首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Growth factors are the key elements in wound healing signaling for cell migration, differentiation and proliferation. Platelet-rich plasma (PRP), one of the most studied sources of growth factors, has demonstrated to promote wound healing in vitro and in vivo. Adipose tissue is an alternative source of growth factors. Through a simple lipoaspirate method, adipose derived growth factor-rich preparation (adipose tissue extract; ATE) can be obtained. The authors set out to compare the effects of these two growth factor sources in cell proliferation and migration (scratch) assays of keratinocyte, fibroblast, endothelial and adipose derived stem cells. Growth factors involved in wound healing were measured: keratinocyte growth factor, epidermal growth factor, insulin-like growth factor, interleukin 6, platelet-derived growth factor beta, tumor necrosis factor alfa, transforming growth factor beta and vascular endothelial growth factor. PRP showed higher growth factor concentrations, except for keratinocyte growth factor, that was present in adipose tissue in greater quantities. This was reflected in vitro, where ATE significantly induced proliferation of keratinocytes at day 6 (p < 0.001), compared to plasma and control. Similarly, ATE-treated fibroblast and adipose stem cell cultures showed accelerated migration in scratch assays. Moreover, both sources showed accelerated keratinocyte migration. Adipose tissue preparation has an inductive effect in wound healing by proliferation and migration of cells involved in wound closure. Adipose tissue preparation appears to offer the distinct advantage of containing the adequate quantities of growth factors that induce cell activation, proliferation and migration, particularly in the early phase of wound healing.  相似文献   

2.
富血小板血浆(platelet-rich plasma,PRP)由于富含多种活性生长因子,能够刺激软骨细胞增殖,促进软骨前体细胞增殖、迁移、向软骨细胞分化,促进胶原蛋白合成以及抑制软骨的炎性反应和退变,提供有利于组织修复的内环境,延缓病情进展。近年来PRP注射治疗已成为治疗与骨关节炎(osteoarthritis,OA)相关疾病的新型选择,并且疗效显著。为了进一步提高其效用,PRP注射治疗不仅在关节腔内进行,还可在软骨下骨内进行注射。软骨下骨的病变会加速软骨损耗,故有必要将软骨下骨也当作OA众多发病机制和病理过程的关键因素之一。根据PRP的生物特效以及PRP注射治疗在膝骨关节炎(knee osteoarthritis,KOA)中应用的研究进展进行了综述,同时对软骨下骨内PRP注射治疗KOA的研究进行了展望,以期为KOA的治疗提供更加有效的方法。  相似文献   

3.
Human muscle-derived progenitor cells (hMDPCs) offer great promise for muscle cell-based regenerative medicine; however, prolonged ex-vivo expansion using animal sera is necessary to acquire sufficient cells for transplantation. Due to the risks associated with the use of animal sera, the development of a strategy for the ex vivo expansion of hMDPCs is required. The purpose of this study was to investigate the efficacy of using platelet-rich plasma (PRP) for the ex-vivo expansion of hMDPCs. Pre-plated MDPCs, myoendothelial cells, and pericytes are three populations of hMDPCs that we isolated by the modified pre-plate technique and Fluorescence Activated Cell Sorting (FACS), respectively. Pooled allogeneic human PRP was obtained from a local blood bank, and the effect that thrombin-activated PRP-releasate supplemented media had on the ex-vivo expansion of the hMDPCs was tested against FBS supplemented media, both in vitro and in vivo. PRP significantly enhanced short and long-term cell proliferation, with or without FBS supplementation. Antibody-neutralization of PDGF significantly blocked the mitogenic/proliferative effects that PRP had on the hMDPCs. A more stable and sustained expression of markers associated with stemness, and a decreased expression of lineage specific markers was observed in the PRP-expanded cells when compared with the FBS-expanded cells. The in vitro osteogenic, chondrogenic, and myogenic differentiation capacities of the hMDPCs were not altered when expanded in media supplemented with PRP. All populations of hMDPCs that were expanded in PRP supplemented media retained their ability to regenerate myofibers in vivo. Our data demonstrated that PRP promoted the proliferation and maintained the multi-differentiation capacities of the hMDPCs during ex-vivo expansion by maintaining the cells in an undifferentiated state. Moreover, PDGF appears to be a key contributing factor to the beneficial effect that PRP has on the proliferation of hMDPCs.  相似文献   

4.
The tissue engineering technique using mesenchymal stem cells (MSCs) and scaffolds is promising. Transforming growth factor-β1 (TGF-β1) is generally accepted as an chondrogenic agent, but immunorejection and unexpected side effects, such as tumorigenesis and heterogeneity, limit its clinical application. Autogenous platelet-rich plasma (PRP), marked by low immunogenicity, easy accessibility, and low-cost, may be favorable for cartilage regeneration. In our study, the effect of PRP on engineered cartilage constructed by MSCs and collagen hydrogel in vitro and in vivo was investigated and compared with TGF-β1. The results showed that PRP promoted cell proliferation and gene and protein expressions of chondrogenic markers via the TGF-β/SMAD signaling pathway. Meanwhile, it suppressed the expression of collagen type I, a marker of fibrocartilage. Furthermore, PRP accelerated cartilage regeneration on defects with engineered cartilage, advantageous over TGF-β1, as evaluated by histological analysis and immunohistochemical staining. Our work demonstrates that autogenous PRP may substitute TGF-β1 as a potent and reliable chondrogenic inducer for therapy of cartilage defect.  相似文献   

5.
Platelet-rich plasma (PRP) contains growth factors which positively affect cell proliferation, cell differentiation, chemotaxis and intracellular matrix synthesis. All these processes are involved in wound healing and tissue regeneration; thus, PRP as a source of growth factors can be used in periodontal regenerative therapies. The purpose of the present study was to assess the effect of various concentrations of activated and non-activated PRP on proliferation of osteoblasts and fibroblasts in vitro. PRP was obtained from three healthy volunteers. 75, 50, 25, and 10% concentrations of f PRP were prepared by dilution in Dulbecco’s modified Eagle’s medium. In activated PRP groups, PRP concentrations were activated by adding calcium gluconate. Human gingival fibroblast (HGF) cell line and MG-63 (osteosarcoma) human osteoblast-like cell line were used in the study. The MTT proliferation assay was used to assess the effect of different types of PRP concentrates on proliferation of HGF and MG-63 cells, in 24, 48 and 72 h. After 24, 48, and 72 h, the proliferation rate of both cell lines was higher in the positive control group, except in 72 h in HGF cell lines, that 10% non-activated PRP group and 10 and 25% activated PRP groups has higher proliferation rate than the positive control group, which it was not significant. Proliferation rate in cells with 10% activated PRP was highest among samples containing PRP. The current study failed to show the significant effect of activated or non-activated PRP on proliferation of HGFs or MG-63 osteoblast-like cells. However, our results showed that activated PRP had a greater effect than non-activated PRP.  相似文献   

6.
Background: Stem cell culture for regenerative medicine needs platelet rich plasma (PRP) as fetal bovine/calf serum (FBS/FCS) substitute. However, the various studies used various protocols in preparing and processing the PRP. This study aimed to compare and conclude the most effective and efficient protocol. Methods: we searched in vitro studies that used human PRP as FBS/FCS substitute to culture human cells, and compared the various available protocols to identify the easiest and effective protocols for the preparation of PRP and the release of the growth factors (GFs) to support the highest cell growth in stem cell culture. Results: ten studies fulfilled the selection criteria and were included in the analysis. Discussion: Almost all studies on bone marrow mesenchymal stem cell (BM-MSC) and adipose stem cell (AT-SC) showed that platelet lysate and/or activated platelet releasate were superior or at least the same as either FBS or FCS, except for one study that got different results on human AT-SC. Several studies showed that either 5% activated PRP (aPRP) or platelet lysate (PL) was sufficient to support cell growth, or even better when they were compared to 10% FBS, while higher concentrations were counterproductive. However, some studies showed that 10% aPRP or PL was needed. The difference between studies was due to the difference in either the PRP preparation from blood and in the PRP processing to release the GFs, which yield various GF concentrations. Conclusion: In conclusion, studies are needed to reveal the optimal final platelet counts for the various PRP processing methods for various kinds of cells. The easiest PRP processing is freezing to -20?C followed by thawing, or thrombin activation using a final concentration of 100U/mL.  相似文献   

7.
Summary Platelet-rich plasma (PRP) has been used to promote periodontal regeneration following the premise that constituent transforming growth factor-β1 (TGF-β1) and platelet-derived growth factor-AB will stimulate cell proliferation at the site of application. In previous studies, we demonstrated that PRP mimics TGF-β1 to modulate proliferation in a cell type-specific manner, that fibrin clot formation by PRP upregulates type I collagen, and that an unidentified factor(s) in PRP increases alkaline phosphatase (ALP) activity in human periodontal ligament (PDL) cell cultures. We have now examined the effects of PRP on in vitro mineralization. Platelet-rich plasma and PDL cells were prepared from human adult volunteers or rats. After 20 d of continuous treatment with PRP in dexamethazone (Dex)-containing osteogenic medium, PRP time dependently promoted mineralization by rat PDL cells but failed to fully induce the osteoblastic phenotype. Furthermore, when human PDL cells were induced to increase ALP activity in osteogenic medium that lacked Dex, a condition that should delay (or suppress) osteoblastic differentiation, transmission electron microscopy revealed that mineralized spicules were initially deposited onto PRP-derived platelet aggregates. Taken together with our previous data, these findings suggest that PRP provides platelet aggregates as nuclei to initiate mineralization while stimulating PDL cell proliferation, differentiation, and collagen production. The combination of these effects may effectively mediate PRP's ability to promote regeneration of periodontal tissue, including skeletal tissue, at the site of injury.  相似文献   

8.
Polyspermy is fairly common during porcine in vitro fertilisation (IVF), perhaps due to incomplete in vitro oocyte maturation (IVM). Porcine cumulus cells (CCs) layered around the oocyte produce large amounts of extracellular hyaluronan (HA) when forming an expanding cell cloud during the last phase of oocyte maturation. The specific actions of HA are mediated via HA-binding proteins (HABPs), such as CD44, which act as receptors. In this study using immunocytochemistry and western blotting we investigated the localisation of CD44 in CCs obtained from in vivo-matured pig cumulus-oocyte complexes (COCs) and compared it with that in CCs from immature COCs and of COCs subjected to IVM and IVF procedures. Immunolabelling of CD44 was absent or very weak in CCs from immature COCs but strongly present on the surface of the CCs obtained from in vivo, displaying a similar localisation in the in vitro-matured COCs. In the latter, the labelling decreased but did not disappear in CCs 4 h after sperm co-incubation during IVF. Immunoblotting detected bands of between 73 and 88 kDa, corresponding to CD44, in the protein extract from in vivo CCs collected immediately prior to, or following spontaneous ovulation. The in vitro-matured CCs, however, presented bands ranging from 81 kDa to 88 kDa. Also, the bands found in the in vivo-matured CCs showed a larger variation of intensity and migration among animals than did the batches of in vitro-matured CCs. No CD44 band was detected on aliquots of the frozen-thawed boar spermatozoa used for IVF. The results clearly demonstrate that the specific HA receptor CD44 is present in expanding CCs of in vivo-matured pig COCs, in relation to increasing amounts of inter-CC HA. The subtle differences in molecular weight and migration ability observed between in vivo and in vitro samples may relate to differences in glycosylation and thus explain differences in HA-binding ability, of consequence for optimising in vitro culture conditions.  相似文献   

9.
Fibroblasts from a Hutchinson-Guilford Progeria Syndrome (HGPS) patient were compared to normal human fibroblasts to determine if differences existed in growth factor mediated cell proliferation. Cultures of progeric fibroblasts were exposed individually to platelet-derived growth factor (PDGF), epidermal growth factor (EGF), platelet poor plasma (PPP) and fetal bovine serum (FBS). Autoradiographic studies using 3H thymidine showed that progeric fibroblasts had similar labeling indices relative to controls after exposure to FBS and EGF. In contrast, progeric cells made competent with PDGF and later treated with 5% PPP had a significantly lower labeling index. This and preliminary observations on fos RNA accumulation suggests the possible existence of a genetic defect in HGPS fibroblasts.  相似文献   

10.
The current study aimed to enhance the efficacy of peripheral nerve regeneration using a biodegradable porous neural guidance conduit as a carrier to transplant allogeneic Schwann cells (SCs). The conduit was prepared from polyurethane (PU) and gelatin nanofibrils (GNFs) using thermally induced phase separation technique and filled with melatonin (MLT) and platelet-rich plasma (PRP). The prepared conduit had the porosity of 87.17 ± 1.89%, the contact angle of 78.17 ± 5.30° and the ultimate tensile strength and Young’s modulus of 5.40 ± 0.98 MPa and 3.13 ± 0.65 GPa, respectively. The conduit lost about 14% of its weight after 60 days in distilled water. The produced conduit enhanced the proliferation of SCs demonstrated by a tetrazolium salt-based assay. For functional analysis, the conduit was seeded with 1.50 × 104 SCs (PU/GNFs/PRP/MLT/SCs) and implanted into a 10-mm sciatic nerve defect of Wistar rat. Three control groups were used: (1) PU/GNFs/SCs, (2) PU/GNFs/PRP/SCs, and (3) Autograft. The results of sciatic functional index, hot plate latency, compound muscle action potential amplitude and latency, weight-loss percentage of wet gastrocnemius muscle and histopathological examination using hematoxylin–eosin and Luxol fast blue staining, demonstrated that using the PU/GNFs/PRP/MLT conduit to transplant SCs to the sciatic nerve defect resulted in a higher regenerative outcome than the PU/GNFs and PU/GNFs/PRP conduits.  相似文献   

11.
We have studied the combined effects of platelet-derived soluble factors and three types of macromolecular substrata on the proliferation and migration of smooth muscle cells in vitro. Bovine aortic smooth muscle cells were plated onto three-dimensional gels of type I collagen or onto cell-free extracellular matrices deposited on such gels by either bovine aortic endothelial cells or smooth muscle cells. The cells were cultured in the presence of whole-blood serum (WBS) or platelet-poor plasma (PPP). Smooth muscle cell proliferation on type I collagen gels was dependent on the presence of platelet-derived factors, i.e. the cells proliferated in the presence of WBS but not in PPP. In contrast, cell proliferation on the extracellular matrices occurred at the same rate in PPP and WBS. Smooth muscle cells plated onto collagen gels rapidly migrated down into the gel matrix; the percentage of cells migrating was inversely proportional to cell density. The presence of extracellular matrices did not alter the rate of cell migration into the underlying gel matrix. Irrespective of the substratum used, smooth muscle cell migration was independent of platelet-derived or plasma factors and occurred in the absence of proliferation. These results indicate that possible chemotactic, chemokinetic, and/or mitogenic factors produced by the vascular cells and deposited within the extracellular matrix may play an important role in modulating smooth muscle cell behaviour in the vascular wall.  相似文献   

12.
Background aimsThe therapeutic potential of human mesenchymal stromal cells (MSCs) has generated considerable interest in a wide variety of areas. MSC banking is feasible, but the optimal technique of cryopreservation remains to be determined.MethodsTo reduce dimethyl sulfoxide (DMSO) concentration in cryopreservation medium, DMSO was replaced with sucrose or trehalose. To increase cell survival and proliferation rates after thawing and to eliminate the need for fetal bovine serum (FBS), neuropeptides of the vasoactive intestinal peptide/glucose-dependent insulinotropic peptide/pituitary adenylate cyclase activating polypeptide family were added to the cryopreservation medium. Cell survival was analyzed by a trypan blue dye exclusion assay. Cell proliferation of cryopreserved MSCs was determined after 7 days of culture.ResultsNo significant differences in cell survival rates were detected between cryopreservation solutions with 5% and 10% DMSO, independently of the addition of trehalose or sucrose. Cell proliferation rates tended to be highest when MSCs were frozen in 5% DMSO + trehalose. FBS could be replaced by human albumin (HA) without loss in cell survival and proliferation potential. With FBS, the addition of neuropeptides could increase cell survival and proliferation rates. Without FBS or HA, cell survival and proliferation rates in the presence of neuropeptides were comparable to rates achieved with FBS or HA.ConclusionsClassic cryopreservation with 10% DMSO could be replaced by 5% DMSO + 30 mmol/L trehalose. FBS could be replaced by HA or neuropeptides without loss in cell survival and proliferation potential. The addition of neuropeptides in the cryopreservation medium containing FBS could increase the cell proliferation rate and consequently cellular output.  相似文献   

13.
The objective of this study was to explore the effects of intermittent hydrostatic pressure (IHP) on the chondrogenic differentiation of cartilage progenitor cells (CPCs) cultivated in alginate beads. CPCs were isolated from the knee joint cartilage of rabbits, and infrapatellar fat pad‐derived stem cells (FPSCs) and chondrocytes (CCs) were included as the control cell types. Cells embedded in alginate beads were treated with IHP at 5 Mpa and 0.5 Hz for 4 h/day for 1, 2, or 4 weeks. The cells' migratory and proliferative capacities were evaluated using the scratch and Live/Dead assays, respectively. Hematoxylin and eosin staining, safranin O staining, and immunohistochemical staining were performed to determine the effects of IHP on the synthesis of extracellular matrix (ECM) proteins. Real‐time polymerase chain reaction analysis was performed to measure the expression of genes related to chondrogenesis. The scratch and Live/Dead assays revealed that IHP significantly promoted the migration and proliferation of FPSCs and CPCs to different extents. The staining experiments showed greater production of cartilage ECM components (glycosaminoglycans and collagen II) by cells exposed to IHP, and the gene expression analysis demonstrated that IHP stimulated the expression of chondrocyte‐related genes. Importantly, these effects of IHP were more prominent in CPCs than in FPSCs and CCs. Considering all of our experimental results combined, we conclude that CPCs demonstrated a stronger chondrogenic differentiation capacity than the FPSCs and CCs under stimulation with IHP. Thus, the use of CPCs, combined with mechanical stimulation, may represent a valuable strategy for cartilage tissue engineering.  相似文献   

14.
Recently human adipose-derived stem cells (ASCs) have shown much therapeutic potential in regenerative medicine. However, fetal bovine serum (FBS) used in culturing human cells may give risk to viral and prion transmission as well as immune rejection. Human serum (HS) is a safer growth supplement in human cell culture but its effects have not been well established. Therefore the objectives of this study were to compare the effects of HS versus FBS on the proliferation and stemness gene expression of ASCs. ASCs were cultured for 5 passages in medium supplemented with either 10% HS or 10% FBS. ASCs proliferation rate and viability were determined at every passage. Total RNA was extracted at passage 5 (P5) and quantitative PCR was carried out to determine the stemness gene expression level of SOX-2, Nanog3, BST-1, REX-1, ABCG2 and FGF-4. The results showed ASC cultured in 10% HS scored greater proliferation rates and viability compared to 10% FBS. ASCs proliferated significantly faster in 10% HS compared to 10% FBS at P2, P3, and P4 (p < 0.05). In quantitative gene expression analysis, ASCs cultured in 10% FBS showed a significant increase of BST-1, REX-1 and ABCG2 expression compared to 10% HS. In conclusion, HS promotes ASCs proliferation and viability but its ability to support the stemness property of ASCs was inferior to FBS.  相似文献   

15.
16.
A soluble factor(s) produced by fully grown oocytes is essential, together with follicle stimulating hormone (FSH), to stimulate in vitro hyaluronic acid (HA) synthesis by mouse cumulus cells (CCs). The stability of the response to this stimulus by CCs in culture was investigated. The data showed that preculture for 8 hr in basal medium reduced to approximately 30% the ability of CCs to synthesize HA in response to FSH or dibutyryl cyclic AMP (Bt2cAMP) and soluble oocyte factor(s). However, if CCs were precultured for the same period of time as intact cumulus cell-oocyte complexes, or in the presence of fully grown oocytes, or in medium conditioned by fully grown oocytes, their ability to synthesize HA was 75-95% preserved. In vitro stimulation of dermatan sulfate (DS) synthesis by CCs does not require oocyte factors and is induced by FSH or Bt2cAMP treatment alone. However, the preservation of such activity, like that of HA synthesis, depended on the presence of a soluble oocyte factor(s) during preculture. The presence of isolated oocytes or of oocyte-conditioned medium also prevented the spreading of CCs in culture. However, inhibiting CC spreading by culture on agar-coated plates or in serum-free medium did not preserve their HA or DS synthetic activity, thus suggesting that the two oocyte actions on CCs are independent. Growing oocytes were unable both to induce HA synthesis in freshly isolated CCs stimulated with FSH and to preserve the ability to synthesize HA and DS in 8-hr precultured CCs. The results suggest that the stability of the differentiated state of mouse CCs in vitro depends upon continued exposure to a soluble factor(s) produced by fully grown oocytes.  相似文献   

17.
Platelet-rich plasma (PRP) is an autologous concentrated cocktail of growth factors and inflammatory mediators, and has been considered to be potentially effective for cartilage repair. In addition, the fibrinogen in PRP may be activated to form a fibrin matrix to fill cartilage lesions, fulfilling the initial requirements of physiological wound healing. The anabolic, anti-inflammatory and scaffolding effects of PRP based on laboratory investigations, animal studies, and clinical trials are reviewed here. In vitro, PRP is found to stimulate cell proliferation and cartilaginous matrix production by chondrocytes and adult mesenchymal stem cells (MSCs), enhance matrix secretion by synoviocytes, mitigate IL-1β-induced inflammation, and provide a favorable substrate for MSCs. In preclinical studies, PRP has been used either as a gel to fill cartilage defects with variable results, or to slow the progression of arthritis in animal models with positive outcomes. Findings from current clinical trials suggest that PRP may have the potential to fill cartilage defects to enhance cartilage repair, attenuate symptoms of osteoarthritis and improve joint function, with an acceptable safety profile. Although current evidence appears to favor PRP over hyaluronan for the treatment of osteoarthritis, the efficacy of PRP therapy remains unpredictable owing to the highly heterogeneous nature of reported studies and the variable composition of the PRP preparations. Future studies are critical to elucidate the functional activity of individual PRP components in modulating specific pathogenic mechanisms.  相似文献   

18.
Adipose tissue‐derived mesenchymal stem cells (Ad‐MSC) and platelet derivatives have been used alone or in combination to achieve regeneration of injured tissues. We have tested the effect of platelet‐rich plasma (PRP) on Ad‐MSC and adipocyte function. PRP increased Ad‐MSC viability, proliferation rate and G1‐S cell cycle progression, by at least 7‐, 2‐, and 2.2‐fold, respectively, and reduced caspase 3 cleavage. Higher PRP concentrations or PRPs derived from individuals with higher platelet counts were more effective in increasing Ad‐MSC growth. PRP also accelerated cell migration by at least 1.5‐fold. However, PRP did not significantly affect mature adipocyte viability, differentiation and expression levels of PPAR‐γ and AP‐2 mRNAs, while it increased leptin production by 3.5‐fold. Interestingly, PRP treatment of mature adipocytes also enhanced the release of Interleukin (IL)‐6, IL‐8, IL‐10, Interferon‐γ, and Vascular Endothelial Growth Factor. Thus, data are consistent with a stimulatory effect of platelet derivatives on Ad‐MSC growth and motility. Moreover, PRP did not reduce mature adipocyte survival and increased the release of pro‐angiogenic factors, which may facilitate tissue regeneration processes. © 2015 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc. J. Cell. Biochem. 116: 2408–2418, 2015. © 2015 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc.  相似文献   

19.
Finding an effective method to regenerate muscle is a growing issue in the orthopedic field. Platelet-rich plasma (PRP) has recently been considered for therapeutic use due to its capacity to induce proliferation of myogenic progenitor cells (MPCs). Adipose-derived stem cells (ASCs) and its extract are regarded as a promising treatment for various disorders within the orthopedic field but their therapeutic relevance in the muscle regeneration is poorly investigated. In this study, rabbit MPCs were cultured from the supraspinatus of rabbit and characterized by myogenic markers. To investigate the paracrine effect of ASCs on MPCs, coculture experiments were performed. In order to see the anabolic effect of ASC-extracts (ASC-ex) in MPCs, cell proliferation assays were performed and compared with the PRP-added condition. Coculture experiment showed ASCs had an anabolic paracrine effect on proliferation of MPCs. PRP had a positive effect on proliferation of MPCs when compared to the control (100?±?7.4% vs 195.2?±?19.2%, p?p?p?p?相似文献   

20.
The action of a platelet extract (PE) and a heat-inactivated PE on 3T3 cells proliferation has been investigated. The heat-inactivated PE and platelet poor plasma (PPP) together can promote cell proliferation like fetal calf serum. At the same time PE inhibits proliferation of the cell culture stimulated by 5% fetal calf serum, whereas the heat-inactivated PE does not. Although the actions of 2% PE and 2% heat-inactivated PE on the cells incubated with PPP are equal, the stimulating effect of a 10% heat-inactivated PE is higher than that of a 10% PE. Thus, the inhibitor acts only at high concentrations. The role of the platelet-derived inhibitor in the limiting of extensive cell proliferation during vessel wall injury repair is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号