly in these animals (20.6 +/- 2.5 micrograms/L at 5 min, P less than 0.02). We conclude that (a) the transplantable rat insulinoma is responsive to GIP, and (b) that whilst the tumour B-cell has lost its insulin responsiveness to hyperglycaemia produced by intraperitoneal or intravenous glucose, it retains its ability to respond to intragastric glucose. This could be due to incretin factors from the gut of which GIP is currently the strongest candidate.  相似文献   

7.
Insulin resistance in myotonic dystrophy.   总被引:1,自引:0,他引:1  
M G Piccardo  G Pacini  M Rosa  R Vichi 《Enzyme》1991,45(1-2):14-22
The aim of the present study was to obtain a comprehensive picture of the rate of insulin secretion and of tissue sensitivity to the endogenous hormone in myotonic dystrophy patients (MyD). The minimal model approach was utilized for the analysis of frequently sampled intravenous glucose tolerance test data (FSIGT). This method provided the characteristic parameters: SI, insulin sensitivity index; SG fractional glucose disappearance independent of dynamic insulin; n, fractional insulin clearance; phi 1 and phi 2 first and second phase insulin delivery sensitivities to glucose stimulation. In MyD patients SI was reduced (p less than 0.01) by 71% to 1.4 +/- 0.3 x 10(-4) min-1/(microU/ml), whereas in controls it was 4.85 +/- 0.77; SG was within the normal range: 0.044 +/- 0.012 min-1 in MyD patients and 0.036 +/- 0.017 min-1 in controls; phi 1 increased in MyD patients (7.4 +/- 1.3 min (microU/ml)/(mg/dl) versus 4.1 +/- 1.2 in controls); phi 2 increased in MyD patients (126 +/- 47 x 10(4) min-2/(microU/ml)/(mg/dl) versus 17 +/- 6 in controls; p less than 0.05). MyD patients showed a normal tolerance with the glucose disappearance constant, KG within the normal range: 2.75 versus 2.62% min-1 in controls. In MyD patients insulin resistance was associated with a higher than normal insulin delivery for both secretory phases, although the second phase was responsible for releasing a greater amount of hormone. In conclusion MyD patients try to compensate for overall insulin resistance by a more marked pancreatic response.  相似文献   

8.
6 normal subjects received two times of 2 hr euglycemic glucose clamp studies (insulin infusion rate 40 mU/M2/min) one with and the other without somatostatin (SRIF) infusion (500 microgram/hr). Serum C-peptide and glucagon levels were measured during clamp to study the sensitivity of pancreatic alpha and beta cells to the suppressive effects of exogenous hyperinsulinemia during normoglycemia in normal subjects and to find whether SRIF had any modulative effects on endocrine pancreas secretion at the status of hyperinsulinemia. The results showed that in normal man the degree of suppression of pancreatic glucagon secretion by hyperinsulinemia (approximately 100 uU/ml) during euglycemic glucose clamp without SRIF infusion was less than that of C-peptide with mean value of 62 +/- 4% of basal glucagon remained at the end of clamp study; while only about 30 +/- 2% of basal C-peptide concentrations remained. But during SRIF infused glucose clamp studies (SRIF was infused from 60 to 120 min), 32 +/- 2% of mean basal C-peptide concentrations and 38 +/- 6% of mean basal glucagon concentrations left at the end of 2 hr clamp studies when serum insulin level was about 100 uU/ml. For the glucose infusion rate (M value), it was significantly greater in our normal subjects in response to insulin + SRIF as compared to insulin alone (12.0 + 0.9 vs 8.8 +/- 1.4; P less than 0.01). We concluded: during hyperinsulinemia (100 uU/ml), the sensitivity of pancreatic alpha cells to insulin seems less than that of beta cells in normal man at normoglycemia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Previous measurement of insulin in human muscle has shown that interstitial muscle insulin and glucose concentrations are approximately 30-50% lower than in plasma during hyperinsulinemia in normal subjects. The aims of this study were to measure interstitial muscle insulin and glucose in patients with type 2 diabetes to evaluate whether transcapillary transport is part of the peripheral insulin resistance. Ten patients with type 2 diabetes and ten healthy controls matched for sex, age, and body mass index were investigated. Plasma and interstitial insulin, glucose, and lactate (measured by intramuscular in situ-calibrated microdialysis) in the medial quadriceps femoris muscle were analyzed during a hyperinsulinemic euglycemic clamp. Blood flow in the contralateral calf was measured by vein plethysmography. At steady-state clamping, at 60-120 min, the interstitial insulin concentration was significantly lower than arterial insulin in both groups (409 +/- 86 vs. 1,071 +/- 99 pmol/l, P < 0.05, in controls and 584 +/- 165 vs. 1, 253 +/- 82 pmol/l, P < 0.05, in diabetic subjects, respectively). Interstitial insulin concentrations did not differ significantly between diabetic subjects and controls. Leg blood flow was significantly higher in controls (8.1 +/- 1.2 vs. 4.4 +/- 0.7 ml. 100 g(-1).min(-1) in diabetics, P < 0.05). Calculated glucose uptake was less in diabetic patients compared with controls (7.0 +/- 1.2 vs. 10.8 +/- 1.2 micromol. 100 g(-1).min(-1), P < 0.05, respectively). Arterial and interstitial lactate concentrations were both higher in the control group (1.7 +/- 0.1 vs. 1.2 +/- 0.1, P < 0. 01, and 1.8 +/- 0.1 vs. 1.2 +/- 0.2 mmol/l, P < 0.05, in controls and diabetics, respectively). We conclude that, during hyperinsulinemia, muscle interstitial insulin and glucose concentrations did not differ between patients with type 2 diabetes and healthy controls despite a significantly lower leg blood flow in diabetic subjects. It is suggested that decreased glucose uptake in type 2 diabetes is caused by insulin resistance at the cellular level rather than by a deficient access of insulin and glucose surrounding the muscle cell.  相似文献   

10.
The correlation between plasma C-peptide immunoreactivity (CPR) and immunoreactive insulin (IRI) was investigated during the oral glucose tolerance test in 20 normals, 127 diabetics, and 39 non-diabetics with chronic liver or renal disorders. When all subjects were included, the increment of CPR 30 minutes after glucose load (deltaCPR) correlated well with that of IRI (deltaIRI) (r = 0.66, p less than 0.001), but the return of CPR towards the basal level was delayed as compared with IRI. The positive correlation was also observed between the sum of 6 IRI and that of 6 CPR values during the glucose tolerance test in diabetics and controls (r = 0.53, p less than 0.001). deltaCPR/deltaBS (30 min.) was also well correlated with deltaIRI/deltaBS (30 min.), and was specifically low in diabetics. Insulin-treated maturity-onset diabetics showed low but considerable CPR responses while no CPR responses were observed in insulin-treated juvenile diabetics. In each plasma sample, CPR always exceeded IRI on the molar basis. At fasting CPR/IRI ratio was 15.6 +/- 1.7 (mean +/- SE) in normals and 14.9 +/- 1.3 approximately 16.9 +/- 1.0 in diabetics. In chronic liver diseases IRI response was augmented while CPR response was not different from that of controls, and the molar ratio of CPR/IRI was significantly low (9.5 +/- 1.1). On the contrary, it exceeded that of normals in chronic renal diseases (35.7 +/- 14.9). It is concluded that, first, the plasma CPR response appears to be a valuable indicator of pancreatic B-cell function, and second, it is, nevertheless, modified in chronic liver or renal disorders.  相似文献   

11.
We have studied glucose tolerance under carefully controlled conditions in 79 patients with arterial hypertension. The results show that, in patients with arterial hypertension but without clinical diabetes mellitus, the glucose tolerance was abnormal in 77.3% and normal in 22.3%. The corresponding figure in the control group of normotensive subjects was 0%. In each test the responses to glucose administration were analyzed by plotting the logarithm of the blood glucose concentration against time. For the points between 60 and 120 min, corresponding to the periods following glucose administration, a linear relationship was obtained and showed a decline at an exponential rate, as noted by other observers. An estimate of the volume of distribution of glucose was obtained as follows. Values observed in hypertensives with a pathological percent fall in blood glucose per minute (Kg) were 29.8 +/- 12.0 (mean +/- SD) liters and those in normal subjects with normal Kg values had a mean of 14.35 +/- 2.98, the difference being highly significant (p less than 0.0001). The results of the theoretical glucose concentration are also presented. Those obtained from subjects with normal Kg values (359.0 +/- 58.4 mg/dl) are significantly higher than in subjects with pathological Kg values (257.6 +/- 51.3 mg/dl; p less than 0.0001). All patients with either pathological or normal Kg values had normal glucose concentration levels, fasting blood sugar and no glucose in the urine specimen. The difference between pathological Kg values (107.0 +/- 25.8 mg/dl) and normal Kg values (90.6 +/- 13.0 mg/dl) was not found to be statistically different (p greater than 0.05). The distribution and means of glucose half time in controls with normal Kg values and hypertensives with pathological Kg values were: 63.5 +/- 11.5 and 137.8 +/- 48.1 min, respectively. The difference between normal and pathological Kg values being statistically significant at a confidence level above 99.5%. We also studied the free glucose pool at zero time. A significantly higher level was found in hypertensives with pathological Kg values, again indicating an impairment in glucose metabolism in this group: 90.6 +/- 26.5 vs. 65.0 +/- 5.4 g (p less than 0.0001). Another study showed an estimate of the mean cellular glucose uptake (MCUg) per minute and per kilogram body weight. The MCUg following glucose loading decreased considerably in hypertensives with pathological Kg values. The percentage reduction ranged between 50 and 55% hypertensives with pathological Kg values 4.1 +/- 0.8, and normotensives with normal Kg values, 8.0 +/- 0.6 (p less than 0.0001).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
The therapeutic action of 3.5 mg glibenclamide (HB 420) once a day for six weeks was evaluated in ten mild NID diabetics previously treated with diet only. Stable HbA1, insulin secretion during hyperglycaemic clamp (100 mg/dl over the baseline in the first study, and at the same level in the second one), peripheral sensitivity expressed as the amount of dextrose infused per Kg per min (M-coefficient), the glucose metabolic clearance rate (MCR) and the M/I ratio were measured. Circulating monocytes were separated to assess insulin binding before and after treatment. The results included a significant decrease in HbA1 (7.5 +/- 0.3 against 8.4 +/- 0.4%, P less than 0.005), increased steady-state (100-120 min.) plasma insulin (31 +/- 4.4 against 25.7 +/- 3.9 microU/ml), a significant increase in M-coefficient (4.02 +/- 0.62 against 2.49 +/- 0.31 mg/Kg/min, P less than 0.01), and MCR (1.90 +/- 0.34 against 1.18 +/- 0.18 ml/Kg/min, P less than 0.025) and an increase in the M/I ratio (14.6 +/- 1.9 against 11.2 +/- 1.7). All subjects displayed an increase in total insulin binding (4.03 +/- 0.31% against 2.79 +/- 0.34%, P less than 0.001) and affinity constants (Ke = 8.3 +/- 0.6 against 6.6 +/- 0.4 X 10(7) M-1, P less than 0.05). Since the M/I ratio increased in only 7/10 subjects and since there was no significant correlations between the percentage increase in M and MCR and the plasma insulin increase, whereas the increase in R0 was significant, it is felt that the euglycaemizing action of low doses of glibenclamide is primarily peripheral.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Eight maturity-onset diabetic patients who had no infections, liver diseases or other endocrine diseases which might affect carbohydrate metabolism were treated with monocomponent lente insulin, which is known to have little antigenicity, until blood sugar was controlled. The diurnal values of the blood sugar (BS) and immunoreactive insulin (IRI) were obtained before treatment and on the third day after the withdrawal of insulin treatment. One patient was dropped from the study because of insulin antibody formation. The total integrated IRI area in the diurnal profile was increased from 98.9 +/- 23.7 to 186.1 +/- 37.7 muU.h/ml (p less than 0.05), while the total blood sugar area was decreased from 7,500 +/- 1,200 to 5,510 +/- 1,214 mg-h% (p less than 0.05). Oral Glucose Tolerance Test on the fourth day after the withdrawal of insulin treatment showed increased IRI response compared to pretreatment. It is concluded that endogenous insulin secretion could be increased in the diabetic patient by the metabolic control with exogenous insulin injections.  相似文献   

14.
Acetate metabolism was studied in patients with insulin resistance. To evaluate the interaction between glucose and acetate metabolism, we measured acetate and glucose turnover with a hyperinsulinemic euglycemic clamp (hot clamp) in obese and diabetic patients with insulin resistance (n = 8) and in a control group with normal insulin sensitivity (n = 6). At baseline, acetate turnover and plasma concentrations were similar between the two groups (group means: 4.3 +/- 0.4 micromol x kg-1 x min-1 and 128.2 +/- 11.1 micromol/l). Acetate concentrations decreased in both groups with hyperinsulinemia but were significantly lower in the insulin-resistant group (20% vs. 12%, P < 0.05). After the hot clamp treatment, acetate turnover increased for the two groups and was higher in the group with normal insulin sensitivity: 8.1 +/- 0.7 vs. 5.5 +/- 0.5 micromol x kg-1 x min-1 (P < 0.001). No change related to insulin action was observed in either group in the percentage of acetate oxidation. This was approximately 70% of overall utilization at baseline and during the clamp. No correlation between glucose and acetate utilization was observed. Our results support the hypothesis that, like glucose metabolism, acetate metabolism is sensitive to insulin.  相似文献   

15.
Insulin resistance in acromegaly causes glucose intolerance and diabetes, but it is unknown whether it involves protein metabolism, since both insulin and growth hormone promote protein accretion. The effects of acromegaly and of its surgical cure on the insulin sensitivity of glucose and amino acid/protein metabolism were evaluated by infusing [6,6-(2)H(2)]glucose, [1-(13)C]leucine, and [2-(15)N]glutamine during a euglycemic insulin (1 mU x kg(-1) x min(-1)) clamp in 12 acromegalic patients, six studied again 6 mo after successful adenomectomy, and eight healthy controls. Acromegalic patients, compared with postsurgical and control subjects, had higher postabsorptive glucose concentration (5.5 +/- 0.3 vs. 4.9 +/- 0.2 micromol/l, P < 0.05, and 5.1 +/- 0.1 micromol/l) and flux (2.7 +/- 0.1 vs. 2.0 +/- 0.2 micromol x kg(-1) x min(-1), P < 0.01, and 2.2 +/- 0.1 micromol x kg(-1) x min(-1), P < 0.05) and reduced insulin-stimulated glucose disposal (+15 +/- 9 vs. +151 +/- 18%, P < 0.01, and 219 +/- 58%, P < 0.001 from basal). Postabsorptive leucine metabolism was similar among groups. In acromegalic and postsurgical subjects, insulin suppressed less than in controls the endogenous leucine flux (-9 +/- 1 and -12 +/- 2 vs. -18 +/- 2%, P < 0.001 and P < 0.05), the nonoxidative leucine disposal (-4 +/- 3 and -1 +/- 3 vs. -18 +/- 2%, P < 0.01 and P < 0.05), respectively, indexes of proteolysis and protein synthesis, and leucine oxidation (-17 +/- 6% in postsurgical patients vs. -26 +/- 6% in controls, P < 0.05). Within 6 mo, surgery reverses insulin resistance for glucose but not for protein metabolism. After adenomectomy, more leucine is oxidized during hyperinsulinemia.  相似文献   

16.
E Grodum  J Kvetny  J Bollerslev 《Life sciences》1991,48(21):2027-2033
Nine patients, from four different families, with autosomal dominant osteopetrosis were investigated. They all had roentgenological type I disease, characterized by universal, symmetrical osteosclerosis and enlarged thickness of the cranial vault. All patients appeared clinically euthyroid. Thyroxine (T4) and tri-iodothyronine (T3) induced oxygen consumption and glucose uptake were studied in vitro in mononuclear blood cells from patients and control persons. Unstimulated oxygen consumption from patients and controls did not differ, and no difference in unstimulated glucose uptake was observed. The increase in T4 and T3 stimulated oxygen consumption was significantly lower in cells from patients with osteopetrosis (T4: 0.007 +/- 0.004 mumol/mg DNA per h, T3: 0.011 +/- 0.004 mumol/mg DNA per h) compared with controls (T4: 0.017 +/- 0.003 mumol/mg DNA per h, T3: 0.023 +/- -0.013 mumol/mg DNA per h; p less than 0.05, p less than 0.05). Cellular glucose uptake after T4 and T3 stimulation was significantly lower in patients (T4: 0.032 +/- 0.017 mmol/l per mg DNA per h, T3: 0.02 +/- 0.017 mmol/l per mg DNA per h) compared with controls (T4: 0.09 +/- 0.017 mmol/l per mg DNA per h, T3: 0.08 +/- 0.01 mmol/l per mg DNA per h; p less than 0.05, p less than 0.01). The reduced oxygen consumption and glucose uptake indicate thyroid hormone resistance which may be of pathogenetic importance for the development of autosomal dominant osteopetrosis type I.  相似文献   

17.
Aim of the present study was to evaluate whether the inhibitory effect of somatostatin on pancreatic B-cell secretion is normal in nondiabetic obese subjects. For this purpose plasma C-peptide concentrations were measured in 10 nondiabetic obese subjects and 10 nonobese healthy controls during a 4-h hyperglycemic (11 mmol/l) glucose clamp. Somatostatin was infused (2.5 nmol/min) during the third hour of the study period in order to inhibit glucose-stimulated B-cell secretion. Fasting C-peptide averaged 0.46 +/- 0.04 nmol/l (mean +/- SEM) in nonobese subjects, and 0.85 +/- 0.08 nmol/l in obese patients (P less than 0.001). In the period 0-120 min the area under the plasma C-peptide curve was significantly higher in obese than in nonobese subjects (292 +/- 23 vs. 230 +/- 17 nmol/l x 120 min, P less than 0.05), however, in the last 20 min of the glucose infusion period without somatostatin (100-120 min) plasma C-peptide was not significantly different in the two groups (2.94 +/- 0.32 nmol/l in nonobese subjects and 3.21 +/- 0.19 nmol/l in obese patients, p = NS). During somatostatin infusion while maintaining hyperglycemia, plasma C-peptide decreased in both groups, and in the period 160-180 min it averaged 0.89 +/- 0.12 nmol/l in control subjects and 0.93 +/- 0.08 nmol/l in obese patients (P = NS), with a percent reduction similar in the two groups (70 +/- 2% in controls and 71 +/- 2% in obese patients). After discontinuing somatostatin infusion, plasma C-peptide increased to concentrations which were higher in obese than in nonobese subjects.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
We evaluated the acute effects of OXM on glucose metabolism in diet-induced insulin-resistant male C57Bl/6 mice. To determine the effects on glucose tolerance, mice were intraperitoneally injected with OXM (0.75, 2.5, or 7.5 nmol) or vehicle prior to an ip glucose tolerance test. OXM (0.75 nmol/h) or vehicle was infused during a hyperinsulinemic euglycemic clamp to quantify insulin action on glucose production and disposal. OXM dose-dependently improved glucose tolerance as estimated by AUC for glucose (OXM: 7.5 nmol, 1,564 +/- 460, P < 0.01; 2.5 nmol, 1,828 +/- 684, P < 0.01; 0.75 nmol, 2,322 +/- 303, P < 0.05; control: 2,790 +/- 222 mmol.l(-1).120 min). Insulin levels in response to glucose administration were higher in 7.5 nmol OXM-treated animals compared with controls. In basal clamp conditions, OXM increased EGP (82.2 +/- 14.7 vs. 39.9 +/- 5.7 micromol.min(-1).kg(-1), P < 0.001). During insulin infusion, insulin levels were twice as high in OXM-treated mice compared with controls (10.6 +/- 2.8 vs. 4.4 +/- 2.2 ng/ml, P < 0.01). Consequently, glucose infusion rate (118.6 +/- 30.8 vs. 38.8 +/- 26.4 microl/h, P < 0.001) and glucose disposal (88.1 +/- 13.0 vs. 45.2 +/- 6.9 micromol.min(-1).kg(-1), P < 0.001) were enhanced in mice that received OXM. In addition, glucose production was more suppressed during OXM infusion (35.7 +/- 15.5 vs. 15.8 +/- 11.4% inhibition, P < 0.05). However, if these data were expressed per unit concentration of circulating insulin, OXM did not affect insulin action on glucose disposal and production. These results indicate that OXM beneficially affects glucose metabolism in diet-induced insulin-resistant C57Bl/6 mice. It ameliorates glucose intolerance, most likely because it elevates glucose-induced plasma insulin concentrations. OXM does not appear to impact on insulin action.  相似文献   

19.
We measured splanchnic and leg glucose uptake during prolonged (i.e., 15 hours), moderate hyperglycemia-hyperinsulinemia (clamp). Plasma free fatty acid (FFA) concentration was maintained at basal concentration during the clamp via infusion of exogenous lipids and heparin in healthy volunteers to create a metabolic profile similar to glucose intolerance (i.e., hyperglycemia-hyperinsulinemia with elevated FFA concentration). During the clamp, glucose was infused at an average rate of 49 +/- 4 micromol/kg/min, which resulted in a plasma glucose concentration of 8.8 +/- 0.5 mmol/L compared with a concentration of 4.4 +/- 0.2 mmol/L in the basal state (P < 0.05). Insulin concentration increased from 5.5 +/- 1.1 microU/mL (basal) to 31.3 +/- 12.7 microU/mL (clamp; P < 0.05), whereas plasma FFA concentration was similar in the two conditions (3.9 +/- 0.5 mmol/L and 4.1 +/- 0.5 mmol/L, basal and clamp, respectively). Glucose balance across the splanchnic region switched from net release (-5.8 +/- 0.7 micromol/kg/min) in the basal state to net uptake in the clamp (19.8 +/- 3.7 micromol/kg/min; P < 0.05) and accounted for approximately 40% of the infused glucose. Glucose uptake across the leg was 0.7 +/- 0.2 micromol/kg/min (basal) and 5.5 +/- 2.2 micromol/kg/min (clamp; P < 0.05). In summary, tissues in the splanchnic region (i.e., liver) are important for disposal of intravenously infused glucose during prolonged, moderate hyperglycemia-hyperinsulinemia. Accelerated hepatic glucose uptake may disrupt normal liver metabolism, with potentially dangerous consequences for the patient. Measures to control systemic glucose concentration may be necessary to prevent excessive glucose disposal in the liver.  相似文献   

20.
BACKGROUND: The tumor necrosis factor alpha (TNF-alpha) might play a central role in insulin resistance, a frequent correlate of obesity likely contributing to some obesity-associated complications. Adult growth hormone (GH) deficiency syndrome (GHDA) shares with obesity excessive fat mass, hyperlipidemia, increased cardiovascular risk, and insulin resistance. On the other hand, GH has been shown to induce transient deterioration of glucose metabolism and insulin resistance when administered in normal humans and in GHDA patients. No information is presently available on the relationship between serum TNF-alpha levels and insulin sensitivity in GHDA. METHODS: We compared the serum TNF-alpha levels found in 10 GHDA patients before and after a 6-month recombinant human GH therapy (Genotropin), in an insulin resistance prone population of 16 obese (OB) patients and in 38 normal-weight healthy blood donors (controls). The insulin sensitivity was assessed by a euglycemic-hyperinsulinemic glucose clamp in all the GHDA patients and in 10 OB and in 6 control subjects. RESULTS: The serum TNF-alpha levels were not significantly different in OB patients (42.2 +/- 12.81 pg/ml), in GHDA patients at baseline (71.3 +/- 23.97 pg/ml), and in controls (55.3 +/- 14.28 pg/ml). A slight decrease of TNF-alpha values was noted in GHDA patients after 6 months of recombinant human GH treatment (44.5 +/- 20.19 pg/ml; NS vs. baseline). The insulin sensitivity (M) was significantly reduced in OB patients (2.4 +/- 0.30 mg/kg/min) as compared with control subjects (7.5 +/- 0.39 mg/kg/min) and in GHDA patients both at baseline (6.6 +/- 0.6 mg/kg/min) and after recombinant human GH therapy (5.6 +/- 0.7 mg/kg/min). The insulin sensitivity in the GHDA patients, similar to that of controls at baseline, worsened after recombinant human GH treatment (p < 0.05 vs. baseline; p = 0.05 vs. controls). Linear regression analysis showed no correlation between TNF-alpha and M values (see text) in all patient groups. CONCLUSIONS: These data indicate that circulating concentrations of TNF-alpha do not reflect the degree of insulin resistance in obesity and GHDA. They, however, do not exclude that TNF-alpha may induce insulin resistance at tissue level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号