首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reactive oxygen species generate some 20,000 base lesions per human cell per day. The vast majority of these potentially mutagenic or cytotoxic lesions are subject to base excision repair (BER). Although chromatin remodelers have been shown to enhance the excision of oxidized bases from nucleosomes in vitro, it is not clear that they are recruited to and act at sites of BER in vivo. To test the hypothesis that cells possess factors that enhance BER in chromatin, we assessed the capacity of nuclear extracts from human cells to excise thymine glycol (Tg) lesions from exogenously added, model nucleosomes. The DNA glycosylase NTHL1 in these extracts was able to excise Tg from both naked DNA and sites in nucleosomes that earlier studies had shown to be sterically accessible. However, the same extracts were able to excise lesions from sterically-occluded sites in nucleosomes only after the addition of Mg2+/ATP. Gel mobility shift assays indicated that nucleosomes remain largely intact following the Mg2+/ATP −dependent excision reaction. Size exclusion chromatography indicated that the NTHL1-stimulating activity has a relatively low molecular weight, close to that of NTHL1 and other BER glycosylases; column fractions that contained the very large chromatin remodeling complexes did not exhibit this same stimulatory activity. These results indicate that cells possess a factor(s) that promotes the initiation of BER in chromatin, but differs from most known chromatin remodeling complexes.  相似文献   

2.
The quality of germ cell DNA is critical for the fate of the offspring, yet there is limited knowledge of the DNA repair capabilities of such cells. One of the main DNA repair pathways is base excision repair (BER) which is initiated by DNA glycosylases that excise damaged bases, followed by incision of the generated abasic (AP) sites. We have studied human and rat methylpurine-DNA glycosylase (MPG), uracil-DNA glycosylase (UNG), and the major AP endonuclease (HAP1/APEX) in male germ cells. Enzymatic activities and western analyses indicate that these enzymes are present in human and rat male germ cells in amounts that are at least as high as in somatic cells. Minor differences were observed between different cellular stages of rat spermatogenesis and spermiogenesis. Repair of methylated DNA was also studied at the cellular level using the Comet assay. The repair was highly efficient in both human and rat male germ cells, in primary spermatocytes as well as round spermatids, compared to rat mononuclear blood cells or hepatocytes. This efficient BER removes frequently occurring DNA lesions that arise spontaneously or via environmental agents, thereby minimising the number of potential mutations transferred to the next generation.  相似文献   

3.
The maintenance of genetic stability is of crucial importance for any form of life. Prior to cell division in each mammalian cell, the process of DNA replication must faithfully duplicate the three billion bases with an absolute minimum of mistakes. Various environmental and endogenous agents, such as reactive oxygen species (ROS), can modify the structural properties of DNA bases and thus damage the DNA. Upon exposure of cells to oxidative stress, an often generated and highly mutagenic DNA damage is 7,8-dihydro-8-oxo-guanine (8-oxo-G). The estimated steady-state level of 8-oxo-G lesions is about 103 per cell/per day in normal tissues and up to 105 lesions per cell/per day in cancer tissues. The presence of 8-oxo-G on the replicating strand leads to frequent (10–75%) misincorporations of adenine opposite the lesion (formation of A:8-oxo-G mispairs), subsequently resulting in C:G to A:T transversion mutations. These mutations are among the most predominant somatic mutations in lung, breast, ovarian, gastric and colorectal cancers. Thus, in order to reduce the mutational burden of ROS, human cells have evolved base excision repair (BER) pathways ensuring (i) the correct and efficient repair of A:8-oxo-G mispairs and (ii) the removal of 8-oxo-G lesions from the genome. Very recently it was shown that MutY glycosylase homologue (MUTYH) and DNA polymerase λ play a crucial role in the accurate repair of A:8-oxo-G mispairs. Here we review the importance of accurate BER of 8-oxo-G damage and its regulation in prevention of cancer.  相似文献   

4.
Human cancer, carcinogenic exposures and mutation spectra   总被引:5,自引:0,他引:5  
Exposure of mammalian cells to alkylating agents causes transfer of alkyl groups to N- as well as O-atoms of DNA bases. Especially the O-alkylated G and T bases have strong mutagenic properties, since they are capable of mispairing during replication. The mutagenic potential of N-alkylbases is less clear although specific base excision repair (BER) pathways exist which remove those lesions from the DNA. We investigated the relative contribution of N-alkylations to mutation induction at the Hprt gene in cultured Chinese hamster ovary cells (CHO). To this end BER activity in CHO cells was modulated by introduction of an expression vector carrying the rat N-alkylpurine-DNA glycosylase (APDG) gene, which codes for a glycosylase that is able to remove 3-methyladenine and 7-methylguanine from DNA thereby generating apurinic sites. Upon selection of a CHO clone which 10 times overproduced APDG compared to control CHO cells, mutation induction, the mutational spectrum, and cell survival were determined in both cell lines following treatment with methyl methanesulfonate (MMS). The results show that over-expression of APDG renders CHO cells more sensitive for mutation induction as well as cytotoxicity induced by MMS. The involvement of apurinic sites in induction of base pair changes at positions where 3-methyladenine was induced is inferred from the observation that the mutational spectrum of MMS-induced mutations in APDG-CHO cells showed twice as much base pair changes at AT base pairs (33.3%) compared to the spectrum of MMS-induced mutations in CHO-control cells (15.8%).  相似文献   

5.
Frameshift mutations are particularly deleterious to protein function and play a prominent role in carcinogenesis. Most commonly these mutations involve the insertion or omission of a single nucleotide by a DNA polymerase that slips on a damaged or undamaged template. The mismatch DNA repair pathway can repair these nascent polymerase errors. However, overexpression of enzymes of the base excision repair (BER) pathway is known to increase the frequency of frameshift mutations suggesting competition between these pathways. We have examined the fate of DNA containing single nucleotide bulges in human cell extracts and discovered that several deaminated or alkylated nucleotides are efficiently removed by BER. Because single nucleotide bulges are more highly exposed we anticipate that they would be highly susceptible to spontaneous DNA damage. As a model for this, we have shown that chloroacetaldehyde reacts more than 18-fold faster with an A-bulge than with a stable A·T base pair to create alkylated DNA adducts that can be removed by alkyladenine DNA glycosylase. Reconstitution of the BER pathway using purified components establishes that bulged DNA is efficiently processed. Single nucleotide deletion is predicted to repair +1 frameshift events, but to make −1 frameshift events permanent. Therefore, these findings suggest an additional factor contributing to the bias toward deletion mutations.  相似文献   

6.
Ulbert S  Eide L  Seeberg E  Borst P 《DNA Repair》2004,3(2):145-154
Base excision repair (BER) is an evolutionarily conserved system which removes altered bases from DNA. The initial step in BER is carried out by DNA glycosylases which recognize altered bases and cut the N-glycosylic bond between the base and the DNA backbone. In kinetoplastid flagellates, such as Trypanosoma brucei, the modified base beta-D-glucosyl-hydroxymethyluracil (J) replaces a small percentage of thymine residues, predominantly in repetitive telomeric sequences. Base J is synthesized at the DNA level via the precursor 5-hydroxymethyluracil (5-HmU). We have investigated whether J in DNA can be recognized by DNA glycosylases from non-kinetoplastid origin, and whether the presence of J and 5-HmU in DNA has required modifications of the trypanosome BER system. We tested the ability of 15 different DNA glycosylases from various origins to excise J or 5-HmU paired to A from duplex oligonucleotides. No excision of J was found, but 5-HmU was excised by AlkA and Mug from Escherichia coli and by human SMUG1 and TDG, confirming previous reports. In a combination of database searches and biochemical assays we identified several DNA glycosylases in T. brucei, but in trypanosome extracts we detected no excision activity towards 5-HmU or ethenocytosine, a product of oxidative DNA damage and a substrate for Mug, TDG and SMUG1. Our results indicate that trypanosomes have a BER system similar to that of other organisms, but might be unable to excise certain forms of oxidatively damaged bases. The presence of J in DNA does not require a specific modification of the BER system, as this base is not recognized by any known DNA glycosylase.  相似文献   

7.
The XPC-HR23B complex recognizes various helix-distorting lesions in DNA and initiates global genome nucleotide excision repair. Here we describe a novel functional interaction between XPC-HR23B and thymine DNA glycosylase (TDG), which initiates base excision repair (BER) of G/T mismatches generated by spontaneous deamination of 5-methylcytosine. XPC-HR23B stimulated TDG activity by promoting the release of TDG from abasic sites that result from the excision of mismatched T bases. In the presence of AP endonuclease (APE), XPC-HR23B had an additive effect on the enzymatic turnover of TDG without significantly inhibiting the subsequent action of APE. Our observations suggest that XPC-HR23B may participate in BER of G/T mismatches, thereby contributing to the suppression of spontaneous mutations that may be one of the contributory factors for the promotion of carcinogenesis in xeroderma pigmentosum genetic complementation group C patients.  相似文献   

8.

Background

Oxidative damage to DNA, if not repaired, can be both miscoding and blocking. These genetic alterations can lead to mutations and/or cell death, which in turn cause cancer and aging. Oxidized DNA bases are substrates for two overlapping repair pathways: base excision (BER) and nucleotide incision repair (NIR). Hydantoin derivatives such as 5-hydroxyhydantoin (5OH-Hyd) and 5-methyl-5-hydroxyhydantoin (5OH-5Me-Hyd), major products of cytosine and thymine oxidative degradation pathways, respectively, have been detected in cancer cells and ancient DNA. Hydantoins are blocking lesions for DNA polymerases and excised by bacterial and yeast DNA glycosylases in the BER pathway. However little is known about repair of pyrimidine-derived hydantoins in human cells.

Methodology/Principal Findings

Here, using both denaturing PAGE and MALDI-TOF MS analyses we report that the bacterial, yeast and human AP endonucleases can incise duplex DNA 5′ next to 5OH-Hyd and 5OH-5Me-Hyd thus initiating the NIR pathway. We have fully reconstituted the NIR pathway for these lesions in vitro using purified human proteins. Depletion of Nfo in E. coli and APE1 in HeLa cells abolishes the NIR activity in cell-free extracts. Importantly, a number of redundant DNA glycosylase activities can excise hydantoin residues, including human NTH1, NEIL1 and NEIL2 and the former protein being a major DNA glycosylase activity in HeLa cells extracts.

Conclusions/Significance

This study demonstrates that both BER and NIR pathways can compete and/or back-up each other to remove hydantoin DNA lesions in vivo.  相似文献   

9.
Mitochondrial DNA repair of oxidative damage in mammalian cells   总被引:9,自引:0,他引:9  
Bohr VA  Stevnsner T  de Souza-Pinto NC 《Gene》2002,286(1):127-134
Nuclear and mitochondrial DNA are constantly being exposed to damaging agents, from endogenous and exogenous sources. In particular, reactive oxygen species (ROS) are formed at high levels as by-products of the normal metabolism. Upon oxidative attack of DNA many DNA lesions are formed and oxidized bases are generated with high frequency. Mitochondrial DNA has been shown to accumulate high levels of 8-hydroxy-2'-deoxyguanosine, the product of hydroxylation of guanine at carbon 8, which is a mutagenic lesion. Most of these small base modifications are repaired by the base excision repair (BER) pathway. Despite the initial concept that mitochondria lack DNA repair, experimental evidences now show that mitochondria are very proficient in BER of oxidative DNA damage, and proteins necessary for this pathway have been isolated from mammalian mitochondria. Here, we examine the BER pathway with an emphasis on mtDNA repair. The molecular mechanisms involved in the formation and removal of oxidative damage from mitochondria are discussed. The pivotal role of the OGG1 glycosylase in removal of oxidized guanines from mtDNA will also be examined. Lastly, changes in mtDNA repair during the aging process and possible biological implications are discussed.  相似文献   

10.
How DNA repair machineries detect and access, within the context of chromatin, lesions inducing little or no distortion of the DNA structure is a poorly understood process. Removal of oxidized bases is initiated by a DNA glycosylase that recognises and excises the damaged base, initiating the base excision repair (BER) pathway. We show that upon induction of 8-oxoguanine, a mutagenic product of guanine oxidation, the mammalian 8-oxoguanine DNA glycosylase OGG1 is recruited together with other proteins involved in BER to euchromatin regions rich in RNA and RNA polymerase II and completely excluded from heterochromatin. The underlying mechanism does not require direct interaction of the protein with the oxidized base, however, the release of the protein from the chromatin fraction requires completion of repair. Inducing chromatin compaction by sucrose results in a complete but reversible inhibition of the in vivo repair of 8-oxoguanine. We conclude that after induction of oxidative DNA damage, the DNA glycosylase is actively recruited to regions of open chromatin allowing the access of the BER machinery to the lesions, suggesting preferential repair of active chromosome regions.  相似文献   

11.
Despite the importance of DNA repair in protecting the genome, the molecular basis for damage recognition and repair remains poorly understood. In the base excision repair pathway (BER), DNA glycosylases recognize and excise damaged bases from DNA. This review focuses on the recent development of chemical approaches that have been applied to the study of BER enzymes. Several distinctive classes of noncleavable substrate analogs that form stable complexes with DNA glycosylases have recently been designed and synthesized. These analogs have been used for biochemical and structural analyses of protein—DNA complexes involving DNA glycosylases, and for the isolation of a novel DNA glycosylase. An approach to trap covalently a DNA glycosylase-intermediate complex has also been used to elucidate the mechanism of DNA glycosylases.  相似文献   

12.
The ability of DNA glycosylases to rapidly and efficiently detect lesions among a vast excess of nondamaged DNA bases is vitally important in base excision repair (BER). Here, we use single molecule imaging by atomic force microscopy (AFM) supported by a 2-aminopurine fluorescence base flipping assay to study damage search by human thymine DNA glycosylase (hTDG), which initiates BER of mutagenic and cytotoxic G:T and G:U mispairs in DNA. Our data reveal an equilibrium between two conformational states of hTDG–DNA complexes, assigned as search complex (SC) and interrogation complex (IC), both at target lesions and undamaged DNA sites. Notably, for both hTDG and a second glycosylase, hOGG1, which recognizes structurally different 8-oxoguanine lesions, the conformation of the DNA in the SC mirrors innate structural properties of their respective target sites. In the IC, the DNA is sharply bent, as seen in crystal structures of hTDG lesion recognition complexes, which likely supports the base flipping required for lesion identification. Our results support a potentially general concept of sculpting of glycosylases to their targets, allowing them to exploit the energetic cost of DNA bending for initial lesion sensing, coupled with continuous (extrahelical) base interrogation during lesion search by DNA glycosylases.  相似文献   

13.
8-Oxoguanine DNA damage: at the crossroad of alternative repair pathways   总被引:11,自引:0,他引:11  
Radical oxygen species (ROS) generate various modified DNA bases. Among them 8-oxo-7,8-dihydroguanine (8oxoG) is the most abundant and seems to play a major role in mutagenesis and in carcinogenesis. 8oxoG is removed from DNA by the specific glycosylase OGG1. An additional post-replication repair is needed to correct the 8oxoG/A mismatches that are produced by persistent 8oxoG residues. This review is focused on the mechanisms of base excision repair (BER) of this oxidized base. It is shown that, in vitro, efficient and complete repair of 8oxoG/C pairs requires a core of four proteins, namely OGG1, APE1, DNA polymerase (Pol) beta, and DNA ligase I. Repair occurs predominantly by one nucleotide replacement reactions (short-patch BER) and Pol beta is the polymerase of election for the resynthesis step. However, alternative mechanisms can act on 8oxoG residues since Pol beta-null cells are able to repair these lesions. 8oxoG/A mismatches are repaired by human cell extracts via two BER events which occur sequentially on the two strands. The removal of the mismatched adenine is followed by preferential insertion of a cytosine leading to the formation of 8oxoG/C pairs which are then corrected by OGG1-mediated BER. Both repair events are inhibited by aphidicolin, suggesting that a replicative DNA polymerase is involved in the repair synthesis step. We propose that Pol delta/epsilon-mediated BER (long-patch BER) is the mode of repair when lesions persist or are formed at replication. Finally, we address the issues of the relative contribution of the two BER pathways to oxidative damage repair in vivo and the possible role of BER gene variants as cancer susceptibility genes.  相似文献   

14.
Zhang QM  Dianov GL 《DNA Repair》2005,4(2):263-270
Base excision repair (BER), responsible for the removal of altered DNA bases, is accomplished via two pathways that involve different subsets of repair enzymes and result in removal and replacement of one (short-patch BER) or several (long-patch BER) nucleotides. In this study, we constructed single-lesion containing DNA substrates that are predominantly repaired via one of the two pathways and investigated the fidelity of pathway specific repair in human whole cell extracts. We find that a single nucleotide deletion generated during addition of the first nucleotide into the repair gap is the major mutation characteristic for both pathways. This data suggest that for both BER pathways, mutations generated during repair in human whole cell extracts are principally the result of a slippage of DNA polymerase during initiation of repair synthesis.  相似文献   

15.
Damaged DNA bases are removed from mammalian genomes by base excision repair (BER). Single nucleotide BER requires several enzymatic activities, including DNA polymerase and 5',2'-deoxyribose-5-phosphate lyase. Both activities are intrinsic to four human DNA polymerases whose base substitution error rate during gap-filling DNA synthesis varies by more than 10,000-fold. This suggests that BER fidelity could vary over a wide range in an enzyme dependent manner. To investigate this possibility, here we describe an assay to measure the fidelity of BER reactions reconstituted with purified enzymes. When human uracil DNA glycosylase, AP endonuclease, DNA polymerase beta, and DNA ligase 1 replace uracil opposite template A or G, base substitution error rates are 相似文献   

16.
Base damage or loss occurs at high frequency in the cells (almost 10(4) bases are damaged and hydrolysed per cell per day). DNA repair is fundamental to maintain genomic integrity. Base excision repair (BER) is the main mechanism by which cells correct various types of damaged DNA bases generated either by endogenous or exogenous factors. The widely accepted model for BER mechanism involves five sequential reactions: (i) base removal; (ii) incision of the resulting abasic site; (iii) processing of the generated termini at the strand break; (iv) DNA synthesis, and (v) ligation. In this review, we will briefly summarise the biochemistry of each BER step and will concentrate on the biological relevance of BER as inferred from in vitro and in vivo studies. This information will be the basis for speculation on the potential role of malfunction of BER in human pathology.  相似文献   

17.
Base excision repair (BER) provides relief from many DNA lesions. While BER enzymes have been characterized biochemically, BER functions within cells are much less understood, in part because replication bypass and double-strand break (DSB) repair can also impact resistance to base damage. To investigate BER in vivo, we examined the repair of methyl methanesulfonate (MMS) induced DNA damage in haploid G1 yeast cells, so that replication bypass and recombinational DSB repair cannot occur. Based on the heat-lability of MMS-induced base damage, an assay was developed that monitors secondary breaks in full-length yeast chromosomes where closely spaced breaks yield DSBs that are observed by pulsed-field gel electrophoresis. The assay detects damaged bases and abasic (AP) sites as heat-dependent breaks as well as intermediate heat-independent breaks that arise during BER. Using a circular chromosome, lesion frequency and repair kinetics could be easily determined. Monitoring BER in single and multiple glycosylase and AP-endonuclease mutants confirmed that Mag1 is the major enzyme that removes MMS-damaged bases. This approach provided direct physical evidence that Apn1 and Apn2 not only repair cellular base damage but also prevent break accumulation that can result from AP sites being channeled into other BER pathway(s).  相似文献   

18.
For all living organisms, genome stability is important, but is also under constant threat because various environmental and endogenous damaging agents can modify the structural properties of DNA bases. As a defense, organisms have developed different DNA repair pathways. Base excision repair (BER) is the predominant pathway for coping with a broad range of small lesions resulting from oxidation, alkylation, and deamination, which modify individual bases without large effect on the double helix structure. As, in mammalian cells, this damage is estimated to account daily for 10(4) events per cell, the need for BER pathways is unquestionable. The damage-specific removal is carried out by a considerable group of enzymes, designated as DNA glycosylases. Each DNA glycosylase has its unique specificity and many of them are ubiquitous in microorganisms, mammals, and plants. Here, we review the importance of the BER pathway and we focus on the different roles of DNA glycosylases in various organisms.  相似文献   

19.
DNA base excision repair (BER) is initiated by DNA glycosylases that recognize and remove damaged bases. The phosphate backbone adjacent to the resulting apurinic/apyrimidinic (AP) site is then cleaved by an AP endonuclease or glycosylase-associated AP lyase to invoke subsequent BER steps. We have used a genetic approach in Saccharomyces cerevisiae to address whether AP sites are blocks to DNA replication and the biological consequences if AP sites persist in the genome. We found that yeast cells deficient in the two AP endonucleases (apn1 apn2 double mutant) are extremely sensitive to killing by methyl methanesulfonate (MMS), a model DNA alkylating agent. Interestingly, this sensitivity can be reduced up to 2500-fold by deleting the MAG1 3-methyladenine DNA glycosylase gene, suggesting that Mag1 not only removes lethal base lesions, but also benign lesions and possibly normal bases, and that the resulting AP sites are highly toxic to the cells. This rescuing effect appears to be specific for DNA alkylation damage, since the mag1 mutation reduces killing effects of two other DNA alkylating agents, but does not alter the sensitivity of apn cells to killing by UV, gamma-ray or H(2)O(2). Our mutagenesis assays indicate that nearly half of spontaneous and almost all MMS-induced mutations in the AP endonuclease-deficient cells are due to Mag1 DNA glycosylase activity. Although the DNA replication apparatus appears to be incapable of replicating past AP sites, Polzeta-mediated translesion synthesis is able to bypass AP sites, and accounts for all spontaneous and MMS-induced mutagenesis in the AP endonuclease-deficient cells. These results allow us to delineate base lesion flow within the BER pathway and link AP sites to other DNA damage repair and tolerance pathways.  相似文献   

20.
The paradigm for repair of oxidized base lesions in genomes via the base excision repair (BER) pathway is based on studies in Escherichia coli, in which AP endonuclease (APE) removes all 3' blocking groups (including 3' phosphate) generated by DNA glycosylase/AP lyases after base excision. The recently discovered mammalian DNA glycosylase/AP lyases, NEIL1 and NEIL2, unlike the previously characterized OGG1 and NTH1, generate DNA strand breaks with 3' phosphate termini. Here we show that in mammalian cells, removal of the 3' phosphate is dependent on polynucleotide kinase (PNK), and not APE. NEIL1 stably interacts with other BER proteins, DNA polymerase beta (pol beta) and DNA ligase IIIalpha. The complex of NEIL1, pol beta, and DNA ligase IIIalpha together with PNK suggests coordination of NEIL1-initiated repair. That NEIL1/PNK could also repair the products of other DNA glycosylases suggests a broad role for this APE-independent BER pathway in mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号