首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Thin strips of frog ventricle were isolated and bathed for 15 min in a solution containing 140 mM KCl, 5 mM Na2ATP, 3 mM EDTA, and 10 mM Tris buffer at pH 7.0. The muscle was then exposed to contracture solutions containing 140 mM KCl, 5 mM Na2ATP, 1 mM MgCl2, 10 mM Tris, 3 mM EGTA, and CaCl2 in amounts to produce concentrations of free calcium from 10-4.8 M to 10-9 M. The muscles developed some tension at approximately 10-8 M, and maximum tension was achieved in 10-5 M Ca++. They relaxed in Ca++ concentrations less than 10-8 M. The development of tension by the EDTA-treated muscles was normalized by comparison with twitch tension at a stimulation rate of 9 per min before exposure to EDTA. In 10-5 M Ca++ tension was always several times the twitch tension and was greater than the contracture tension of a frog ventricular strip in KCl low Na-Ringer. Tension equal to half-maximum was produced at approximately 10-6.2 M Ca++. Intracellular recording of membrane potential indicated that after EDTA treatment the resting potential of cells in Ringer solution with 10-5 M Ca or less was between 5 and 20 mv. Contracture solutions did not produce tension without prior treatment with EDTA. The high permeability of the membrane produced by EDTA was reversed and the normal resting and action potentials restored in 1 mM Ca-Ringer. Similar studies of EDTA-treated rabbit right ventricular papillary muscle produced a similar tension vs. Ca++ concentration relation, and the high permeability state reversed with exposure to normal Krebs solution.  相似文献   

2.
Ca 2+ -specific removal of Z lines from rabbit skeletal muscle   总被引:15,自引:6,他引:9  
Removal of rabbit psoas strips immediately after death and incubation in a saline solution containing 1 mM Ca2+ and 5 nM Mg2+ for 9 hr at 37°C and pH 7.1 causes complete Z-line removal but has no ultrastructurally detectable effect on other parts of the myofibril. Z lines remain ultrastructurally intact if 1 mM 1,2-bis-(2-dicarboxymethylaminoethoxy)-ethane (EGTA) is substituted for 1 mM Ca2+ and the other conditions remain unchanged. Z lines are broadened and amorphous but are still present after incubation for 9 hr at 37°C if 1 mM ethylenediaminetetraacetate (EDTA) is substituted for 1 mM Ca2+ and 5 mM Mg2+ in the saline solution. A protein fraction that causes Z-line removal from myofibrils in the presence of Ca2+ at pH 7.0 can be isolated by extraction of ground muscle with 4 mM EDTA at pH 7.0–7.6 followed by isoelectric precipitation and fractionation between 0 and 40% ammonium sulfate saturation. Z-line removal by this protein fraction requires Ca2+ levels higher than 0.1 mM, but Z lines are removed without causing any other ultrastructurally detectable degradation of the myofibril. This is the first report of a protein endogenous to muscle that is able to catalyze degradation of the myofibril. The very low level of unbound Ca2+ in muscle cells in vivo may regulate activity of this protein fraction, or alternatively, this protein fraction may be localized in lysosomes.  相似文献   

3.
Calcium compartments and fluxes were measured by kinetic analyses in kidney cell suspensions in a three-compartment closed system. The fast phase influx and compartment size increase linearly with the medium calcium and the half-time of exchange is only 1.3 min which suggests that the fast component is extracellular. The slow phase compartment rises linearly from 0.1 to 0.5 mmole calcium/kg cell water when the medium calcium is raised from 0.02 to 2.5 mM. The slow phase calcium influx exhibits the pattern of saturation kinetics with a V max of 0.065 µµmole cm-2 sec-1 and a Km of 0.3 mM indicating that it is a carrier-mediated transport process. PTH has no effect on the fast phase of calcium influx, but increases both calcium influx and the calcium pool size of the slow component. The maximum effect is obtained at medium calcium concentration of 1.3 mM. Below 0.3 mM extracellular calcium, the effects of the hormone cannot be demonstrated. PTH increases the V max of calcium influx from 0.065 to 0.128 µµmole cm-2 sec-1 while the Km rises from 0.3 to 1.15 mM. These findings suggest that PTH increases the translocation of the calcium-carrier complex across the membrane and not the carrier concentration or its binding affinity for calcium.  相似文献   

4.
The rate at which the postjunctional membrane of muscle fibers becomes desensitized to the action of carbamylcholine is increased after the muscle has been soaked in solutions containing increased concentrations of calcium. Some further aspects of this effect of calcium were investigated by measuring changes in the input resistance of single fibers of the frog sartorius during local perfusion of the neuromuscular junction with 2.73 x 10-3 M carbamylcholine in isolated muscles immersed in 165 mM potassium acetate. It was found that (a) sudden changes in the local concentration of calcium brought about by perfusing fibers with carbamylcholine solutions containing 20 mM calcium, 40 mM oxalate, or 40 mM EDTA were followed within 20 sec by marked changes in the rate of desensitization; (b) prior to 13 sec after the introduction of carbamylcholine, however, no effect on the input resistance could be detected even though the muscle had been presoaked in 10 mM calcium; (c) the ability of high concentrations of calcium to bring about rapid desensitization disappears when a lower concentration of carbamylcholine (0.137 x 10-3 M) is applied to the muscle fiber. These findings suggest that calcium present in the extracellular fluid can act directly on the postjunctional membrane to promote the desensitization process and that an increased permeability of the membrane to calcium brought about by the presence of carbamylcholine is a factor which contributes to this action.  相似文献   

5.
Quantitative light microscope radioautographs of galactose-3H and phlorizin-3H were prepared from freeze-dried plastic-embedded hamster small intestine incubated in vitro. The usual uphill epithelial cell accumulation of galactose accompanied by a somewhat smaller lamina propria accumulation was observed in control tissue incubated 3 min in 1 mM galactose-3H. The addition of 5 x 10-4 M phlorizin to the medium blocked uphill accumulation, but did not prevent galactose equilibration with the epithelial cells. The galactose content of the lamina propria was considerably less than the galactose content of the epithelial cell. Varying the phlorizin-3H content of the medium from 0.6 to 60 µM revealed a brush border binding of phlorizin which followed a Langmuir adsorption isotherm with a half-saturation constant of 13 µM and a maximum binding of 84 µmoles of phlorizin/liter of microvilli or 2.6 x 106 sites/epithelial cell. The phlorizin content of the epithelial cell compartment, excluding microvilli, never exceeded 10% that of the medium after 20 min of incubation. These findings directly support the view that phlorizin is a nontransported inhibitor which binds glucose-galactose carriers at the surface of epithelial cell microvilli.  相似文献   

6.
Calcium retained at binding sites of the sarcoplasmic reticulum membranes isolated from rabbit skeletal muscle requires 10-5 - 10-4 M ATP to exchange with 45Ca added to the medium. The ATP requirement for Ca exchangeability was observed with respect to the "intrinsic" Ca of the reticulum membranes and the fraction of Ca that is "actively" bound in the presence of ATP. Furthermore, a concentration of free Ca in the medium higher than 10-8 M is required for ATP to promote Ca exchangeability. This exchangeability is not influenced by caffeine, quinine, procaine, and tetracaine, and Ca that is either nonexchangeable (in the absence of ATP) or exchangeable (in the presence of ATP) is released by 1–5 mM quinine or tetracaine, but neither caffeine (6 mM) nor procaine (2–5 mM) has this effect. Quinine or tetracaine also releases Ca and Mg bound passively to the reticulum membranes. A possible role of ATP in maintaining the integrity of cellular membranes is discussed, and the effects of caffeine, quinine, and of local anesthetics on the binding of Ca by the isolated reticulum are related to the effects of these agents on 45Ca fluxes and on the twitch output observed in whole muscles.  相似文献   

7.
The interaction between caffeine and calcium on the rate of desensitization of muscle postjunctional membrane (PJM) receptors during the sustained application of 0.27 mM carbamylcholine (CARB) has been studied in vitro on the sartorius muscle of the frog. The rate of PJM repolarization with CARB added to the solution bathing the muscle or the recovery of the effective transmembrane resistance (EMR) during the microperfusion of CARB directly onto the end-plate region of individual fibers was used as an index of the rate of desensitization. Caffeine (1.5 mM) increased the rate of PJM repolarization with bulk application of CARB in a 1.8 or 10 mM calcium Ringer solution but had no effect on PJM repolarization in a calcium-deficient, 4 mM magnesium Ringer solution. For EMR measurements the preparation was rendered mechanically quiescent by repeated challenges with isotonic KCl during an exposure of several hours to a calcium-free, 4 mM magnesium-1 mM EGTA Ringer solution. In these fibers, the microperfusion of 0.27 mM CARB together with 1.8 mM calcium plus 1.5 mM caffeine significantly increased the rate of EMR recovery above that observed in the absence of caffeine. Raising the calcium concentration to 10 mM had a similar effect; however, no additional increase was noted by the inclusion of 1.5 mM caffeine. It is suggested that the major role of caffeine in PJM desensitization is to increase the calcium permeability of the surface membrane. The transmembrane movement of calcium and the consequent intracellular accumulation of calcium is seen as a critical factor in controlling the rate of PJM desensitization.  相似文献   

8.
The effects on the Schwann cell electrical potential of external ionic concentrations and of K-strophanthoside were investigated. Increasing (K)o depolarized the cell. The potential is related to the logarithm of (K)o in a quasi-linear fashion. The linear portion of the curve has a slope of 45 mv/ten-fold change in (K)o. Diminutions of (Na)o and (Cl)o produced only small variations in the potential. Calcium and magnesium can be replaced by 44 mM calcium without altering the potential. Increase of (Ca)o to 88 mM produced about 10 mv hyperpolarization. The cell was hyperpolarized by 11 mv and 4 mv within 1 min after applying K-strophanthoside at concentrations of 10-3 and 10-5 M, respectively. No variations of cellular potassium, sodium, or chloride were observed 3 min after applying the glycoside. The hyperpolarization caused by 10-3 M K-strophanthoside was not observed when (K)o was diminished to 1 or 0.1 mM or was increased to 30 mM. At a (K)o of 30 mM, 10-2 M strophanthoside was required to produce the hyperpolarizing effect. In high calcium, the cell was further hyperpolarized by the glycoside. The initial hyperpolarization caused by the glycoside was followed by a gradual depolarization and a decrease of the cellular potassium concentration. The results indicate that the Schwann cell potential of about -40 mv is due to ionic diffusion, mainly of potassium, and to a cardiac glycoside-sensitive ion transport process.  相似文献   

9.
KChIP3 (potassium channel interacting protein 3) is a calcium-binding protein that binds at the N terminus of the Kv4 voltage-gated potassium channel through interactions at two contact sites and has been shown to regulate potassium current gating kinetics as well as channel trafficking in cardiac and neuronal cells. Using fluorescence spectroscopy, isothermal calorimetry, and docking simulations we show that the novel potassium current activator, NS5806, binds at a hydrophobic site on the C terminus of KChIP3 in a calcium-dependent manner, with an equilibrium dissociation constant of 2–5 μm in the calcium-bound form. We further determined that the association between KChIP3 and the hydrophobic N terminus of Kv4.3 is calcium-dependent, with an equilibrium dissociation constant in the apo-state of 70 ± 3 μm and 2.7 ± 0.1 μm in the calcium-bound form. NS5806 increases the affinity between KChIP3 and the N terminus of Kv4.3 (Kd = 1.9 ± 0.1 μm) in the presence and absence of calcium. Mutation of Tyr-174 or Phe-218 on KChIP3 abolished the enhancement of Kv4.3 site 1 binding in the apo-state, highlighting the role of these residues in drug and K4.3 binding. Kinetic studies show that NS5806 decreases the rate of dissociation between KChIP3 and the N terminus of KV4.3. Overall, these studies support the idea that NS5806 directly interacts with KChIP3 and modulates the interactions between this calcium-binding protein and the T1 domain of the Kv4.3 channels through reorientation of helix 10 on KChIP3.  相似文献   

10.
Sartorius muscle cells from the frog were stored in a K-free Ringer solution at 3°C until their average sodium contents rose to around 23 mM/kg fiber (about 40 mM/liter fiber water). Such muscles, when placed in Ringer''s solution containing 60 mM LiCl and 50 mM NaCl at 20°C, extruded 9.8 mM/kg of sodium and gained an equivalent quantity of lithium in a 2 hr period. The presence of 10-5 M strophanthidin in the 60 mM LiCl/50 mM NaCl Ringer solution prevented the net extrusion of sodium from the muscles. Lithium ions were found to enter muscles with a lowered internal sodium concentration at a rate about half that for entry into sodium-enriched muscles. When sodium-enriched muscles labeled with radioactive sodium ions were transferred from Ringer''s solution to a sodium-free lithium-substituted Ringer solution, an increase in the rate of tracer sodium output was observed. When the lithium-substituted Ringer solution contained 10-5 M strophanthidin, a large decrease in the rate of tracer sodium output was observed upon transferring labeled sodium-enriched muscles from Ringer''s solution to the sodium-free medium. It is concluded that lithium ions have a direct stimulating action on the sodium pump in skeletal muscle cells and that a significantly large external sodium-dependent component of sodium efflux is present in muscles with an elevated sodium content. In the sodium-rich muscles, about 23% of the total sodium efflux was due to strophanthidin-insensitive Na-for-Na interchange, about 67% being due to strophanthidin-sensitive sodium pumping.  相似文献   

11.
45Ca efflux was studied in resting anterior byssal retractor muscle. The data are described by a three-compartment system. The most rapidly exchanging compartment, with an average time constant of 7 min, contains about 0.9 mM Ca/liter muscle, and probably represents extracellular space. A second compartment, with a time constant of 83 ± 5 min, contains 1.2 mM Ca/liter, and may represent a membrane calcium store. The presence of a third, or more, compartments, probably representing sarcoplasmic reticulum and contractile proteins, is indicated by the fact that the final time constant is 10 times the 83 min time constant of the second compartment. Serotonin (5HT), on initial application, increases 45Ca efflux from this third compartment(s). This effect has a typical dose-response relationship with a maximum response appearing at 10-7 M5HT. In addition, removal of 5HT causes a secondary increase in 45Ca efflux which has a maximum at a 5HT concentration of 10-7 M and declines at both higher and lower doses.  相似文献   

12.
1. Rat tissue homogenates convert dl-1-aminopropan-2-ol into aminoacetone. Liver homogenates have relatively high aminopropanol-dehydrogenase activity compared with kidney, heart, spleen and muscle preparations. 2. Maximum activity of liver homogenates is exhibited at pH9·8. The Km for aminopropanol is approx. 15mm, calculated for a single enantiomorph, and the maximum activity is approx. 9mμmoles of aminoacetone formed/mg. wet wt. of liver/hr.at 37°. Aminoacetone is also formed from l-threonine, but less rapidly. An unidentified amino ketone is formed from dl-4-amino-3-hydroxybutyrate, the Km for which is approx. 200mm at pH9·8. 3. Aminopropanol-dehydrogenase activity in homogenates is inhibited non-competitively by dl-3-hydroxybutyrate, the Ki being approx. 200mm. EDTA and other chelating agents are weakly inhibitory, and whereas potassium chloride activates slightly at low concentrations, inhibition occurs at 50–100mm. 4. It is concluded that aminopropanol-dehydrogenase is located in mitochondria, and in contrast with l-threonine dehydrogenase can be readily solubilized from mitochondrial preparations by ultrasonic treatment. 5. Soluble extracts of disintegrated mitochondria exhibit maximum aminopropanol-dehydrogenase activity at pH9·1 At this pH, Km values for the amino alcohol and NAD+ are approx. 200 and 1·3mm respectively. Under optimum conditions the maximum velocity is approx. 70mμmoles of aminoacetone formed/mg. of protein/hr. at 37°. Chelating agents and thiol reagents appear to have little effect on enzyme activity, but potassium chloride inhibits at all concentrations tested up to 80mm. dl-3-Hydroxybutyrate is only slightly inhibitory. 6. Dehydrogenase activities for l-threonine and dl-4-amino-3-hydroxybutyrate appear to be distinct from that for aminopropanol. 7. Intraperitoneal injection of aminopropanol into rats leads to excretion of aminoacetone in the urine. Aminoacetone excretion proportional to the amount of the amino alcohol administered, is complete within 24hr., but represents less than 0·1% of the dose given. 8. The possible metabolic role of amino alcohol dehydrogenases is discussed.  相似文献   

13.
A Mg2+-dependent, alkaline phosphatase has been isolated from mature pollen of Lilium longiflorum Thunb., cv. Ace and partially purified. It hydrolyzes 1l- and 1d-myo-inositol 1-phosphate, myo-inositol 2-phosphate, and β-glycerophosphate at rates decreasing in the order named. The affinity of the enzyme for 1l- and 1d-myo-inositol 1-phosphate is approximately 10-fold greater than its affinity for myo-inositol 2-phosphate. Little or no activity is found with phytate, d-glucose 6-phosphate, d-glucose 1-phosphate, d-fructose 1-phosphate, d-fructose 6-phosphate, d-mannose 6-phosphate, or p-nitrophenyl phosphate. 3-Phosphosphoglycerate is a weak competitive inhibitor. myo-Inositol does not inhibit the reaction. Optimal activity is obtained at pH 8.5 and requires the presence of Mg2+. At 4 millimolar, Co2+, Fe2+ or Mn2+ are less effective. Substantial inhibition is obtained with 0.25 molar Li+. With β-glycerophosphate as substrate the Km is 0.06 millimolar and the reaction remains linear at least 2 hours. In 0.1 molar Tris, β-glycerophosphate yields equivalent amounts of glycerol and inorganic phosphate, evidence that transphosphorylation does not occur.  相似文献   

14.
1. The aerobic transport of d-glucose and d-galactose in rabbit kidney tissue at 25° was studied. 2. In slices forming glucose from added substrates an accumulation of glucose against its concentration gradient was found. The apparent ratio of intracellular ([S]i) and extracellular ([S]o) glucose concentrations was increased by 0·4mm-phlorrhizin and 0·3mm-ouabain. 3. Slices and isolated renal tubules actively accumulated glucose from the saline; the apparent [S]i/[S]o fell below 1·0 only at [S]o higher than 0·5mm. 4. The rate of glucose oxidation by slices was characterized by the following parameters: Km 1·16mm; Vmax. 4·5μmoles/g. wet wt./hr. 5. The active accumulation of glucose from the saline was decreased by 0·1mm-2,4-dinitrophenol, 0·4mm-phlorrhizin and by the absence of external Na+. 6. The kinetic parameters of galactose entry into the cells were: Km 1·5mm; Vmax 10μmoles/g. wet wt./hr. 7. The efflux kinetics from slices indicated two intracellular compartments for d-galactose. The galactose efflux was greatly diminished at 0°, was inhibited by 0·4mm-phlorrhizin, but was insensitive to ouabain. 8. The following mechanism of glucose and galactose transport in renal tubular cells is suggested: (a) at the tubular membrane, these sugars are actively transported into the cells by a metabolically- and Na+-dependent phlorrhizin-sensitive mechanism; (b) at the basal cell membrane, these sugars are transported in accordance with their concentration gradient by a phlorrhizin-sensitive Na+-independent facilitated diffusion. The steady-state intracellular sugar concentration is determined by the kinetic parameters of active entry, passive outflow and intracellular utilization.  相似文献   

15.
1. Human uterine cervical stroma was found to contain a Ca2+-independent neutral proteinase against casein and N-benzoyl-dl-arginine p-nitroanilide (Bz-dl-Arg-Nan). This enzyme was tightly bound to an insoluble material (20000g pellet) and was solubilized by high concentrations of NaCl or KCl. High concentrations of them in the reaction system, however, inhibited reversibly the activity of this enzyme. 2. The neutral proteinase was partially purified by extraction with NaCl, gel filtration on Sephadex G-200 and affinity chromatography on casein–Sepharose. 3. The optimal pH of this partially purified enzyme was 7.4–8.0 against casein and Bz-dl-Arg-Nan. The molecular weight of the enzyme was found to be about 1.4×105 by gel filtration on Sephadex G-200. 4. The enzyme was significantly inhibited by di-isopropyl phosphorofluoridate (0.1mm). High concentration of phenylmethanesulphonyl fluoride (5mm), 7-amino-1-chloro-3-l-tosylamidoheptan-2-one (0.5mm), antipain (10μm) or leupeptin (10μm) was also found to be inhibitory, but chymostatin (40μg/ml), soya-bean trypsin inhibitor (2.5mg/ml), human plasma (10%, v/v), p-chloromercuribenzoate (1mm), EDTA (10mm) and 1-chloro-4-phenyl-3-l-tosylamidobutan-2-one (1mm) had no effect on the enzyme. 5. The neutral proteinase hydrolysed casein, Bz-dl-Arg-Nan and heat-denatured collagen, but was inactive towards native collagen and several synthetic substrates, such as 4-phenylazobenzyloxycarbonyl-Pro-Leu-Gly-Pro-d-Arg, 3-carboxypropionyl-Ala-Ala-Ala p-nitroanilide and 2,4-dinitrophenyl-Pro-Gln-Gly-Ile-Ala-Gly-Gln-d-Arg, and also proteoglycan. The enzyme did not act as a plasminogen activator. 6. These properties suggested that a neutral proteinase in the human uterine cervix was different from enzymes previously reported.  相似文献   

16.
17.
The DNA-packaging specificities of phages λ and 21 depend on the specific DNA interactions of the small terminase subunits, which have support helix-turn-recognition helix-wing DNA-binding motifs. λ-Terminase with the recognition helix of 21 preferentially packages 21 DNA. This chimeric terminase''s ability to package λDNA is reduced ∼20-fold. Phage λ with the chimeric terminase is unable to form plaques, but pseudorevertants are readily obtained. Some pseudorevertants have trans-acting suppressors that change codons of the recognition helix. Some of these codons appear to remove an unfavorable base-pair contact; others appear to create a novel nonspecific DNA contact. Helper-packaging experiments show that these mutant terminases have lost the ability to discriminate between λ and 21 during DNA packaging. Two cis-acting suppressors affect cosB, the small subunit''s DNA-binding site. Each changes a cosBλ-specific base pair to a cosB21-specific base pair. These cosB suppressors cause enhanced DNA packaging by 21-specific terminase and reduce packaging by λ-terminase. Both the cognate support helix and turn are required for strong packaging discrimination. The wing does not contribute to cosB specificity. Evolution of packaging specificity is discussed, including a model in which λ- and 21-packaging specificities diverged from a common ancestor phage with broad packaging specificity.VIRUSES must package viral chromosomes from nucleic acid pools that include host-cell nucleic acids, so specific recognition of the viral nucleic acid is essential during virion assembly. For large DNA viruses, including the tailed double-strand DNA (dsDNA) bacteriophages, the herpesviruses, and the adenoviruses, DNA-packaging proteins recognize specific sequences on the viral chromosomes (reviewed in Baines and Weller 2005 and Ostapchuk and Hearing 2005, respectively). For the dsDNA viruses that produce virion chromosomes by processing concatemeric DNA, a viral terminase enzyme functions in the recognition and cutting of concatemeric DNA and subsequently sponsors DNA translocation. λ-Terminase is a heterooligomer of large and small subunits, gpA and gpNu1, respectively. Cutting of concatemeric DNA is carried out by gpA''s endonuclease activity (Becker and Gold 1978; Davidson and Gold 1992; Hwang and Feiss 1996). Three DNA subsites, cosQ, cosN, and cosB, are contained in the ∼200-bp-long cos site and orchestrate DNA packaging through interactions with terminase (Figure 1A; reviewed in Feiss and Catalano 2005). gpA introduces staggered nicks in cosN to generate the 12-bp cohesive ends of mature λDNA molecules. Efficient and accurate nicking of cosN requires anchoring of gpA by gpNu1, which binds to the adjacent cosB subsite (Higgins and Becker 1994b; Hang et al. 2001).Open in a separate windowFigure 1.—The cos and terminase region of the λ-chromosome. (A) (Top) Map of cos and the terminase-encoding Nu1 and A genes. The black bar indicates the location of the winged helix-turn-helix DNA-binding motifs in the N-terminal domain of gpNu1. (Bottom) cos subsites: cosQ is required for termination of DNA packaging; cosN is the site where the large terminase subunit, gpA, introduces staggered nicks to generate the cohesive ends of virion DNA molecules; and cosB contains the gpNu1-binding sites R1, R2, and R3 along with the IHF-binding site I1. (B) (Top) Schematic of gpNu1 residues 1–42, including the support (blue) and recognition (red) α-helixes and the wing loop (magenta). β1 and β2 are short β-strands flanking the DNA-binding elements. (Bottom) Sequences are a comparison of residues of λ''s gpNu1 and phage 21''s gp1, with conserved resides indicated by vertical lines. Note that the recognition helixes of gpNu1 and gp1 differ by four residues, all likely solvent-exposed (Becker and Murialdo 1990; de Beer et al. 2002). (C) Three-dimensional structure of the winged helix-turn-helix-containing, N-terminal domain of gpNu1 (residues 1–68) (de Beer et al. 2002). Side groups of solvent-exposed residues of the recognition helix are displayed. Color coded as in B.λ''s cosB (cosBλ) is a complex subsite containing three copies of a gpNu1-binding sequence, the R sequence, plus a site, I1, for the integration host factor (IHF), the Escherichia coli DNA-bending protein. The order of sites is cosN–R3–I1–R2–R1. The amino-terminal half of gpNu1 contains a winged helix-turn-helix DNA-binding motif (Figure 1, B and C; Gajiwala and Burley 2000) that interacts with the R sequences. Further, the amino-terminal domain of gpNu1 is a tight dimer (Figure 1C, de Beer et al. 2002). The IHF-induced bend at I1 creates a DNA hairpin in cosB that positions the major grooves of R3 and R2 to face inward, so that the helix-turn-helix motifs of dimeric gpNu1 can be docked into them. The wing loops are positioned to make minor groove contacts with R3 and R2. Thus it is proposed that gpA is positioned to nick cosN by assembly of a bent structure with dimeric gpNu1 bound to R3 and R2 (Becker and Murialdo 1990; de Beer et al. 2002). A variety of studies indicate that the positioning of gpNu1 at R3 is crucial and that the other interactions function to create and/or stabilize the R3–gpNu1 interaction (Cue and Feiss 1993a; Higgins and Becker 1994a; Hang et al. 2001).DNA packaging initiates when terminase binds and nicks a cos. Following cosN nicking and separation of the cohesive ends, terminase remains bound to the cosB-containing chromosome end (Becker et al. 1977; Yang et al. 1997). The DNA-bound terminase docks on the portal vertex of a prohead, the empty, immature virion head shell. Assembly of the ternary prohead–terminase–DNA complex activates gpA''s potent translocation ATPase, and the viral DNA is translocated into the prohead (Yang and Catalano 2003; Dhar and Feiss 2005). Translocation brings the next cos along the concatemer to the portal-docked terminase (Feiss and Widner 1982). The downstream cos is cleaved by terminase, completing packaging of the chromosome. Recognition of the downstream cos requires cosQ and cosN (Cue and Feiss 2001). Following DNA packaging, terminase undocks from the filled head. Attachment of a tail to the DNA-filled head completes virion assembly. The undocked terminase remains bound to and sponsors the packaging of the next chromosome along the concatemer.The interactions between the recognition helix of gpNu1 and an R sequence are typical for helix-turn-helix proteins, as shown by genetic studies of chimeras between λ and its relative, phage 21, as follows: λ and 21 have similarly organized cos sites; the cosB of 21 also has the R3–I1–R2–R1 structure. Nevertheless, the two phages have distinct packaging specificities. Base-pair differences in the R sequences account for packaging specificity (Becker and Murialdo 1990; Smith and Feiss 1993). cosN and cosQ are interchangeable between λ and 21 (Feiss et al. 1981). The consensus R sequences are 5′-CGTTTCCtTTCT-3′ for cosBλ and 5′-CaTGTCGGncCT-3′ for cosB21, where capitalized residues are conserved in all three R sequences of both phages; underlined and capitalized are two residues conserved in all three R sequences of both phages, but which differ between cosBλ and cosB21 (Becker and Murialdo 1990). These two conserved but phage-specific base pairs are likely to be of major importance for specificity. Similarly, the recognition helixes of the helix-turn-helix motifs of the small subunits of λ (gpNu1) and 21 (gp1) terminases differ in four amino acid residues that account for packaging specificity (Figure 1; Becker and Murialdo 1990).In earlier work (de Beer et al. 2002), we showed that modifying λ-terminase by replacing the gpNu1 recognition helix with that of 21''s gp1 created a terminase (gpNu1hy1 terminase) that was specific for the cosB of phage 21 (designated cosB21). That is, λ cosB21 Nu1hy1 was viable, but λ cosBλ Nu1hy1 was inviable due to the specificity mismatch between cosBλ and the cosB21-specific recognition helix of the chimeric small terminase subunit, gpNu1hy1. The Nu1hy1 terminase packages cosB21 chromosomes ∼10-fold more efficiently than it does cosBλ chromosomes. This 10-fold discrimination between cosB21 and cosBλ chromosomes is much weaker than the >104-fold discrimination shown by wild-type λ and 21 terminases (de Beer et al. 2002). Because of the modest discrimination of Nu1hy1 terminase, the yield of λ cosBλ Nu1hy1 is only slightly below the yield required for plaque formation. Lysates of λ cosBλ Nu1hy1 contain plaque-forming pseudorevertants at a level expected for single mutations. A number of these pseudorevertants were sequenced and found to contain mutations in cosBλ or in the Nu1hy1 gene. Here we report on in vivo packaging studies on the effects of these Nu1hy1 and cosBλ suppressor mutations on packaging specificity.  相似文献   

18.
Cesium uptake by sodium-loaded frog sartorius muscles was inhibited 100% by 10-6 M ouabain and 10-6 M cymarin. The doses for 50% inhibition of cesium uptake by five cardiotonic aglycones were 1.5 x 10-6 M for strophanthidin, 2 x 10-7 M for telocinobufagin, 1.6 x 10-6 for digitoxigenin, 2.4 x 10-6 M for periplogenin, and 6.3 x 10-6 M for uzarigenin. Because of the limited solubility of sarmentogenin the maximum concentration studied was 2 x 10-6 M which inhibited cesium uptake about 36%. Inhibition of cesium uptake by cymarin was not reversed during a 3.5 hr incubation in fresh solution while the muscles treated with ouabain and strophanthidin recovered partly during this time. Cymarin was a more potent inhibitor of sodium efflux than strophanthidin and periplogenin was less potent. Increased cesium ion concentration in the external solution decreased the strophanthidin inhibition of cesium uptake but 25 mM cesium did not overcome the inhibition by 10-8-10-6 M strophanthidin. Increased potassium ion concentration in the external solution decreased but did not completely overcome inhibition of sodium efflux by strophanthidin. It is concluded that potassium or cesium ions do not compete with these drugs for a particular site on the ion transport complex. The same structural features of the drugs are necessary for inhibition of ion transport in frog muscle as are required for inhibition of ion transport in other tissues, inhibition of sodium-potassium-stimulated ATPases, and toxicity to animals.  相似文献   

19.
Unidirectional Na fluxes from frog''s striated muscle were measured in the presence of 0 to 5 mM sodium azide. With azide concentrations of 2 and 5 mM the Na efflux was markedly stimulated; the Na efflux with 5 mM azide was about 300 per cent greater than normal. A similar increase was present when all but the 5.0 mM sodium added with azide was replaced by choline. 10-5 M strophanthidin abolished the azide effect on Na24 efflux. Concentrations of azide of 1.0 mM or less had no effect on Na efflux. The Na influx, on the other hand, was only increased by 41 per cent in the presence of 5 mM NaN3. From these findings it is concluded that the active transport of Na is stimulated by the higher concentrations of azide. The hypothesis is advanced that the active transport of Na is controlled by the transmembrane potential and that the stimulation of Na efflux is produced as a consequence of the membrane depolarization caused by the azide.  相似文献   

20.
Peptidoglycan hydrolases (PGHs) are responsible for bacterial cell lysis. Most PGHs have a modular structure comprising a catalytic domain and a cell wall-binding domain (CWBD). PGHs of bacteriophage origin, called endolysins, are involved in bacterial lysis at the end of the infection cycle. We have characterized two endolysins, Lc-Lys and Lc-Lys-2, identified in prophages present in the genome of Lactobacillus casei BL23. These two enzymes have different catalytic domains but similar putative C-terminal CWBDs. By analyzing purified peptidoglycan (PG) degradation products, we showed that Lc-Lys is an N-acetylmuramoyl-l-alanine amidase, whereas Lc-Lys-2 is a γ-d-glutamyl-l-lysyl endopeptidase. Remarkably, both lysins were able to lyse only Gram-positive bacterial strains that possess PG with d-Ala4d-Asx-l-Lys3 in their cross-bridge, such as Lactococcus casei, Lactococcus lactis, and Enterococcus faecium. By testing a panel of L. lactis cell wall mutants, we observed that Lc-Lys and Lc-Lys-2 were not able to lyse mutants with a modified PG cross-bridge, constituting d-Ala4l-Ala-(l-Ala/l-Ser)-l-Lys3; moreover, they do not lyse the L. lactis mutant containing only the nonamidated d-Asp cross-bridge, i.e. d-Ala4d-Asp-l-Lys3. In contrast, Lc-Lys could lyse the ampicillin-resistant E. faecium mutant with 3→3 l-Lys3-d-Asn-l-Lys3 bridges replacing the wild-type 4→3 d-Ala4-d-Asn-l-Lys3 bridges. We showed that the C-terminal CWBD of Lc-Lys binds PG containing mainly d-Asn but not PG with only the nonamidated d-Asp-containing cross-bridge, indicating that the CWBD confers to Lc-Lys its narrow specificity. In conclusion, the CWBD characterized in this study is a novel type of PG-binding domain targeting specifically the d-Asn interpeptide bridge of PG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号