首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent studies have demonstrated that most glycolytic enzymes can reversibly associate to form heterogeneous enzyme-enzyme (binary) complexes in vitro. However, kinetic analysis of these complexes has shown that the individual enzymes have a varied response to complex formation: some enzymes are inhibited, some are activated and some are unaffected. In order to determine the potential role of binary complexes in regulating glycolytic flux, we have mathematically calculated enzyme distributions and activities using data from in vitro binding and kinetic studies. These calculations suggest that, overall, formation of binary complexes would lower flux through phosphofructokinase and aldolase, would increase flux through glyceraldehyde-3-phosphate dehydrogenase and lactate dehydrogenase, and would not affect flux through triosephosphate isomerase, phosphoglycerate kinase and pyruvate kinase. The implications of these results are discussed with respect to the effect of complex formation on overall glycolytic flux and on the flux through individual enzyme loci.  相似文献   

2.
The association of glycolytic enzymes with F-actin is proposed to be one mechanism by which these enzymes are compartmentalized, and, as a result, may possibly play important roles for: regulation of the glycolytic pathway, potential substrate channeling, and increasing glycolytic flux. Historically, in vitro experiments have shown that many enzyme/actin interactions are dependent on ionic strength. Herein, Brownian dynamics (BD) examines how ionic strength impacts the energetics of the association of F-actin with the glycolytic enzymes: lactate dehydrogenase (LDH), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), fructose-1,6-bisphosphate aldolase (aldolase), and triose phosphate isomerase (TPI). The BD simulations are steered by electrostatics calculated by Poisson-Boltzmann theory. The BD results confirm experimental observations that the degree of association diminishes as ionic strength increases but also suggest that these interactions are significant, at physiological ionic strengths. Furthermore, BD agrees with experiments that muscle LDH, aldolase, and GAPDH interact significantly with F-actin whereas TPI does not. BD indicates similarities in binding regions for aldolase and LDH among the different species investigated. Furthermore, the residues responsible for salt bridge formation in stable complexes persist as ionic strength increases. This suggests the importance of the residues determined for these binary complexes and specificity of the interactions. That these interactions are conserved across species, and there appears to be a general trend among the enzymes, support the importance of these enzyme-F-actin interactions in creating initial complexes critical for compartmentation.  相似文献   

3.
Preliminary characterization of the "glycolytic complex," formed in trout white muscle, revealed that phosphofructokinase (PFK) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) are bound to particulate matter largely by ionic interactions; increasing neutral salt or charged metabolite concentrations released bound PFK and GAPDH. GAPDH was consistently solubilized at lower salt concentrations, indicating that it is not bound as tightly as PFK, but both enzymes were readily solubilized at physiological concentrations of salts and metabolites. pH titrations indicated that PFK binding is dependent on group(s) with a pKa of 7.3 in 30 mM imidazole. PFK binding increased at lower pH values; at 150 mM KCl the apparent pKa value is 6.5. Experiments with polyethylene glycol 8000 (PEG), which is used to mimic the high in vivo protein concentrations under in vitro conditions, showed that the binding of PFK and GAPDH increased with increasing PEG concentrations. Interestingly, at 5% PEG, only the PFK binding response depended on the ionic composition of the medium--with increased binding occurring at the pH of the exhausted muscle and decreased binding at control pH values. These results suggested that only PFK reversibly bound to cellular structures in response to changing conditions and disagrees with previous studies showing binding of several glycolytic enzymes as measured using the dilution method (F. M. Clarke, F.D. Shaw, and D.J. Morton (1980) Biochem. J. 186, 105-109). In order to determine whether artifactual binding was measured by the dilution method, two new methodologies were employed to measure enzyme binding in vivo: (a) whole muscle slices were pressed to quickly extrude cellular juice, and (b) muscle strips were finely minced and centrifuged to liberate cytoplasmic contents. Both methods indicated that, under physiological conditions, up to 70% of the total cellular phosphofructokinase may be bound, but other glycolytic enzymes are bound to a lesser extent (10-30%). This result contrasts those obtained with the dilution method, and suggests that dilution of cellular contents may result in an overestimation of the percentage of enzyme associated with cellular structures; this is dramatically shown for glyceraldehyde-3-phosphate dehydrogenase. The viability of the glycolytic complex in trout white muscle is discussed in light of the decreased binding measured using these new methodologies.  相似文献   

4.
The extent of binding of glycolytic enzymes to the particulate fraction of homogenates was measured in bovine psoas muscle before and after electrical stimulation. In association with an accelerated glycolytic rate on stimulation, there was a significant increase in the binding of certain glycolytic enzymes, the most notable of which were phosphofructokinase, aldolase, glyceraldehyde 3-phosphate dehydrogenase and pyruvate kinase. From the known association of glycolytic enzymes with the I-band of muscle it is proposed that electrical stimulation of anaerobic muscle increases enzyme binding to actin filaments. Calculations of the extent of enzyme binding suggest that significant amounts of enzyme protein, particularly aldolase and glyceraldehyde 3-phosphate dehydrogenase, are associated with the actin filaments. The results also imply that kinetic parameters derived from considerations of the enzyme activity in the soluble state may not have direct application to the situation in the muscle fibre, particularly during accelerated glycolysis.  相似文献   

5.
In recent years, evidence has been accumulating that metabolic pathways are organized in vivo as multienzyme clusters. Affinity electrophoresis proves to be an attractive in vitro method to further evidence specific associations between purified consecutive enzymes from the glycolytic pathway on the one hand, and from the citric acid cycle on the other hand. Our results support the hypothesis of cluster formation between the glycolytic enzymes aldolase, glyceraldehydephosphate dehydrogenase, and triosephosphate isomerase, and between the cycle enzymes fumarase, malate dehydrogenase, and citrate synthase. A model is presented to explain the possibility of regulation of the citric acid cycle by varying enzyme-enzyme associations between the latter three enzymes, in response to changing local intramitochondrial ATP/ADP ratios.  相似文献   

6.
S P Brooks  K B Storey 《FEBS letters》1991,278(2):135-138
Associations between glycolytic enzymes and subcellular structures have been interpreted as presenting a novel mechanism of glycolytic control; reversible enzyme binding to subcellular structural components is believed to regulate enzyme activity in vivo through the formation of a multi-enzyme complex. However, three lines of evidence suggest that enzyme binding to cellular structures is not involved in the control of glycolysis. (i) Calculations of the distribution of glycolytic enzymes under the physiological cellular conditions of higher ionic strength and higher enzyme concentrations indicate that a large multi-enzyme complex would not exist. (ii) In many cases, binding to subcellular structures is accompanied by changes in enzyme kinetic parameters brought about by allosteric modification, but these changes often inhibit enzyme activity. (iii) In the case where formation of binary enzyme/enzyme complexes activates enzymes, the overall increase in flux through the enzyme reaction is negligible.  相似文献   

7.
Interactions of glucose-6-phosphate isomerase (D-glucose-6-phosphate ketol-isomerase, EC 5.3.1.9), aldolase (D-fructose-1,6-bisphosphate D-glyceraldehyde-3-phosphate lyase, EC 4.1.2.13), glyceraldehyde-3-phosphate dehydrogenase (D-glyceraldehyde-3-phosphate:NAD+ oxidoreductase (phosphorylating), EC 1.2.1.12), triose-phosphate isomerase (D-glyceraldehyde-3-phosphate ketol-isomerase, EC 5.3.1.1), phosphoglycerate mutase (D-phosphoglycerate 2,3-phosphomutase, EC 5.4.2.1), phosphoglycerate kinase (ATP:3-phospho-D-glycerate 1-phosphotransferase, EC 2.7.3), enolase (2-phospho-D-glycerate hydro-lyase, EC 4.2.1.11), pyruvate kinase (ATP:Pyruvate O2-phosphotransferase, EC 2.7.1.40) and lactate dehydrogenase [S)-lactate:NAD+ oxidoreductase, EC 1.1.1.27) with F-actin, among the glycolytic enzymes listed above, and with phosphofructokinase (ATP:D-fructose-6-phosphate 1-phosphotransferase, EC 2.7.1.11) were studied in the presence of poly(ethylene glycol). Both purified rabbit muscle enzymes and rabbit muscle myogen, a high-speed supernatant fraction containing the glycolytic enzymes, were used to study enzyme-F-actin interactions. Following ultracentrifugation, F-actin and poly(ethylene glycol) tended to increase and KCl to decrease the pelleting of enzymes. In general, the greater part of the pelleting occurred in the presence of both F-actin and poly(ethylene glycol) and the absence of KCl. Enzymes that pelleted more in myogen preparations than as individual purified enzymes in the presence of poly(ethylene glycol) and the absence of F-actin were tested for specific enzyme-enzyme associations, several of which were observed. Such interactions support the view that the internal cell structure is composed of proteins that interact with one another to form the microtrabecular lattice.  相似文献   

8.
Previous Brownian dynamics (BD) simulations identified specific basic residues on fructose-1,6-bisphophate aldolase (aldolase) (I. V. Ouporov et al., Biophysical Journal, 1999, Vol. 76, pp. 17-27) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (I. V. Ouporov et al., Journal of Molecular Recognition, 2001, Vol. 14, pp. 29-41) involved in binding F-actin, and suggested that the quaternary structure of the enzymes may be important. Herein, BD simulations of F-actin binding by enzyme dimers or peptides matching particular sequences of the enzyme and the intact enzyme triose phosphate isomerase (TIM) are compared. BD confirms the experimental observation that TIM has little affinity for F-actin. For aldolase, the critical residues identified by BD are found in surface grooves, formed by subunits A/D and B/C, where they face like residues of the neighboring subunit enhancing their electrostatic potentials. BD simulations between F-actin and aldolase A/D dimers give results similar to the native tetramer. Aldolase A/B dimers form complexes involving residues that are buried in the native structure and are energetically weaker; these results support the importance of quaternary structure for aldolase. GAPDH, however, placed the critical residues on the corners of the tetramer so there is no enhancement of the electrostatic potential between the subunits. Simulations using GAPDH dimers composed of either S/H or G/H subunits show reduced binding energetics compared to the tetramer, but for both dimers, the sets of residues involved in binding are similar to those found for the native tetramer. BD simulations using either aldolase or GAPDH peptides that bind F-actin experimentally show complex formation. The GAPDH peptide bound to the same F-actin domain as did the intact tetramer; however, unlike the tetramer, the aldolase peptide lacked specificity for binding a single F-actin domain.  相似文献   

9.
The extent of binding of glycolytic enzymes to the particulate fraction of homogenates was measured in sheep hind muscles after electrical stimulation. As compared to the control muscles, stimulation led to significant increases in the amount of phosphofructokinase, aldolase and glyceraldehyde-3-phosphate dehydrogenase bound to the particulate fraction. The bindng of other glycolytic enzymes was not significantly altered. A servey of different hind limb muscles at variable rates of stimulation revealed that each muscle exhibited its own characteristic response pattern in terms of the level of increased enzyme binding. Generally, an increased stimulation rate led to greater enzyme adsorption. The increase in enzyme binding was rapidly reversible for it was shown that the amount of enzyme bound quickly returned to control values when the muscles were allowed to recover in the live anaesthetised animal following cessation of stimulation. Those muscles which exhibited increased enzyme binding were characterised by a marked loss of glycogen and accumulation of lactate suggesting that accelerated glycolytic flux was a necessary condition for the observation of increased enzyme binding. In support of this, enzyme adsorption was observed to be greatest on stimulation of ischemic muscles, whereas in trained muscles, or muscles with depleted glycogen stores induced by prior adrenalin treatment, the increased enzyme binding response was greatly diminished. It is concluded that the variable binding of key glycolytic enzymes has a role to play in the regulation of glycolytic behaviour in skeletal muscle.  相似文献   

10.
The isoelectric points (pI0), molecular weights and ammonium sulfate precipitation ranges for most of the glycolytic enzymes from house sparrow (Passer domesticus) flight muscle were determined. The pI0 for each enzyme is as follows: HK (6.8), PGI (6.7), PFK (5.4), Ald (7.2), TPI (7.5), PGK (7.1), PGM (6.1), Enol (6.2), PyK (6.6), and LDH (8.3). The molecular weight for each enzyme is as follows: PGI (145,000), Ald (160,000), TPI (60,000), PGK (35,000), PGM (60,000), Enol (100,000), PyK (200,000), and LDH (145,000). The ammonium sulfate precipitation range for each enzyme is as follows: PGI (0-80%), PFK (40-50%), Ald (40-65%), TPI (30-90%), PGK (70-90%), PGM (30-80%), Enol (45-80%), PyK (55-85%), and LDH (40-65%).  相似文献   

11.
Koebmann B  Solem C  Jensen PR 《The FEBS journal》2005,272(9):2292-2303
In Lactococcus lactis the enzymes phosphofructokinase (PFK), pyruvate kinase (PK) and lactate dehydrogenase (LDH) are uniquely encoded in the las operon. We used metabolic control analysis to study the role of this organization. Earlier studies have shown that, at wild-type levels, LDH has no control over glycolysis and growth rate, but high negative control over formate production (C(Jformate)LDH=-1.3). We found that PFK and PK exert no control over glycolysis and growth rate at wild-type enzyme levels but both enzymes exert strong positive control on the glycolytic flux at reduced activities. PK exerts high positive control over formate (C(Jformate)PK=0.9-1.1) and acetate production (C(Jacetate)PK=0.8-1.0), whereas PFK exerts no control over these fluxes at increased expression. Decreased expression of the entire las operon resulted in a strong decrease in the growth rate and glycolytic flux; at 53% expression of the las operon glycolytic flux was reduced to 44% and the flux control coefficient increased towards 3. Increased las expression resulted in a slight decrease in the glycolytic flux. At wild-type levels, control was close to zero on both glycolysis and the pyruvate branches. The sum of control coefficients for the three enzymes individually was comparable with the control coefficient found for the entire operon; the strong positive control exerted by PK almost cancels out the negative control exerted by LDH on formate production. Our analysis suggests that coregulation of PFK and PK provides a very efficient way to regulate glycolysis, and coregulating PK and LDH allows cells to maintain homolactic fermentation during glycolysis regulation.  相似文献   

12.
Partition equilibrium experiments have been used to characterize the interactions of erythrocyte ghosts with four glycolytic enzymes, namely aldolase, glyceraldehyde-3-phosphate dehydrogenase, phosphofructokinase and lactate dehydrogenase, in 5 mM sodium phosphate buffer (pH 7.4). For each of these tetrameric enzymes a single intrinsic association constant sufficed to describe its interaction with erythrocyte matrix sites, the membrane capacity for the first three enzymes coinciding with the band 3 protein content. For lactate dehydrogenase the erythrocyte membrane capacity was twice as great. The membrane interactions of aldolase and glyceraldehyde-3-phosphate dehydrogenase were mutually inhibitory, as were those involving either of these enzymes and lactate dehydrogenase. Although the binding of phosphofructokinase to erythrocyte membranes was inhibited by aldolase, there was a transient concentration range of aldolase for which its interaction with matrix sites was enhanced by the presence of phosphofructokinase. In the presence of a moderate concentration of bovine serum albumin (15 mg/ml) the binding of aldolase to erythrocyte ghosts was enhanced in accordance with the prediction of thermodynamic nonideality based on excluded volume. At higher concentrations of albumin, however, the measured association constant decreased due to very weak binding of the space-filling protein to either the enzyme or the erythrocyte membrane. The implications of these findings are discussed in relation to the likely subcellular distribution of glycolytic enzymes in the red blood cell.  相似文献   

13.
Summary The effect of anaerobiosis and aerobic recovery on the degree of binding of glycolytic enzymes to the particulate fraction of the cell was studied in the foot muscle of the marine molluscP. caerulea, in order to assess the role of glycolytic enzyme binding in the metabolic transition between aerobic and anoxic states. Short periods of anoxia (2 h, 4 h) resulted in an increase in enzyme binding in association with the increased glycolytic rate observed; this was particularly pronounced for phosphorylase, phosphofructokinase, aldolase, pyruvate kinase and lactate dehydrogenase. Decreased enzyme binding was observed after prolonged periods of anoxia. These effects were reversed and control values re-established when animals were returned to aerobic conditions. The results suggest that glycolytic rate could be regulated by changes in the distribution of glycolytic enzymes between free and bound forms inP. caerulea foot muscle. This reversible interaction of glycolytic enzymes with structural proteins may constitute an additional mechanism for metabolic control.  相似文献   

14.
Armored catfish (Liposarcus pardalis), indigenous to the Amazon basin, have hearts that are extremely tolerant of oxygen limitation. Here we test the hypothesis that resistance to hypoxia is associated with increases in binding of selected glycolytic enzymes to subcellular fractions. Preparations of isolated ventricular sheets were subjected to 2 h of either oxygenated or hypoxic (via nitrogen gassing) treatment during which time the muscle was stimulated to contract. The bathing medium contained 5 mM glucose and was maintained at 25 degrees C. Initial experiments revealed increases in anaerobic metabolism. There was no measurable decrease in glycogen level; however, hypoxic treatment led to a twofold increase in heart glucose and a 10-fold increase in lactate content. It is suggested that the increase in heart glucose content is a result of an enhanced rate of facilitated glucose transport that exceeds the rate of phosphorylation of glucose. Further experiments assessed activities of metabolic enzymes in crude homogenates and subsequently tracked the degree of enzyme binding associated with subcellular fractions. Total maximal activities of glycolytic enzymes (hexokinase [HK], phosphofructokinase [PFK], aldolase, pyruvate kinase, lactate dehydrogenase), and a mitochondrial marker, citrate synthase, were not altered with the hypoxic treatment. A substantial portion (>/=50%) of HK is permanently bound to mitochondria, and this level increases under hypoxia. The amount of HK that is bound to the mitochondrial fraction is at least fourfold higher in hearts of L. pardalis than in rat hearts. Hypoxia also resulted in increased binding of PFK to a particulate fraction, and the degree of binding is higher in hypoxia-tolerant fish than in hypoxia-sensitive mammalian hearts. Such binding may be associated with increased glycolytic flux rates through modulation of enzyme-specific kinetics. The binding of HK and PFK occurs before any significant decrease in glycogen level.  相似文献   

15.
The effect of anaerobiosis and anhydrobiosis on the extent of binding of glycolytic enzymes to the particulate fraction of the cell was studied in Artemia salina embryos. During control aerobic development, trehalase, phosphofructokinase and pyruvate kinase showed an increase in the percentage associated with the particulate fraction which is consistent with the carbohydrate-based metabolism of Artemia embryos. However, anaerobiosis resulted in decreased enzyme binding for six glycolytic enzymes; hexokinase, aldolase, pyruvate kinase and lactate dehydrogenase were the exceptions. Decreased enzyme binding was also observed after exposure to dehydrating conditions. The results suggest that glycolytic rate could be regulated by changes in the distribution of glycolytic enzymes between free and bound forms in Artemia embryos. This reversible interaction of glycolytic enzymes with structural proteins may account for part of the metabolic arrest observed during anaerobic dormancy and anhydrobiosis.Abbreviation pHi intracellular concentration of H+ ions  相似文献   

16.
Interaction of glycolytic enzymes with F-actin is suggested to be a mechanism for compartmentation of the glycolytic pathway. Earlier work demonstrates that muscle F-actin strongly binds glycolytic enzymes, allowing for the general conclusion that "actin binds enzymes", which may be a generalized phenomenon. By taking actin from a lower form, such as yeast, which is more deviant from muscle actin than other higher animal forms, the generality of glycolytic enzyme interactions with actin and the cytoskeleton can be tested and compared with higher eukaryotes, e.g., rabbit muscle. Cosedimentation of rabbit skeletal muscle and yeast F-actin with muscle fructose-1,6-bisphosphate aldolase (aldolase) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) followed by Scatchard analysis revealed a biphasic binding, indicating high- and low-affinity domains. Muscle aldolase and GAPDH showed low-affinity for binding yeast F-actin, presumably because of fewer acidic residues at the N-terminus of yeast actin; this difference in affinity is also seen in Brownian dynamics computer simulations. Yeast GAPDH and aldolase showed low-affinity binding to yeast actin, which suggests that actin-glycolytic enzyme interactions may also occur in yeast although with lower affinity than in higher eukaryotes. The cosedimentation results were supported by viscometry results that revealed significant cross-linking at lower concentrations of rabbit muscle enzymes than yeast enzymes. Brownian dynamics simulations of yeast and muscle aldolase and GAPDH with yeast and muscle actin compared the relative association free energy. Yeast aldolase did not specifically bind to either yeast or muscle actin. Yeast GAPDH did bind to yeast actin although with a much lower affinity than when binding muscle actin. The binding of yeast enzymes to yeast actin was much less site specific and showed much lower affinities than in the case with muscle enzymes and muscle actin.  相似文献   

17.
Previous work has shown that GAPDH (glyceraldehyde-3-phosphate dehydrogenase), aldolase, PFK (phosphofructokinase), PK (pyruvate kinase) and LDH (lactate dehydrogenase) assemble into a GE (glycolytic enzyme) complex on the inner surface of the human erythrocyte membrane. In an effort to define the molecular architecture of this complex, we have undertaken to localize the binding sites of these enzymes more accurately. We report that: (i) a major aldolase-binding site on the erythrocyte membrane is located within N-terminal residues 1-23 of band 3 and that both consensus sequences D6DYED10 and E19EYED23 are necessary to form a single enzyme-binding site; (ii) GAPDH has two tandem binding sites on band 3, located in residues 1-11 and residues 12-23 respectively; (iii) a PFK-binding site resides between residues 12 and 23 of band 3; (iv) no GEs bind to the third consensus sequence (residues D902EYDE906) at the C-terminus of band 3; and (v) the LDH- and PK-binding sites on the erythrocyte membrane do not reside on band 3. Taken together, these results argue that band 3 provides a nucleation site for the GE complex on the human erythrocyte membrane and that other components near band 3 must also participate in organizing the enzyme complex.  相似文献   

18.
On the basis of the analysis of the data on adsorption of glycolytic enzymes to structural proteins of skeletal muscle and to erythrocyte membranes, the data on enzyme-enzyme interactions and the data on the regulation of activity of glycolytic enzymes by cellular metabolites the structure of glycolytic enzyme complex adsorbed to a biological support has been proposed. The key role in the formation of the multienzyme complex belongs to 6-phosphofructokinase. The enzyme molecule has two association sites, one of which provides the fixation of 6-phosphofructokinase on the support and another is saturated by fructose-1,6-bisphosphate aldolase. The multienzyme complex fixed on structural proteins of skeletal muscle contains one tetrameric molecule of 6-phosphofructokinase and at two molecules of other glycolytic enzymes. Hexokinase is not involved in the complex composition. The molecular mass of the multienzyme complex is about 2,6 X 10(6) Da. The formation of the multienzyme complex leads to the compartmentation of the glycolytic process. The problem of integration of physico-chemical mechanisms of enzyme activity regulation (allosteric, dissociative and adsorptive mechanisms) is discussed.  相似文献   

19.
We developed a novel procedure for isolation of the muscle isozymes of aldolase, triose phosphate isomerase (TPI), glyceraldehyde phosphate dehydrogenase (GAPDH), phosphoglycerate kinase (PGK), phosphoglycerate mutase (PGM), enolase, pyruvate kinase (PK) and lactic dehydrogenase (LDH), and also creatine kinase (CK), at high purity, specific activity and yield. Protein was extracted from chicken breast muscle and glycolytic enzymes were purified by a three step procedure consisting of: Ammonium sulfate combined with pH fractionation. Phosphocellulose chromatography with performance of high pressure liquid chromatography, exploiting a pH gradient formed by a gradient of the buffering ion for protein elution. Affinity chromatography causing elution by substrate or pH. The enzymes, obtained at over 95% purity as judged by specific activity and silver stained electropherograms, were injected into sheep. Antibody for each enzyme was purified on specific immunosorbant and its specificity was verified by immunotransfer analysis.  相似文献   

20.
A study has been carried out on the association of aldolase with the human erythrocyte membrane. It has been shown that the conditions employed during hypotonic hemolysis affect the amount of aldolase that remains bound to the cell membrane. Thus, the in vivo nature of this binding cannot be ascertained by this technique. Therefore, a method has been developed in which aldolase is crosslinked with glutaraldehyde to the inner surface of the membrane in intact red blood cells. Under the specified conditions, over 90% of the intracellular aldolase can be crosslinked to the membrane with less than 10% of the hemoglobin becoming bound. These results suggest that the localization of aldolase in situ is on or near the inner surface of the membrane. The amount of aldolase bound to the membrane following crosslinking can be decreased by preincubating the cells with cytoskeletal agents such as cytochalasin B, colchicine, and vinblastine sulfate. The in vitro binding of aldolase to the purified spectrin-actin and F-actin complexes was studied. Aldolase bound both complexes very tightly (KD ? 10?9m) and this binding could be inhibited by cytochalasin B, but not by colchicine. A competition binding study was carried out to determine if the binding of aldolase to F-actin involved specific interactions. Neither bovine serum albumin nor cytochrome c significantly inhibited the binding of aldolase to F-actin when each was present at equimolar concentrations with aldolase. However, glyceraldehyde 3-phosphate dehydrogenase inhibited aldolase binding to F-actin and when present at equimolar concentrations with aldolase completely blocked the association. The association of aldolase and other glycolytic enzymes with the erythrocyte membrane is discussed and it is postulated that aldolase could be localized in vivo on the inner surface of the membrane by attachment to actin or a spectrin-actin complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号