首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Anion conductance and permeability sequences were obtained for frog skeletal muscle membranes from the changes in characteristic resistance and transmembrane potential after the replacement of one anion by another in the bathing solution. Permeability and conductance sequences are the same. The conductance sequence at pH = 7.4 is Cl- Br- > NO3 - > I- > trichloroacetate ≥ benzoate > valerate > butyrate > proprionate > formate > acetate ≥ lactate > benzenesulfonate ≥ isethionate > methylsulfonate > glutamate ≥ cysteate. The anions are divided into two classes: (a) Chloride-like anions (Cl- through trichloroacetate) have membrane conductances that decrease as pH decreases. The last six members of the complete sequence are also chloride like. (b) Benzoate-like anions (benzoate through acetate) have conductances that increase as pH decreases. At pH = 6.7 zinc ions block Cl- and benzoate conductances with inhibitory dissociation constants of 0.12 and 0.16 mM, respectively. Chloride-like and benzoate-like anions probably use the same channels. The minimum size of the channel aperture is estimated as 5.5 x 6.5 Å from the dimensions of the largest permeating anions. A simple model of the channel qualitatively explains chloride-like and benzoate-like conductance sequences and their dependence on pH.  相似文献   

2.
The incorporation of porin protein F from the outer membrane of Pseudomonas aeruginosa into artificial lipid bilayers results in an increase of the membrane conductance by many orders of magnitude. The membrane conductance is caused by the formation of large ion-permeable channels with a single-channel conductance in the order of 5 nS for 1 M alkali chlorides. The conductance has an ohmic current vs. voltage relationship. Further information on the structure of the pore formed by protein F was obtained by determining the single-channel conductance for various species differing in charge and size, and from zero-current potential measurements. The channel was found to be permeable for large organic ions (Tris+, N(C2H5)4+, Hepes?) and a channel diameter of 2.2 nm could be estimated from the conductance data (pore length of 7.5 nm). At neutral pH the pore is about two times more permeable for cations than for anions, possibly caused by negative charges in the pore. The consistent observation of large water filled pores formed by porin protein F in model membrane systems is discussed in the light of the known low permeability of the Ps. aeruginosa outer membrane towards antibiotics. It is suggested that this results from a relatively low proportion of open functional porin protein F pores in vivo.  相似文献   

3.
Characteristics of nystatin and amphotericin B action on thin (<100 A) lipid membranes are: (a) micromolar amounts increase membrane conductance from 10-8 to over 10-2 Ω-1 cm-2; (b) such membranes are (non-ideally) anion selective and discriminate among anions on the basis of size; (c) membrane sterol is required for action; (d) antibiotic presence on both sides of membrane strongly favors action; (e) conductance is proportional to a large power of antibiotic concentration; (f) conductance decreases ~104 times for a 10°C temperature rise; (g) kinetics of antibiotic action are also very temperature sensitive; (h) ion selectivity is pH independent between 3 and 10, but (i) activity is reversibly lost at high pH; (j) methyl ester derivatives are fully active; N-acetyl and N-succinyl derivatives are inactive; (k) current-voltage characteristic is nonlinear when membrane separates nonidentical salt solutions. These characteristics are contrasted with those of valinomycin. Observations (a)–(g) suggest that aggregates of polyene and sterol from opposite sides of the membrane interact to create aqueous pores; these pores are not static, but break up (melt) and reform continuously. Mechanism of anion selectivity is obscure. Observations (h)–(j) suggest—NH3+ is important for activity; it is probably not responsible for selectivity, particularly since four polyene antibiotics, each containing two—NH3+ groups, induce ideal cation selectivity. Possibly the many hydroxyl groups in nystatin and amphotericin B are responsible for anion selectivity. The effects of polyene antibiotics on thin lipid membranes are consistent with their action on biological membranes.  相似文献   

4.
Optically black, thin lipid membranes prepared from sheep erythrocyte lipids have a high dc resistance (Rm ≅ 108 ohm-cm2) when the bathing solutions contain NaCl or KCl. The ionic transference numbers (Ti) indicate that these membranes are cation-selective (T Na ≅ 0.85; T Cl ≅ 0.15). These electrical properties are independent of the cholesterol content of the lipid solutions from which the membranes are formed. Nystatin, and probably amphotericin B, are cyclic polyene antibiotics containing ≈36 ring atoms and a free amino and carboxyl group. When the lipid solutions used to form membranes contained equimolar amounts of cholesterol and phospholipid, these antibiotics reduced Rm to ≈102 ohm-cm2; concomitantly, T Cl became ≅0.92. The slope of the line relating log Rm and log antibiotic concentration was ≅4.5. Neither nystatin (2 x 10-5 M) nor amphotericin B (2 x 10-7 M) had any effect on membrane stability. The antibiotics had no effect on Rm or membrane permselectivity when the lipids used to form membranes were cholesterol-depleted. Filipin (10-5 M), an uncharged polyene with 28 ring atoms, produced striking membrane instability, but did not affect Rm or membrane ionic selectivity. These data suggest that amphotericin B or nystatin may interact with membrane-bound sterols to produce multimolecular complexes which greatly enhance the permeability of such membranes for anions (Cl-, acetate), and, to a lesser degree, cations (Na+, K+, Li+).  相似文献   

5.
The resting membrane of a barnacle muscle fiber is mostly permeable to cations in a solution of pH 7.7 whereas it becomes primarily permeable to anions if the pH is below 4.0. Mechanisms of ion permeation for various monovalent cations and anions were investigated at pH 7.7 and 3.9, respectively. Permeability ratios were obtained from the relationship between the membrane potential and the concentration of the test ions, and ionic conductances from current-voltage relations of the membrane. The permeability sequence for anions (SCN > I > NO3 > Br > ClO3 > Cl > BrO3 > IO3) was different from the conductance sequence for anions (Br, Cl > ClO3, NO3 > SCN). In contrast, the permeability and conductance sequences were identical for cations (K > Rb > Cs > Na > Li). The results suggest that anion permeation is governed by membrane charges while cation permeation is via some electrically neutral mechanism.  相似文献   

6.
Nystatin and amphotericin B increase the permeability of thin (<100 A) lipid membranes to ions, water, and nonelectrolytes. Water and nonelectrolyte permeability increase linearly with membrane conductance (i.e., ion permeability). In the unmodified membrane, the osmotic permeability coefficient, Pf, is equal to the tagged water permeability coefficient, (Pd)w; in the nystatin- or amphotericin B-treated membrane, Pf/(Pd)w ≈ 3. The unmodified membrane is virtually impermeable to small hydrophilic solutes, such as urea, ethylene glycol, and glycerol; the nystatin- or amphotericin B-treated membrane displays a graded permeability to these solutes on the basis of size. This graded permeability is manifest both in the tracer permeabilities, Pd, and in the reflection coefficients, σ (Table I). The "cutoff" in permeability occurs with molecules about the size of glucose (Stokes-Einstein radius 4 A). We conclude that nystatin and amphotericin B create aqueous pores in thin lipid membranes; the effective radius of these pores is approximately 4 A. There is a marked similarity between the permeability of a nystatin- or amphotericin B-treated membrane to water and small hydrophilic solutes and the permeability of the human red cell membrane to these same molecules.  相似文献   

7.
A controversy of long standing in membrane electrophysio-logy is whether the sodium ion current (INa) and potassium ion current (IK) pass through the membrane in separate channels, or through a single set of channels which conduct first INa and then IK. In support of the latter hypothesis it has been noted that the sodium conductance (gNa) decline, called inactivation, proceeds with about the same time course as the potassium conductance (gK) increase. This could mean that Na+ selective channels are being converted into K+ selective channels. The hypothesis is especially interesting because of the possibility that the carrier postulated in active transport is convertible from Na+ to K+ selectivity1. An explicit statement of the single channel hypothesis and the means for disproving it were given by Mullins2. Because a single channel could not simultaneously conduct INa and IK, disproof requires that membrane conductance (gm) be made somehow to exceed the maximum value of gNa or gK. We report here that inactivation of gNa can be destroyed fairly selectively by the action from inside the axon of the unspecific proteolytic enzymes of pronase. In many cases gm after pronase treatment is greater than maximum gK before treatment, making untenable the single channel hypothesis.  相似文献   

8.
To study K+ channels in the basolateral membrane of chloride-secreting epithelia, rat tracheal epithelial monolayers were cultured on permeable filters and mounted into an Ussing chamber system. The mucosal membrane was permeabilized with nystatin (180 μg/ml) in the symmetrical high K+ (145 mm) Ringer solution. During measurement of the macroscopic K+ conductance properties of the basolateral membrane under a transepithelial voltage clamp, we detected at least two types of K+ currents: one is an inwardly rectifying K+ current and the other is a slowly activating outwardly rectifying K+ current. The inwardly rectifying K+ current is inhibited by Ba2+. The slowly activating K+ current was potentiated by cAMP and inhibited by clofilium, phorbol 12-myristae 13-acetate (PMA) and lowering temperature. This is consistent with the biophysical characteristics of I SK channel. RT-PCR analysis revealed the presence of I SK cDNA in the rat trachea epithelia. Although 0.1 mm Ba2+ only had minimal affect on short-circuit current (I sc) induced by cAMP in intact epithelia, 0.1 mm clofilium strongly inhibited it. These results indicate that I SK might be important for maintaining cAMP-induced chloride secretion in the rat trachea epithelia. Received: 1 March 1996/Revised: 5 August 1996  相似文献   

9.
Previous studies have shown that the whole-cell current-voltage (I-V) relation of unstimulated sheep parotid cells is dominated by two K+ conductances, one outwardly and the other inwardly rectifying. We now show that once these K+ conductances are blocked by replacement of pipette K+ with Na+ and by the addition of 5 mmol/liter CsCl to the bath, there remains an outwardly rectifying conductance with a reversal potential of 0 mV. Replacement of 120 mmol/liter NaCl in the pipette solution with an equimolar amount of Na-glutamate shifted the reversal potential of this residual current to -55 mV, indicating that the conductance was Cl? selective. The Cl? current was activated by increasing the free Ca2+ in the pipette solution from 10 to 100 nmol/liter. When the Ca2+ concentration in the pipette solution was 10 nmol/liter, the relaxations observed in response to membrane depolarization could be fitted with a single exponential, whose time constant increased from 81 to 183 ms as the pipette potential was increased from -30 to +60 mV. Relaxation analysis showed that the current was activated by membrane depolarization. Reversal potential measurements in experiments in which external Cl? was replaced with various anions, gave the following relative permeabilities: SCN- (1.80) > I- (1.09) > CI- (1) > NO 3 - (0.92) > Br- (0.75). The relative conductances were: SCN- (2.18) > I- (1.07) > Cl? (1.00) > Br- (0.91) > NO 3 - (0.50). The Cl? current was blocked by NPPB (ID50 ≈ 10 μm), DIDS (10 or 30 μmol/liter) and furosemide (100 μmol/liter).  相似文献   

10.
SEVERAL laboratories1–6 have recently been concerned with the mechanism of the bathochromic shift of about 120 nm which results when 11-cis retinal (λ max 380 nm) combines with the protein opsin to form rhodopsin (λmax 498 nm). A red shift of up to 186 nm is involved in the formation of iodopsin from 11-cis retinal and cone opsin7,8. The active site of bovine rhodopsin consists of the 11-cis retinylidene chromophore attached to a primary amine group of the protein forming a Schiff-base linkage of the type shown in Fig. 1, Ia. On the basis of the chemical reactions of rhodopsin and its derivatives it has been suggested that an interaction between a protonated form of the chromophore (structure of the type Ib) and a lipophilic environment contributes11 to the red shift.  相似文献   

11.
Summary The contribution of specific ions to the conductance and potential of the basolateral membrane of the rabbit urinary bladder has been studied with both conventional and ion-specific microelectrode techniques. In addition, the possibility of an electrogenic active transport process located at the basolateral membrane was studied using the polyene antibiotic nystatin. The effect of ion-specific microelectrode impalement damage on intracellular ion activities was examined and a criterion set for acceptance or rejection of intracellular activity measurements. Using this criterion, we found (K+)=72mm and (Cl)=15.8mm. Cl but not K+ was in electrochemical equilibrium across the basolateral membrane. The selective permeability of the basolateral membrane was measured using microelectrodes, and the data analyzed using the Goldman, Hodgkin-Katz equation. The sodium to potassium permeability ratio (P Na/P K) was 0.044, and the chloride to potassium permeability ratio (P Cl/P K) was 1.17. Since K+ was not in electrochemical equilibrium, intracellular (K+) is maintained by active metabolic processes, and the basolateral membrane potential is a diffusion potential with K+ and Cl the most permeable ions. After depolarizing the basolateral membrane with high serosal potassium bathing solutions and eliminating the apical membrane as a rate limiting step for ion movement using the polyene antibiotic nystatin, we found that the addition of equal aliquots of NaCl to both solutions caused the basolateral membrane potential to hyperpolarize by up to 20 mV (cell interior negative). This popential was reduced by 80% within 3 min of the addition of ouabain to the serosal solution. This hyperpolarization most probably represents a ouabain sensitive active transport process sensitive to intracellular Na+. An equivalent electrical circuit for Na+ transport across rabbit urinary bladder is derived, tested, and compared to previous results. This circuit is also used to predict the effects that microelectrode impalement damage will have on individual membrane potentials as well as time-dependent phenomena; e.g., effect of amiloride on apical and basolateral membrane potentials.  相似文献   

12.
Modulation of K+ conductance of the inner mitochondrial membrane has been proposed to mediate preconditioning in ischemia-reperfusion injury. The mechanism is not entirely understood, but it has been linked to a decreased activation of mitochondrial permeability transition (mPT). In the present study K+ channel activity was mimicked by picomolar concentrations of valinomycin. Isolated brain mitochondria were exposed to continuous infusions of calcium. Monitoring of extramitochondrial Ca2+ and mitochondrial respiration provided a quantitative assay for mPT sensitivity by determining calcium retention capacity (CRC). Valinomycin and cyclophilin D inhibition separately and additively increased CRC. Comparable degrees of respiratory uncoupling induced by increased K+ or H+ conductance had opposite effects on mPT sensitivity. Protonophores dose-dependently decreased CRC, demonstrating that so-called mild uncoupling was not beneficial per se. The putative mitoKATP channel opener diazoxide did not mimic the effect of valinomycin. An alkaline matrix pH was required for mitochondria to retain calcium, but increased K+ conductance did not result in augmented ΔpH. The beneficial effect of valinomycin on CRC was not mediated by H2O2-induced protein kinase Cϵ activation. Rather, increased K+ conductance reduced H2O2 generation during calcium infusion. Lowering the osmolarity of the buffer induced an increase in mitochondrial volume and improved CRC similar to valinomycin without inducing uncoupling or otherwise affecting respiration. We propose that increased potassium conductance in brain mitochondria may cause a direct physiological effect on matrix volume inducing resistance to pathological calcium challenges.  相似文献   

13.
Summary Potassium fluxes in a suspension of rabbit proximal tubules were monitored using a potassium-sensitive extracellular electrode. Ouabain (10–4 m) and barium (5mm) were used to selectively quantitate the potassium efflux pathway (105±5 nmol K+·mg protein–1·min–1) and the sodium pump-related potassium influx (108±7), respectively. These equal and opposite fluxes suggest that potassium accumulation in the cell occurs mainly through the sodium pump and that potassium efflux occurs mainly through barium-sensitive potassium channels. Thus the activity of the sodium pump (Na, K-ATPase) in the basolateral membrane of the proximal tubule is balanced by the efflux of potassium, presumably across the basolateral membrane, which has a high potassium permeability. In addition, the effect of valinomycin and other ionophores was examined on potassium fluxes and several metabolic parameters [oxygen consumption (QO2), ATP content]. The addition of valinomycin to the tubules produced a net efflux of potassium which was quantitatively equivalent to the efflux produced by the addition of ouabain. The valinomycin-induced efflux was mainly due to the activity of valinomycin as a mitochondrial uncoupler, which indirectly inhibited the sodium pump by allowing a rapid reduction of the intracellular ATP. Amphotericin, nystatin, and monensin all produced large net releases of intracellular potassium. The action of the ionophores could be localized to the plasma or mitochondrial membrane and classified into three groups, as follows: (a) those which demonstrated full mitochondrial uncoupler activity (FCCP, valinomycin), (b) those which had no uncoupler activity (amphotericin B, nystatin); and (c) those which displayed partial uncoupler activity (monensin, nigericin).  相似文献   

14.
Effects of monovalent cations and some anions on the electrical properties of the barnacle muscle fiber membrane were studied when the intra- or extracellular concentrations of those ions were altered by longitudinal intra-cellular injection. The resting potential of the normal fiber decreases linearly with increase of logarithm of [K+]out and the decrement for a tenfold increase in [K+]out is 58 mv when the product, [K+]out ·[Cl-]out, is kept constant. It also decreases with decreasing [K+]in but is always less than expected theoretically. The deviation becomes larger as [K+]in increases and the resting potential finally starts to decrease with increasing [K+]in for [K+]in > 250 mM. When the internal K+ concentration is decreased the overshoot of the spike potential increases and the time course of the spike potential becomes more prolonged. In substituting for the internal K+, Na+ and sucrose affect the resting and spike potentials similarly. Some organic cations (guanidine, choline, tris, and TMA) behave like sucrose while some other organic cations (TEA, TPA, and TBA) have a specific effect and prolong the spike potential if they are applied intracellularly or extracellularly. In all cases the active membrane potential increases linearly with the logarithm of [Ca++]out/[K+]in and the increment is about 29 mv for tenfold increase in this ratio. The fiber membrane is permeable to Cl- and other smaller anions (Br- and I-) but not to acetate- and larger anions (citrate-, sulfate-, and methanesulfonate-).  相似文献   

15.
16.
Permeation of cystic fibrosis transmembrane conductance regulator (CFTR) Cl channels by halide ions was studied in stably transfected Chinese hamster ovary cells by using the patch clamp technique. In cell-attached patches with a high Cl pipette solution, the CFTR channel displayed outwardly rectifying currents and had a conductance near the membrane potential of 6.0 pS at 22°C or 8.7 pS at 37°C. The current–voltage relationship became linear when patches were excised into symmetrical, N-tris(hydroxymethyl)methyl-2-aminomethane sulfonate (TES)-buffered solutions. Under these conditions, conductance increased from 7.0 pS at 22°C to 10.9 pS at 37°C. The conductance at 22°C was ∼1.0 pS higher when TES and HEPES were omitted from the solution, suggesting weak, voltage-independent block by pH buffers. The relationship between conductance and Cl activity was hyperbolic and well fitted by a Michaelis-Menten–type function having a K m of ∼38 mM and maximum conductance of 10 pS at 22°C. Dilution potentials measured with NaCl gradients indicated high anion selectivity (PNa/PCl = 0.003–0.028). Biionic reversal potentials measured immediately after exposure of the cytoplasmic side to various test anions indicated PI (1.8) > PBr (1.3) > PCl (1.0) > PF (0.17), consistent with a “weak field strength” selectivity site. The same sequence was obtained for external halides, although inward F flow was not observed. Iodide currents were protocol dependent and became blocked after 1–2 min. This coincided with a large shift in the (extrapolated) reversal potential to values indicating a greatly reduced I/Cl permeability ratio (PI/PCl < 0.4). The switch to low I permeability was enhanced at potentials that favored Cl entry into the pore and was not observed in the R347D mutant, which is thought to lack an anion binding site involved in multi-ion pore behavior. Interactions between Cl and I ions may influence I permeation and be responsible for the wide range of PI/PCl ratios that have been reported for the CFTR channel. The low PI/PCl ratio usually reported for CFTR only occurred after entry into an altered permeability state and thus may not be comparable with permeability ratios for other anions, which are obtained in the absence of iodide. We propose that CFTR displays a “weak field strength” anion selectivity sequence.  相似文献   

17.
Reversal potentials (E IPSP) of the inhibitory postsynaptic potential and the membrane resting potentials (EM) of lobster muscle fibers were determined with intracellular recording under a variety of ionic conditions. E IPSP is solely dependent on the electromotive force of anionic batteries; i.e., on the electrochemical gradient for a "mobile" fraction of intracellular Cl (Cli) which is considerably smaller than the total intracellular Cl. The active inhibitory membrane is more permeable to certain "foreign" anions in the order NO3 > SCN > Br > Cl. The membrane is impermeable to BrOs, isethionate, and methylsulfate, but is slightly permeable to acetate and propionate. The level of Cli appears to be determined in part by some active (pump?) process and most of the anions studied appear to interfere with the steady-state level of Cli.  相似文献   

18.
Disorders of the carnitine cycle and of the beta oxidation spiral impair the ability to obtain energy from fats at time of fasting and stress. This can result in hypoketotic hypoglycemia, cardiomyopathy, cardiac arrhythmia and other chronic medical problems. The in vitro study of fibroblasts from patients with these conditions is impaired by their limited oxidative capacity. Here we evaluate the capacity of valinomycin, a potassium ionophore that increases mitochondrial respiration, to increase the oxidation of fatty acids in cells from patients with inherited fatty acid oxidation defects. The addition of valinomycin to fibroblasts decreased the accumulation of the lipophilic cation tetraphenylphosphonium (TPP+) at low concentrations due to the dissipation of the mitochondrial membrane potential. At higher doses, valinomycin increased TPP+ accumulation due to the increased potassium permeability of the plasma membrane and subsequent cellular hyperpolarization. The incubation of normal fibroblasts with valinomycin increased [14C]-palmitate oxidation (measured as [14C]O2 release) in a dose-dependent manner. By contrast, valinomycin failed to increase palmitate oxidation in fibroblasts from patients with very long chain acyl CoA dehydrogenase (VLCAD) deficiency. This was not observed in fibroblasts from patients heterozygous for this condition. These results indicate that valinomycin can increase fatty acid oxidation in normal fibroblasts and could be useful to differentiate heterozygotes from patients affected with VLCAD deficiency.  相似文献   

19.
Summary The electrical properties of the basolateral membrane of rabbit descending colon were studied with microelectrode methods in conjunction with the polyene antibiotic nystatin. Two problems were examined: (i) the relative distribution of tight junctional, apical membrane and basolateral membrane resistances, and (ii) the ionic basis of the basolateral membrane potential. Intracellular K+ activity (K+) was measured using liquid ion exchanger microelectrodes ((K+)=76±2mm) and was found not to be in equilibrium with the basolateral membrane potential. In order to measure membrane resistances and to estimate the selective permeability of the basolateral membrane, the apical membrane was treated with nystatin and bathed with a K2SO4 Ringer's solution which was designed to mimic intracellular K+ composition. This procedure virtually eliminated the resistance and electromotive force of the apical membrane. Shunt resistance was calculated by two independent methods based on microelectrode and transepithelial measurements. Both methods produced similar results (R s =691±63 cm2 and 770±247 cm2, respectively). These findings indicate that the shunt has no significant selectivity, contrary to previous reports. Native apical membrane resistance was estimated as 705±123 V cm2 and basolateral membrane resistance was 95±14 V cm2.To estimate basolateral membrane selectivity, the serosa was bathed in a NaCl Ringer's solution followed by a series of changes in which all or part of the Na+ was replaced by equimolar amounts of K+. From measures of bi-ionic potentials and conductance during these replacements, we calculated potassium permeability and selectivity ratios for the nystatin-treated colon by fitting these results to the constant field equations. By correcting for shunt conductance, it was then possible to estimate the selective permeability of the basolateral membrane alone. Selectivity estimates were as follows:P Na/P K=.08 andP Cl/P K=.07 (uncorrected for shunt) andP Na/P K=.04 andP Cl/P K=.06 (basolateral membrane alone).In a second set of experiments, evidence for an electrogenic Na+ pump in the basolateral membrane is presented. A small ouabain-sensitive potential could be generated in the nystatin-treated colon in the absence of chemical or electrical gradients by mucosal, but not serosal, addition of NaCl. We conclude that this electrogenic pump may contribute to the basolateral membrane potential; however, the primary source of this potential is passive: specifically, a potassium gradient which is maintained by an active transport process.An appendix compares the results of nystatin experiments to amiloride experiments which were conducted separately on the same tissues. The purpose of this comparison was to develop a comprehensive model of colonic transport. The analysis reveals a leak conductance in the apical membrane and the presence of an amiloride-insensitive conductance pathway.  相似文献   

20.
Potassium- and proton-dependent membrane potential, conductance, and current-voltage characteristics (IV curves) have been measured on rhizoid cells of the liverwort Riccia fluitans. The potential difference (Em) measured with microelectrodes across plasmalemma and tonoplast is depolarized to the potassium-sensitive diffusion potential (ED) in the presence of 1 mM NaCN, 1 mM NaN3, or at temperatures below 6°C. Whereas the temperature change from 25°C to 5°C decreases the membrane conductance (gm) from 0.71 to 0.43 S ? m?2, 1 mM NaCN increases gm by about 25%. The membrane displays potassium-controlled rectification which gradually disappears at temperatures below 5°C. The potassium pathway can be described by an equivalent circuit of a diode and an ohmic resistor in parallel. In the potential interval of ED ± 100 mV the measured I-V curves roughly fit the theoretical curves obtained from a modified diode equation. 86Rb+(K+)-influx is voltage sensitive: In the presence of 1 mM NaCN, 86Rb+-influx follows a hyperbolic function corresponding to a low conductance at low [K+]o and high conductance at high [K+]o. On the contrary 86Rb+-influx is linear with [K+]o when pump activity is normal. It is believed that there are two K+-transport pathways in the Riccia membrane, one of which is assigned to the low conductance (0.2 S · m?2), the other to a temperature-dependent facilitated diffusion system with a higher conductance (7.7 S · m?2). The electrogenic pump essentially acts as a current source and consumes about 39% of the cellular ATP-turnover. In the presence of 30 μM CCCP the saturation current of 0.1 A · m?2 is doubled to about 0.2 A · m?2, and the electromotive force of ?360 mV switches to ?250 mV. It is suggested that this may be due to a change in stoichiometry from one to two transported charges per ATP hydrolyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号